
How virtualization makes power management different

Kevin Tian, Ke Yu, Jun Nakajima, and Winston Wang
Intel Open Source Technology Center

{kevin.tian,ke.yu,jun.nakajima,winston.l.wang}@intel.com

Abstract

Unlike when running a native OS, power management
activity has different types in a virtualization world: vir-
tual and real. A virtual activity is limited to a virtual
machine and has no effect on real power. For example,
virtual S3 sleep only puts the virtual machine into sleep
state, while other virtual machines may still work. On
the other hand, a real activity operates on the physical
hardware and saves real power. Since the virtual ac-
tivity is well controlled by the guest OS, the remaining
problem is how to determine the real activity according
to the virtual activity. There are several approaches for
this problem.

1. Purely based on the virtual activity. Virtual Sx state
support is a good example. Real S3 sleep will be
executed if and only if all the virtual S3 are exe-
cuted.

2. Purely based on the global information, regardless
of the virtual activity. For example, CPU Px state
can be determined by the global CPU utilization.

3. Combination of (1) and (2): in some environments,
VM can directly access physical hardware with as-
sists from hardware (e.g., Intel Virtualization Tech-
nology for Directed I/O, a.k.a. VT-d). In this case,
the combination of (1) and (2) will be better.

This paper first presents the overview of power man-
agement in virtualization. Then it describes how each
power management state (Sx/Cx/Px) can be handled in
a virtualization environment by utilizing the above ap-
proaches. Finally, the paper reviews the current status
and future work.

1 Overview of Power Management in Virtual-
ization

This section introduces the ACPI power management
state and virtualization mode, and later the overview of

a power management implementation in virtualization.

1.1 Power Management state in ACPI

ACPI [1] is an open industry specification on power
management and is well supported in Linux 2.6, so this
paper focuses on the power management states defined
in the ACPI specification.

ACPI defines several kinds of power management state:

• Global System state (G-state): they are: G0
(working), G1 (sleeping), G2 (soft-off) and G3
(mechanical-off).

• Processor Power state (C-state): in the G0 state,
the CPU has several sub-states, C0 ∼ Cn. The CPU
is working in C0, and stops working in C1 ∼ Cn.
C1 ∼ Cx differs in power saving and entry/exit la-
tency. The deeper the C-state, the more power sav-
ing and the longer latency a system can get.

• Processor Performance state (P-state): again, in
C0 state, there are several sub-CPU performance
states (P-States). In P-states, the CPU is working,
but CPU voltage and frequency vary. The P-state is
a very important power-saving feature.

• Processor Throttling state (T-state): T-state is
also a sub state of C0. It saves power by only
changing CPU frequency. T-state is usually used
to handle thermal event.

• Sleeping state: In G1 state, it is divided into sev-
eral sub state: S1 ∼ S4. They differs in power sav-
ing, context preserving and sleep/wakeup latency.
S1 is lightweight sleep, with only CPU caches lost.
S2 is not supported currently. S3 has all context lost
except system memory. S4 save context to disk and
then lost all context. Deeper S-state is, more power
saving and the longer latency system can get.

• 205 •



206 • How virtualization makes power management different

• Device states (D-state): ACPI also defines power
state for devices, i.e. D0 ∼ D3. D0 is working state
and D3 is power-off state. D1 and D2 are between
D0 and D3. D0 ∼ D3 differs in power saving, de-
vice context preserving and entry/exit latency.

Figure 1 in Len’s paper [2] clearly illustrates the state
relationship.

1.2 Virtualization model

Virtualization software is emerging in the open source
world. Different virtualization model may have differ-
ent implementation on power management, so it is better
to check the virtualization model as below.

• Hypervisor model: virtual machine monitor
(VMM) is a new layer below operation system
and owns all the hardware. VMM not only needs
to provide the normal virtualization functionality,
e.g. CPU virtualization, memory virtualization, but
also needs to provide the I/O device driver for ev-
ery device.

• Host-based model: VMM is built upon a host op-
erating system. All the platform hardware includ-
ing CPU, memory, and I/O device, is owned by the
host OS. In this model, VMM usually exists as a
kernel module and can leverage much of the host
OS functionality, e.g. I/O device driver, scheduler.
Current KVM is host-based model.

• Hybrid model: VMM is a thin layer compared
to the hypervisor model, which only covers basic
virtualization functionality (CPU, memory, etc.),
and leave I/O device to a privileged VM. This
privileged VM provides I/O service to other VM
through inter-VM communication. Xen [3] is hy-
brid model.

Meanwhile, with some I/O virtualization technology in-
troduced, e.g. Intel R© Virtualization Technology for Di-
rected I/O, aka VT-d, the I/O device can be directly
owned by a virtual machine.

1.3 Power Management in Virtualization

Power Management in virtualization basically has the
following two types:

• Virtual power management: this means the
power management within the virtual machine.
This power management only has effects to the
power state of VM and does not affect other VM or
hypervisor/host OS. For example, virtual S3 sleep
only brings VM into virtual sleep state, while hy-
pervisor/host OS and other VM is still working.
Virtual power management usually does not save
real power, but sometimes it can affect real power
management.

• Real power management: this means the power
management in the global virtual environment, in-
cluding the VMM/Host OS, and all VMs. This
will operate on real hardware and save real power.
The main guideline for global power management
is that only the owner can do real power manage-
ment operation to that device. And VMM/Host OS
is responsible for coordinating the power manage-
ment sequence.

This paper will elaborate how power management state
(Sx/Cx/Px/Dx) is implemented for both virtual and real
types.

2 Sleep States (Sx) Support

Linux currently supports S1 (stand-by), S3 (suspend-to-
ram) and S4 (suspend-to-disk). This section mainly dis-
cusses the S3 and S4 state support in the virtualization
environment. S1 and S3 are similar, so the S3 discussion
can also apply to S1.

2.1 Virtual S3

Virtual S3 is S3 suspend/resume within a virtual ma-
chine, which is similar to native. When guest OSes see
that the virtual platform has S3 capability, it can start
S3 process either requested by user or forced by con-
trol tool under certain predefined condition (e.g. VM be-
ing idle for more than one hour). Firstly, the Guest OS
freezes all processes and also write a wakeup vector to
virtual ACPI FACS table. Then, the Guest OS saves all
contexts, including I/O device context and CPU context.
Finally, the Guest OS will issue hardware S3 command,
which is normally I/O port writing. VMM will capture
the I/O port writing and handle the S3 command by re-
setting the virtual CPU. The VM is now in virtual sleep
state.



2007 Linux Symposium, Volume One • 207

G0 (S0) 
Working

C1 
Idle

C2 
Idle

C3 
Idle

C0 - Execute

P- Stste

Throttling

S1- Standby

G1 Sleeping

S3- Suspend

S4- Hibernate

G2 (S5) � Soft Off

Legacy

G3 � Mech Off

Figure 1: ACPI State Relationship

Guest OS S3 wakeup is a reverse process. Firstly, VMM
will put the virtual CPU into real mode, and start virtual
CPU from guest BIOS POST code. BIOS POST will
detect that it is a S3 wakeup and thus jump to the S3
wakeup vector stored in guest ACPI FACS table. The
wakeup routine in turn will restore all CPU and I/O con-
text and unfreeze all processes. Now the Guest OS re-
sumes to working state.

From the above virtual S3 suspend/resume process, it
is easy to see that VMM needs the following work to
support virtual S3:

• Guest ACPI Table: the ACPI DSDT table should
have _S3 package to tell guest OS that the virtual
platform has S3 capability, otherwise, guest OS
won’t even start S3 sleep. Guest ACPI table can
also have optional OEM-specific fields if required.

• Guest BIOS POST Code: Logic must be added
here to detect the S3 resume and get wakeup vector
address from ACPI FACS table, and then jump to
wakeup vector.

• S3 Command Interception: Firstly, device model
should emulate the ACPI PM1A control register,
so that it can capture the S3 request. In KVM and
Xen case, this can be done in QEMU side, and is

normally implemented as a system I/O port. Sec-
ondly, to handle S3 request, VMM need to reset all
virtual CPUs.

2.2 Real S3 State

Unlike virtual S3, Real S3 will put the whole system into
sleep state, including VMM/Host OS and all the virtual
machines. So it is more meaningful in terms of power
saving.

Linux already has fundamental S3 support, like to
freeze/unfreeze processes, suspend/resume I/O devices,
hotplug/unplug CPUs for SMP case, etc. to conduct a
complete S3 suspend/resume process.

Real S3 in virtualization also need similar sequence as
above. The key difference is that system resources may
be owned by different component. So the guideline is
to ensure right owner to suspend/resume its owned re-
source.

Take Xen as an example. The suspend/resume opera-
tion must be coordinated among hypervisor, privileged
VM and driver domain. Most I/O devices are owned
by a privileged VM (domain0) and driver domain, so
suspend/resume on those devices is mostly done in do-
main0 and driver domain. Then hypervisor will cover
the rest:



208 • How virtualization makes power management different

• Hypervisor owned devices: APIC, PIC, UART,
platform timers like PIT, etc. Hypervisor needs to
suspend/resume those devices

• CPU: owned by hypervisor, and thus managed here

• Wakeup routine: At wakeup, hypervisor need to
be the first one to get control, so wakeup routine is
also provided by hypervisor.

• ACPI PM1x control register: Major ACPI sleep
logic is covered by domain0 with the only excep-
tion of PM1x control register. Domain0 will notify
hypervisor at the place where it normally writes to
PM1x register. Then hypervisor covers the above
work and write to this register at the final stage,
which means a physical S3 sleep.

For the driver domain that is assigned with physically
I/O device, hypervisor will notify these domains to do
virtual S3 first, so that these domains will power off their
I/O device before domain0 starts its sleep sequence.

Figure 2 illustrates the Xen Real S3 sequence.

2.3 Virtual S4 State and Real S4 State

Virtual S4 is suspend-to-disk within virtual machine.
Guest OS is responsible to save all contexts (CPU, I/O
device, memory) to disk and enter sleep state. Virtual
S4 is a useful feature because it can reduce guest OS
booting time.

From the VMM point of view, virtual S4 support imple-
mentation is similar as virtual S3. The guest ACPI also
needs to export S4 capability and VMM needs to cap-
ture the S4 request. The major difference is how VMM
handles the S3/S4 request. In S3, VMM needs resetting
VCPU in S3 and jumps to wakeup vector when VM re-
suming. In S4, VMM only needs to destroy the VM
since VMM doesn’t need to preserve the VM memory.
To resume from S4, user can recreate the VM with the
previous disk image, the guest OS will know that it is S4
resume and start resuming from S4.

Real S4 state support is also similar as native S4 state.
For host-based model, it can leverage host OS S4 sup-
port directly. But it’s more complex in a hybrid model
like Xen. The key design issue is how to coordinate hy-
pervisor and domain0 along the suspend process. For
example, disk driver can be only suspended after VMM

dumps its own memory into disk. Then once hypervisor
finishes its memory dump, later change on virtual CPU
context of domain0 can not be saved any more. After
wakeup, both domain0 and hypervisor memory image
need to be restored and sequence is important here. This
is still an open question.

3 Processor Power States (Cx) support

Processor power states, while in the G0 working state,
generally refer to active or idle state on the CPU. C0
stands for a normal power state where CPU dispatches
and executes instructions, and C1, C2 · · · Cn indicates
low-power idle states where no instructions are executed
and power consumption is reduced to a different level.
Generally speaking, a larger value of Cx brings greater
power savings, at the same time adds longer entry/exit
latency. It’s important for OSPM to understand ability
and implication of each C-state, and then define appro-
priate policy to suit activities of the time:

• Methods to trigger specific C-state

• Worst case latency to enter/exit C-state

• Average power consumption at given C-state

Progressive policy may hurt some components which
don’t tolerate big delay, while conservative policy
makes less use of power-saving capability provided by
hardware. For example, OSPM should be aware that
cache coherency is not maintained by the processor
when in C3 state, and thus needs to manually flush
cache before entering when in SMP environment. Based
on different hardware implementation, TSC may be
stopped and so does LAPIC timer interrupt. When Cx
comes into virtualization, things become more interest-
ing.

3.1 Virtual C-states

Virtual C-states are presented to VM as a ‘virtual’ power
capability on ‘virtual’ processor. The straight-forward
effect of virtual C-states is to exit virtual processor from
scheduler when Cx is entered, and to wake virtual pro-
cessor back to scheduler upon break event. Since virtual
processor is ‘virtual’ context created and managed by
VMM, transition among virtual C-states have nothing



2007 Linux Symposium, Volume One • 209

Dom0 Devices: 
Disk, NIC ...

Dom0

OSPM

Device 
Driver

Assigned 
Device

Driver Domain

ACPI 
Register

Device 
Driver

Xen Device:
PIT/APIC/...

Hypervisor

PM 
Handler

Device 
Driver

12

3

5
4

6: S3 cmd

Figure 2: Xen Real S3 sequence

to do with power state on real processors, but does have
the ability to provide useful hints in some cases.

The way to implement virtual C-states can vary upon
the virtualization model. For example, a hardware-
assisted guest may be presented with C-states capability
fully conforming to ACPI specification, while a para-
virtualized guest can simply take quick hyper-call to re-
quest. Basically it doesn’t make much sense to differen-
tiate among C1, C2· · ·Cn in a virtualization world, but it
may be useful to some cases. One direct case is to test
processor power management logic of a given OSPM, or
even to try whether some newer C-state is a meaningful
model before hardware is ready. Another interesting us-
age would be to help physical C-state governor for right
decision, since virtual C-state request reveals activities
within a guest.

3.1.1 Para-virtualized guest

para-virtualized guest is a modified guest which can
cooprate with VMM to improve performance. virtual
C-state for a para-virtualized guest just borrows the term
from ACPI, but no need to bind with any ACPI context.
A simple policy can just provide ‘active’ and ‘sleep’ cat-
egories for a virtual processor, without differentiation
about C1· · ·Cn. When idle thread is scheduled without
anything to handle, time events in the near future are

walked for nearest interval which is then taken as pa-
rameter of sleep hyper-call issued to VMM. Then VMM
drops the virtual CPU from the run-queue and may wake
it up later upon any break event (like interrupt) or speci-
fied interval timeout. A perfect match on a tick-less time
model! Since it’s more like the normal ‘HALT’ instruc-
tion usage, the policy is simple which is tightly coupled
with time sub-system.

It’s also easy to extend para-virtualized guest with more
fine-grained processor power states, by extending above
hyper-calls. Such hyper-call based interface can be
hooked into generic Linux processor power manage-
ment infrastructure, with common policies unchanged
but a different low-level power control interface added.

3.1.2 Hardware-assisted guest

Hardware-assisted guest is the unmodified guest with
hardware (e.g. Intel VT or AMD-V) support. Not like
a para-virtualized guest who poses changes within the
guest, virtual platform (i.e., device model) needs ex-
port exact control interface conforming to ACPI spec
and emulate desired effect as what hardware-assisted
guest expects. By providing the same processor power
management capability, no change is required within
hardware-assisted guest.

• Virtual C2 – an ability provided by chipset which



210 • How virtualization makes power management different

controls clock input signal. First device model
needs to construct correct ACPI table to expose re-
lated information, including trigger approach, la-
tency and power consumption as what ACPI spec
defines. ACPI FADT table contains fixed format
information, like P_LVL2 command register for
trigger. Recent ACPI version also adds a more
generic object _CST to describe all C-state infor-
mation, e.g. C state dependency and mwait ex-
tension. Device model may want to provide both
methods if taken as a test environment.

Device model then needs to send a notification
to VMM after detecting virtual C2 request from
guest. As acceleration, Cx information can be reg-
istered to VMM and then VMM can handle di-
rectly. Actually, for virtual C2 state, device model
doesn’t need to be involved at run time. C2 is de-
fined as a low-power idle state with bus snooped
and cache coherency maintained. Basic virtual
MMU management and DMA emulation have al-
ready ensured this effect at given time.

• Virtual C3 – almost the same as virtual C2,
P_LVL3 or _CST describe the basic infor-
mation. But virtual C3 also affects device
model besides virtual processor. Device model
needs to provide PM2_CNT.ARB_DIS which dis-
ables bus master cycles and thus DMA activi-
ties. PM1x_STS.BM_STS, an optional feature of
chipset virtualization, reveals bus activity status
which is a good hint for OSPM to choose C2 or
C3. More importantly, PM1x_CNT.BM_RLD pro-
vides option to take bus master requests as break
event to exit C3. To provide correct emulation,
tight cooperation between device model and VMM
is required which brings overhead. So it’s reason-
able for device model to give up such support, if
not aimed to test OSPM behavior under C3.

• Deeper virtual Cx – similar as C3, and more
chipset logic virtualization are required.

3.2 Real C-states

VMM takes ownership of physical CPUs and thus is
required to provide physical C-states management for
‘real’ power saving. The way to retrieve C-states in-
formation and conduct transition is similar to what to-
day OSPM does according to ACPI spec. For a host

based VMM like KVM, those control logic has been
there in the host environment and nothing needs to be
changed. Then, for a hybrid VMM like Xen, domain0
can parse and register C-state information to hypervi-
sor which is equipped with necessary low-level control
infrastructure.

There are some interesting implementation approaches
. For example, VMM can take a virtual Cx request into
consideration. Normally guest activities occupy major
portion of cpu cycles which can then be taken as a use-
ful factor for C-state decision. VMM may then track
the virtual C-state requests from different guests, which
represent the real activities on given CPU. That info can
be hooked into existing governors to help make better
decisions. For example:

• Never issue a C-x transition if no guest has such
virtual C-x request pending

• Only issue a C-x transition only if all guests have
same virtual C-x requests

• Pick the C-x with most virtual C-x requests in the
given period

Of course, the above is very rough and may not result in
a really efficient power saving model. For example, one
guest with poor C-state support may prevent the whole
system from entering a deeper state even when condi-
tion satisfies. But it does be a good area for research
to leverage guest policies since different OS may have
different policy for its specific workload.

4 Processor Performance States (Px) Support

P-states provide OSPM an opportunity to change both
frequency and voltage on a given processor at run-time,
which thus brings more efficient power-saving ability.
Current Linux has several sets of governors, which can
be user-cooperative, static, or on-demand style. P-states
within the virtualization world are basically similar to
the above C-states discussion in many concepts, and
thus only its specialties are described below.

4.1 Virtual P-states

Frequency change on a real processor has the net effect
to slow the execution flow, while voltage change is at



2007 Linux Symposium, Volume One • 211

fundamental level to lower power consumption. When
coming to virtual processor, voltage is a no-op but fre-
quency does have useful implication to the scheduler.
Penalty from scheduler has similar slow effect as fre-
quency change. Actually we can easily plug virtual P-
state requests into schedule information, for example:

• Half its weight in a weight-based scheduler

• Lower its priority in a priority-based scheduler

Furthermore, scheduler may bind penalty level to differ-
ent virtual P-state, and export this information to guest
via virtual platform. Virtual platform may take this info
and construct exact P-states to be presented to guest. For
example, P1 and P2 can be presented if scheduler has
two penalty levels defined. These setup the bridge be-
tween virtual P-states and scheduler hints. Based on this
infrastructure, VMM is aware of guest requirement and
then grant cycles more efficiently to guest with more ur-
gent workload.

4.2 Real P-states

Similar as real C-states for virtualization, we can either
reuse native policy or add virtualization hints. One in-
teresting extension is based on user space governor. We
can connect together all guest user space governors and
have one governor act as the server to collect that in-
formation. This server can be a user space governor in
host for a host-based VMM, or in privileged VM for hy-
brid VMM. Then, this user space governor can incorpo-
rate decisions from other user space governors and then
make a final one. Another good point for this approach
is that hybrid VMM can directly follow request from
privileged VM by a simple “follow” policy.

5 Device Power States (Dx) Support

Devices consume another major portion of power sup-
ply, and thus power feature on devices also plays an im-
portant role. Some buses, like PCI, have well-defined
power management feature for devices, and ACPI cov-
ers the rest if missing. Power state transition for a given
device can be triggered in either a passive or active way.
When OSPM conducts a system level power state tran-
sition, like S3/S4, all devices are forced to enter appro-
priate low power state. OSPM can also introduce active

on-demand device power management at run-time, on
some device if inactive for some period. Carefulness
must be taken to ensure power state change of one node
does not affect others with dependency. For example,
all the nodes on a waken path have to satisfy minimal
power requirement of that wake method.

5.1 Virtual D-states

Devices seen by a guest are basically split into three cat-
egories: emulated, para-virtualized, and direct-assigned.
Direct-assigned devices are real with nothing different
regarding D-states. Emulated and para-virtualized are
physically absent, and thus device power states on them
are also virtual.

Normally, real device class defines what subset of ca-
pabilities are available at each power level. Then, by
choosing the appropriate power state matching func-
tional requirement at the time, OSPM can request de-
vice switching to that state for direct power saving at
the electrical level. Virtual devices, instead, are com-
pletely software logics either emulated as a real device
or para-virtualized as a new device type. So virtual D-
states normally show as reduction of workload, which
has indirect effect on processor power consumption and
thus also contributes to power saving.

For emulated devices, the device model presents exact
same logic and thus D-states definition as a real one.
Para-virtualized devices normally consist of front-end
and back-end drivers, and connection states between
the pair can represent the virtual D-states. Both de-
vice model and back-end need to dispatch requests from
guest, and then handle with desired result back. Timer,
callback, and kernel thread, etc. are possible compo-
nents to make such process efficient. As a result of
virtual D-states change, such resources may be frozen
or even freed to reduce workload imposed on the phys-
ical processor. For example, the front-end driver may
change connection state to ‘disconnected’ when OSPM
in guest requests a D3 state transition. Then, back-end
driver can stop the dispatch thread to avoid any unneces-
sary activity caused in the idle phase. Same policy also
applies to device model which may, for example, stop
timer for periodically screen update.

Virtual bus power state can be treated with same policy
as virtual device power state, and in most time may be
just a no-op if virtual bus only consists of function calls.



212 • How virtualization makes power management different

5.2 Real D-states

Real device power states management in virtualization
case are a bit complex, especially when device may be
direct assigned to guests (known as a driver domain).
To make this area clear, we first show the case without
driver domain, and then unveil tricky issues when the
later is concerned.

5.2.1 Basic virtualization environment

Basic virtualization model have all physical devices
owned by one privileged component, say host Linux for
KVM and domain-0 for Xen. OSPM of that privileged
guy deploys policies and takes control of device power
state transitions. Device model or back-end driver are
clients on top of related physical devices, and their re-
quests are counted into OSPM’s statistics for given de-
vice automatically. So there’s nothing different to exist-
ing OSPM.

For example, OSPM may not place disk into deeper
D-states when device model or back-end driver is still
busy handling disk requests from guest which adds to
the workload on real disk.

As comparison to the OSPM within guests, we refer to
this special OSPM as the “dominate OSPM.” Also dom-
inator is alias to above host Linux and domain-0 in be-
low context for clear.

5.2.2 Driver domains

Driver domains are guests with some real devices as-
signed exclusively, to either balance the I/O virtual-
ization bottleneck or simply speed the guest directly.
The fact that OSPM needs to care about the device de-
pendency causes a mismatch on this model: dominate
OSPM with local knowledge needs to cover device de-
pendencies across multiple running environments.

A simple case (Figure 3) is to assign P2 under PCI
Bridge1 to guest GA, with the rest still owned by domi-
nator. Say an on-demand D-states governor is active in
the dominate OSPM, and all devices under Bridge1 ex-
cept P2 have been placed into D3. Since all the devices
on bus 1 are inactive now based on local knowledge,
dominate OSPM may further decide to lower power

Dominator GA

Bus0

Bridge1

P1 P3

Bus1

P2

OSPM

Figure 3: A simple case

voltage and stop clock on bus 1 by conducting Bridge1
into a deeper power state. Devil take it! P2 can never
work now, and GA has to deal with a dead device with-
out response.

Then, the idea is simple to kick this issue: extend lo-
cal dominate OSPM to construct full device tree across
all domains. The implication is that on-demand device
power governor can’t simply depend on in-kernel statis-
tics, and hook should be allowed from other compo-
nents. Figure 4 is one example of such extension:

Device assignment means grant of port I/O, MMIO, and
interrupt in substance, but the way to find assigned de-
vice is actually virtualized. For example, PCI device
discovery is done by PCI configuration space access,
which is virtualized in all cases as part of virtual plat-
form. That’s the trick of how the above infrastruc-
ture works. For hardware-assisted guest, device model
intercepts access by traditional 0xcf8/0xcfc or mem-
ory mapped style. Para-virtualized guest can have a
PCI frontend/backend pair to abstract PCI configuration
space operation, like already provided by today’s Xen.
Based on this reality, device model or PCI backend can
be good place to reveal device activity if owned by other
guests, since standard power state transition is done by
PCI configuration space access as defined by PCI spec.
Then based on hint from both in-kernel and other virtu-
alization related components, dominate OSPM can now
precisely decide when to idle a parent node if with child
nodes shared among guests.



2007 Linux Symposium, Volume One • 213

Device 
Model

OSPM

PCI 
Backend

Kernel 
Drivers

Hardware-Assisted 
Guest

Para-Virtualized 
Guest

Bus0

Bridge1

P1 P2 P3

Bus1

Dominator

Figure 4: The extended case

However, when another bus type is concerned with-
out explicit power definition, it’s more complex to
handle device dependency. For example, for devices
with power information provided by ACPI, the control
method is completely encapsulated within ACPI AML
code. Then the way to intercept power state change has
to be a case specific approach, based on ACPI internal
knowledge. Fortunately, most of the time only PCI de-
vices are preferred regarding the device assignment.

6 Current Status

Right now our work on this area is mainly carried on
Xen. Virtual S3/S4 to hardware-assisted guest has been
supported with some extension to ACPI component
within QEMU. This should also apply to other VMM
software with same hardware-assisted support.

Real S3 support is also ready. Real S3 stability relies
on the quality of Linux S3 support, since domain0 as
a Linux takes most responsibility with the only excep-
tion at final trigger point. Some linux S3 issues are
met. For example, SATA driver with AHCI mode has
stability issue on 2.6.18 which unfortunately is the do-
main0 kernel version at the time. Another example is the
VGA resume. Ideally, real systems that support Linux
should restore video in the BIOS. Real native Linux
graphics drivers should also restore video when they are

used. If it does not work, you can find some workaround
in documentation/power/video.txt. The positive
side is that Linux S3 support is more and more stable as
time goes by. Real S4 support has not been started yet.

Both virtual and real Cx/Px/Tx/Dx supports are in devel-
opment, which are areas with many possibilities worthy
of investigation. Efficient power management policies
covering both virtual and real activities are very impor-
tant to power saving in a run-time virtualization envi-
ronment. Forenamed sections are some early findings
along with this investigation, and surely we can antici-
pate more fun from this area in the future.

References

[1] “Advanced Configuration & Power
Specification,” Revision 3.0b, 2006,
Hewlett-Packard, Intel, Microsoft, Phoenix,
Toshiba.
http://www.acpi.info

[2] “ACPI in Linux,” L. Brown, A. Keshavamurthy,
S. Li, R. Moore, V. Pallipadi, L. Yu, In
Proceedings of the Linux Symposium (OLS),
2005.

[3] “Xen 3.0 and the Art of Virtualization,” I. Pratt,
K. Fraser, S. Hand, C. Limpach, A. Warfield, D.



214 • How virtualization makes power management different

Magenheimer, J. Nakajima, and A. Mallick, in
Proceedings of the Linux Symposium (OLS),
2005.

This paper is copyright 2007 by Intel. Redistribution rights
are granted per submission guidelines; all other rights are re-
served.

*Other names and brands may be claimed as the property of
others.



Proceedings of the
Linux Symposium

Volume One

June 27th–30th, 2007
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.


