Shared Page Tables Redux

Dave McCracken
IBM Linux Technology Center

dmccr@us.ibm.com

Abstract

When a large memory region is shared each
process currently maps it using its own page
tables. When several processes map the same
region the overhead for these page tables is sig-
nificant. Shared page tables allows the pro-
cesses to all use the same set of page tables
for the shared region. This results in significant
memory savings and performance gains.

In this paper I will discuss how page tables are
shared, how the decision to share is made, the
issues it introduces in the memory management
subsystem, and what applications can benefit
from it.

1 Introduction

The Linux memory subsystem goes to great
lengths to share (minimize the duplication of)
data pages in the system. There is almost al-
ways at most one copy of a given data page in
memory at any time unless a process has made
private modifications to it.

Linux does not, however, currently make any
attempt to share the infrastructure needed to
map those pages, even though for large map-
pings large parts of that infrastructure may be
identical. The shared page table project is an

attempt to add that sharing, with its concurrent
reduction in memory overhead, with an associ-
ated improvement in performance. It also en-
ables optimizations on some architectures that
result in additional performance improvements.

2 A Brief History of Shared Page
Tables

Sharing page tables is far from a new idea. In
2002 during 2.5 development the addition of
pte chains for reverse mapping made fork, exec,
and exit very slow. Sharing page tables and, in
particular, doing a copy-on-write of even nor-
mally unshareable page tables looked like it
might dramatically improve that performance.
Daniel Phillips coded up a sample implementa-
tion that showed some promise.

In Fall of 2002 I started from Daniel’s premise
and wrote a complete implementation of page
table sharing, including the copy-on-write be-
havior. What I discovered, however, was that
the vast majority of programs only had three
page table pages, all of which faulted and had
to be copied immediately after fork. This re-
sulted in a measureable performance penalty
for all but large applications. This implemen-
tation was ultimately rejected for inclusion.

In 2003 and early 2004 the reverse mapping
problem was revisited for 2.6, resulting in elim-
ination of pte chains and the slow fork/exec/exit

118 e Shared Page Tables Redux

problem. There was still an issue with the bal-
looning overhead of page tables with large ap-
plications that ran multiple processes all ac-
cessing large shared memory regions (primarily
a characteristic of database applications).

In 2005 T once again addressed the issue of
shared page tables. I dropped the concept of
copy-on-write and concentrated on only shar-
ing page tables for memory areas that are truly
shareable. This eliminated a major source of
complexity in the implementation.

3 Relevant VM Data Structures

There are several data structures that define the
virtual memory subsystem. It is important to
understand these structures and how they inter-
act to also understand how page table sharing
works.

3.1 The mm_struct Structure

The primary structure in the memory subsys-
tem is the mm_struct, commonly called mm.
There is one of these structures per virtual ad-
dress space, i.e. one per process or collection of
threads. The mm is the anchor for describing all
memory connected to a process.

3.2 The vm_area_struct Structure

The next level of data structure is the
vm_area_struct, commonly referenced to as the
vma. The there is one vma for each mapped
data area in the virtual memory. The collection
of vmas is anchored to the mm.

Each vma includes the virtual starting and end-
ing virtual address, a set of flags that describe
the characteristics of the mapping, and a pointer
to the backing file if there is one.

3.3 The Page Table

In parallel to the set of vmas is the page table,
also anchored in the mm. The page table is a
tree of arrays, each one physical page in size.
Each element of the array points to the page
containing an array for the level below, with the
bottom level entries pointing to the data pages
for the process.

There are four levels to the page table array,
though some levels are dummied out on some
architectures. The four levels are pgd, pud,
pmd, and pte. On a three level architecture the
pud is not present. On a two level architecture
the pmd is also not present.

3.4 The address_space Structure

Another critical part of the memory subsystem
is the address_space structure, commonly re-
ferred to as the mapping. This is not to be con-
fused with the process’s address space. There
is one mapping for each open file. It contains a
chain of all vmas that map the file plus a cache
of all data pages in memory that come from the
file. The vmas also contain a pointer back to the

mapping.
3.5 The page Structure

The last important relevant data structure is the
page. There is one page for each physical page
in the system. It contains the major information
on how the phsical page is being used as well
as a pointer to the mapping it is a part of.

4 Types of Mapped Memory

When memory is mapped into a process it falls
into one of several types. The key parameters

are read-only or read-write, shared or private,
and file-backed or anonymous. Only some of
these types are eligible to be shared. Anony-
mous mappings can never be shared. For file-
backed memory all read-only mappings can
be shared. for read-write memory only that
marked shared can be shared.

4.1 File-backed vs Anonymous

The restriction against sharing anonymous
memory is less restrictive than it sounds. When
memory is mapped by an explicit mapping call
from the process it is always file-backed, even
that which the process marks anonymous. The
memory subsystem uses a special file system to
create a dummy file for such mappings. The
only truly anonymous memory areas are the
bss and the stack, created when the process is
started. Both of these are inherently writeable
and private, and thus are not shareable.

5 What is Shared

The specific parts of the infrastructure that can
be shared are the lower levels of the page table.
The granularity of sharing is the array in each
physical page. When the mapped areas in two
or more processes span an entire physical page
in the page table, this page is identical in each
process. Page table sharing uses just one copy
of that page, and sets the higher level pointer in
each process to point to it.

On 32 bit architectures it only makes sense to
share the lowest level table (the pte level). For
most 64 bit architectures it can be useful to
share the next level as well (the pmd level).
These levels generally map 2MiB and 1GiB re-
spectively.

2006 Linux Symposium, Volume Two e 119

6 The powerpc architecture

The powerpc architecture is different in that
it does not use hardware page tables. It in-
stead uses hash tables to store its page table en-
tries in hardware. Additionally, the virtual ad-
dress space is divided into segments of 256MiB
in size. Each segment has an identifier that
need not be unique to the process, but could be
shared between all processes which map that
segment if all data in that segment is to be
shared between those processes.

Currently the memory management implemen-
tation for powerpc does not take advantage of
this sharing capability. It assigns a segment
identifier that is based on the process which is
mapping it. Segments that are otherwise iden-
tical in different processes are given separate
identifiers.

One of the goals of implementing shared page
tables was to enable use of shared segment
identifiers on powerpc. In the shared page ta-
ble implementation the page table levels are di-
vided so that a single pmd page maps 256MiB.
This page is then used to generate a segment
identifier that can be shared among all pro-
cesses mapping that segment. Due to the way
the hardware hash table interacts with the soft-
ware page table, no sharing can be done at the
pte level. This means that page table sharing
can only be done for areas 256MiB or larger.

7 How Sharing is Done

When memory is mapped into a process a vma
is created and linked into the appropriate mm
and address_space, but no page table is allo-
cated. All page table pages are allocated as nec-
essary during page fault handling to correctly
map the faulting address.

120 e Shared Page Tables Redux

When a page table page is allocated at a level
where sharing is enabled, the vma is checked
whether it can be shared. If it can, it follows
the mapping pointer to find the address_space.
All the vmas connected to the address_space
are checked. If the vima maps the same offset in
the file to the same virtual address as the fault-
ing vma, it looks for a corresponding page ta-
ble page. If one is found, its share count is in-
cremented and it is returned as the page table
page to be installed. The vma linkage in ad-
dress_space 1s a prio tree based on the starting
and ending virtual addresses so lookup is fast.

8 Unmapping and Unsharing

There are several places where a shared page
table needs to be unshared. The first and most
common place is when the memory region is
unmapped. Unshared page tables are deleted
when they are unused. Shared page tables need
to be disconnected from the tree and the share
count decremented, but can not be deleted since
they are still in use by other processes.

Additionally, there are several memory opera-
tions that change the shareability of a memory
area. In particular these are mprotect, mremap,
and fremap. When any of these are called on a
memory range, that range is scanned for shared
page table pages. If any are found, they are un-
shared.

Unsharing is actually very simple. Since
all memory mapped by shared page tables is
backed by files it is sufficient to simply unlink
the shared page table page and clear the refer-
ence to it. When the process attempts to access
memory 1in that area it simply faults the pages
back in. If the page table is still shareable it will
re-share. If not, it will allocate a new unshared
page table page.

9 Locking

The memory subsystem has several locks that
control concurrent access to its data structures.
The mm contains the mmap_sem semaphore
which protects the vmas associated with that
process. The mmap_sem is a read/write
semaphore. It is taken for write for calls that
map, unmap, or change memory mappings, and
is taken for read during page faults.

The mm also contains the page_table_lock
spinlock, which protects the page table. A re-
cent optimization is a new lock, the pr_lock,
which is in the struct page associated with the
pte page table page. This lock is held once the
pte is found and allows greater concurrency be-
tween faulting threads in a process.

Another critical lock is the i_mmap_lock in the
address_space. This protects the vma linkage
in the address_space.

9.1 Locking Modifications for Shared Page
Tables

To properly implement shared page tables the
pt_lock concept was extended to apply to all
levels of page table that could be shared. The
page_table_lock was no longer adequate since
a page table page could now be part of more
than one page table. Under the shared page ta-
ble model, the pt_lock is taken when entries for
that page need to be modified. This allows mul-
tiple processes to safely take faults in the same
region and on the same page.

Another extended use of a lock is the
i_mmap_lock. This lock is held while search-
ing the vmas in the address_space for a page
table page to share.

2006 Linux Symposium, Volume Two e 121

9.2 The Unshare Race

There is a race condition when unsharing
page table pages due to mremap, mprotect, or
fremap. The call to unshare the page tables
needs to be made while the original vma is still
present and linked to the address_space. This
means there is a window of time after the page
table has been unshared when another process
could come in and begin a new share.

The solution is to define a flag in the vma called
VM_TRANSITION. This flag is set on entry
to the functions that will change the vma. It
remains set until all changes have been made,
then is unset before the call completes. The
page table sharing code will then refuse to look
at any vma marked as VM_TRANSITION.
While this may result in an occasional missed
opportunity to share page tables, it eliminates
any chance that page tables will be erroneously
shared.

10 Hugetlb Interaction

The hugetlb code creates a pool of large pages
that can be requested by an application when it
maps memory. This is particularly useful be-
cause many architectures allow data pages to
be directly mapped using the pmd level of the
page table. The hugetlb pages are sized to be
mapped in this fashion.

While hugetlb in many ways provides a similar
tool to sharing page tables, it is much more lim-
ited in its function. It requires a system-wide
dedicated pool of larger pages and requires that
applications be recoded to use it. Page table
sharing is entirely transparent to applications
and will happen whenever the shareable mem-
ory region is large enough.

An additional feature of shared page tables is
that for architectures that support sharing at the
pmd level and that also support hugetlb, even
memory areas that are using hugetlb will bene-
fit from shared page tables.

11 Performance

The first step in testing performance was to
measure applications that do not share large
mapped areas and thus do not benefit from
sharing page tables. Tests run with these ap-
plications (the primary test being kernbench)
showed no performance difference at all. This
indicates that the overhead of looking for page
table sharing has no measurable cost.

The next step was to test using large appli-
cations that do massive sharing. An obvious
candidate here was large database applications.
Performance improvement for applications that
do not use hugetlb for their shared areas was
in the range of 35% to 40%. Applications that
do use hugetlb still showed a benefit in the 3%
to 5% range, which is considered significant by
those who do database benchmarking.

12 Future Enhancements

In the current implementation only those mem-
ory areas which are mapped at the same address
and span a shareable page table page can be
shared. No attempt is made to idenfity page ta-
ble pages that, while they are not fully filled
by a shareable region, are otherwise empty. It
should be possible to identify those areas and
share them, with a concurrent call to unshare
them if the empty space is subsequently filled
with a different memory area.

122 e Shared Page Tables Redux

In conjunction with checking for empty space,
it should also be possible to modify the allo-
cation strategy used when mapping memory to
assign shareable memory areas a section of vir-
tual memory that has no other memory mapped
in it, therefore making it more likely that the
page table could also be shared.

Another current limitation of the code is that
the areas must be mapped at the same vir-
tual address in each process. This means that
the memory must either be allocated in a par-
ent, then the children forked, or the application
must use a known address to map the memory
to. In practice this is common enough in large
applications that memory can often be shared.
It should be possible, however, to allow sharing
as long as the mapped memory areas share a
common alignment with respect to the page ta-
ble pages, even though they are mapped at dif-
ferent addresses. This alignment could be en-
sured at mapping time.

13 Legalese

(© 2006 IBM. Permission to redistribute in accor-
dance with Linux Symposium submission guide-
lines is granted; all other rights reserved. Linux
is a registered trademark of Linus Torvalds. All
other trademarks mentioned herein are the property
of their respective owners.

Proceedings of the
Linux Symposium

Volume Two

July 19th—-22nd, 2006
Ottawa, Ontario
Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM

Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation

C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

