Playing BlueZ on the D-Bus

Marcel Holtmann
BlueZ Project

marcel@holtmann.org

Abstract

The integration of the Bluetooth technology
into the Linux kernel and the major Linux dis-
tributions has progressed really fast over the
last two years. The technology is present al-
most everywhere. All modern notebooks and
mobile phones are shipped with built-in Blue-
tooth. The use of Bluetooth with a Linux based
system is easy and in most cases it only needs
an one-time setup, but all the tools are still com-
mand line based. In general this is not so bad,
but for a greater success it is needed to seam-
lessly integrate the Bluetooth technology into
the desktop. There have been approaches for
the GNOME and KDE desktops. Both have
been quite successful and made the use of Blue-
tooth easy. The problem however is that both
implemented their own framework around the
Bluetooth library and its daemons and there
were no possibilities for programs from one
system to talk to the other. With the final ver-
sion of the D-Bus framework and its adaption
into the Bluetooth subsystem of Linux, it will
be simple to make all applications Bluetooth
aware.

The idea is to establish one central Bluetooth
daemon that takes care of all task that can’t or
shouldn’t be handled inside the Linux kernel.
These jobs include PIN code and link key man-
agement for the authentication and encryption,
caching of device names and services and also
central control of the Bluetooth hardware. All

possible tasks and configuration options are ac-
cessed via the D-Bus interface. This will al-
low to abstract the internals of GNOME and
KDE applications from any technical details of
the Bluetooth specification. Even other appli-
cation will get access to the Bluetooth technol-
ogy without any hassle.

1 Introduction

The Bluetooth specification [1] defines a clear
abstraction layer for accessing different Blue-
tooth hardware options. It is called the Host
Controller Interface (HCI) and is the basis of
all Bluetooth protocols stacks (see Figure 1).

This interface consists of commands and events
that provide support for configuring the local
device and creating connections to other Blue-
tooth devices. The commands are split into six
different groups:

Link Control Commands

Link Policy Commands

Host Controller and Baseband Commands

Informational Parameters

Status Parameters

Testing Commands

422 e Playing BlueZ on the D-Bus

[Applications and Profiles

==

|
[Ha
|

| Li nk Manager

[Baseband

e]

Figure 1: Simple Bluetooth stack

With the Link Control Commands it is pos-
sible to search for other Bluetooth devices in
range and to establish connections to other de-
vices. This group also includes commands to
handle authentication and encryption. The Link
Policy Commands are controlling the estab-
lished connections between two or more Blue-
tooth devices. They also control the different
power modes. All local settings of a Blue-
tooth device are modified with commands from
the Host Controller and Baseband Commands
group. This includes for example the friendly
name and the class of device. For detailed in-
formation of the local device, the commands
from the Informational Paramters group can be
used. The Status Parameters group provides
commands for detailed information from the re-
mote device. This includes the link quality and
the RSSI value. With the group 7esting Com-
mands the device provides commands for Blue-
tooth qualification testing. All commands are
answered by an event that returns the requested
value or information. Some events can also ar-
rive at any time. For example to request a PIN

code or to notify of a changed power state.

Every Bluetooth implementation must imple-
ment the Host Controller Interface and for
Linux a specific set of commands has been in-
tegrated into the Linux kernel. Another set of
commands are implemented through the Blue-
tooth library. And some of the commands are
not implemented at all. This is because they are
not needed or because they have been depre-
cated by the latest Bluetooth specification. The
range of commands implemented in the kernel
are mostly dealing with Bluetooth connection
handling. The commands in the Bluetooth li-
brary are for configuration of the local device
and handling of authentication and encryption.

While the Host Controller Interface is a clean
hardware abstraction, it is not a clean or easy
programming interface. The Bluetooth library
provides an interface to HCI and an applica-
tion programmer has to write a lot of code to
get Bluetooth specific tasks done via HCI. To
make it easy for application programmers and
also end users, a task based interface to Blue-
tooth has been designed. The definition of this
tasks has been done from an application per-
spective and they are exported through D-Bus
via methods and signal.

2 D-Bus integration

The hcid daemon is the main daemon when
running Bluetooth on Linux. It handles all de-
vice configuration and authentication tasks. All
configuration is done via a simple configuration
file and the PIN code is handled via PIN helper
script. This means that every the configuration
option needed to be changed, it was needed to
edit the configuration file (/etc/bluetooth/
hcid.conf) and to restart hcid. The config-
uration file still configures the basic and also
default settings of hcid, but with the D-Bus

integration all other settings are configurable
through the D-Bus API. The current API con-
sists of three interfaces:

e org.bluez.Manager
e org.bluez.Adapter

e org.bluez.Security

The Manager interface provides basic meth-
ods for listing all attached adapter and getting
the default adapter. In the D-Bus API terms
an adapter is the local Bluetooth device. In
most cases this might be an USB dongle or
a PCMCIA card. The Adapter interface pro-
vides methods for configuration of the local
device, searching for remote device and han-
dling of remote devices. The Security interface
provides methods to register passkey agents.
These agents can provide fixed PIN codes, di-
alog boxes or wizards for specific remote de-
vices. All Bluetooth applications using the D-
Bus API don’t have to worry about any Blue-
tooth specific details or details of the Linux spe-
cific implementation (see Figure 2).

Besides the provided methods, every interface
contains also signals to broadcast changes or
events from the HCI. This allows passive ap-
plications to get the information without ac-
tively interacting with any Bluetooth related
task. An example for this would be an applet
that changes its icon depending on if the local
device is idle, connected or searching for other
devices.

Every local device is identified by its path.
For the first Bluetooth adapter, this would
be /org/bluez/hci0 and this path will be
used for all methods of the Adapter inter-
face. The best way to get this path is to call
DefaultAdapter () from the Manager in-
terface. This will always return the current de-
fault adapter or in error if no Bluetooth adapter

2006 Linux Symposium, Volume One e 423

is attached. With ListAdapters () itis pos-
sible to get a complete list of paths of the at-
tached adapters.

If the path is known, it is possible to use the
full Adapter interface to configure the local de-
vice or handle tasks like pairing or searching
for other devices. An example task would be
the configuration of the device name. With
GetName () the current name can be retrieved
and with SetName () it can be changed.
Changing the name results in storing it on the
filesystem and changing the name with an ap-
propriate HCI command. If the local device al-
ready supports the Bluetooth Lisbon specifica-
tion, then the Extended Inquiry Response will
be also modified.

With the DiscoverDevices () method it
is possible to start the search for other Blue-
tooth devices in range. This method call actu-
ally doesn’t return any remote devices. It only
starts the inquiry procedure of the Bluetooth
chip and every found device is returned via the
RemoteDeviceFound signal. This allows
all applications to handle new devices even if
the discovery procedure has been initiated by a
different application.

3 Current status

The methods and signals for the D-Bus API
for Bluetooth were chosen very carefully. The
goal was to design it with current application
needs in mind. It also aims to fulfill the needs
of current established desktop frameworks like
the GNOME Bluetooth subsystem and the KDE
Bluetooth framework. So it covers the common
tasks and on purpose not everything that might
be possible. The API can be divided into the
following sections:

e [ocal

424 e Playing BlueZ on the D-Bus

|

[N [org. bl uez. Manager }::{org. bl uez. Adapt er]:::[org. bl uez. Securi ty]::'.:

ihcid

[Passkey Manager I
I

Core Manager] [Adapter Manager] [Security Manager

Bl uet oot h Core

Host Controller Interface]::'.:

Bl uetooth Drivers

Figure 2: D-Bus API overview

— version, revision, manufacturer

— mode, name, class of device

e Remote

version, revision, manufacturer

name, class of device

aliases

device discovery

pairing, bondings
e Security
— passkey agent
With these methods and signals all standard
tasks are covered. The Manager, Adapter and

Security interfaces are feature complete at the
moment.

4 Example application

The big advantage of the D-Bus framework
is that it has bindings for multiple program-

ming languages. With the integration of D-
Bus into the Bluetooth subsystem, the use of
Bluetooth from various languages becomes re-
ality. The Figure 3 shows an example of chang-
ing the name of the local device into My Blue-
tooth dongle using the Python programming
language.

The example in Python is straight forward and
simple. Using the D-Bus API within a C pro-
gram is a little bit more complex, but it is still
easier than using the native Bluetooth library
API. Figure 4 shows an example on how to get
the name of the local device.

5 Conclusion

The integration of a D-Bus API into the Blue-
tooth subsystem makes it easy for applications
to access the Bluetooth technology. The cur-
rent API is a big step into the right direction,
but it is still limited. The Bluetooth technology
is complex and Bluetooth services needs to be
extended with an easy to use D-Bus API.

#!/usr/bin/python
import dbus

bus = dbus.SystemBus () ;

obj bus.get_object (' org.bluez’,

" /org/bluez’)

manager = dbus.Interface (obj,
"org.bluez.Manager’)

obj = bus.get_object ('org.bluez’,
manager .DefaultAdapter ())

adapter = dbus.Interface (obj,
"org.bluez.Adapter’)

adapter.SetName ('My Bluetooth dongle’)

Figure 3: Example in Python

The next steps would be integration of D-Bus
into the Bluetooth mouse and keyboard ser-
vice. Another goal is the seamless integration
into the Network Manager. This would allow
to connect to Bluetooth access points like any
other WiFi access point.

The current version of the D-Bus API for Blue-

tooth will be used in the next generation of

the Maemo platform which is that basis for the
Nokia 770 Internet tablet.

References

[1] Special Interest Group Bluetooth:
Bluetooth Core Specification Version 2.0
+ EDR, November 2004.

[2] freedesktop.org: D-BUS Specification
Version 0.11.

2006 Linux Symposium, Volume One e 425

#include <stdio.h>
finclude <stdlib.h>

#include <dbus/dbus.h>

int main (int argc, char **argv) {
DBusConnection =xconn;
DBusMessage »*msg, *reply;

const char xname;

conn = dbus_bus_get (DBUS_BUS_SYSTEM, NULL) ;
msg = dbus_message_new_method_call (
"org.bluez",
"/org/bluez/hciO",
"org.bluez.Adapter", "GetName");

reply =
dbus_connection_send with_reply_ and_block(
conn, msg, -1, NULL);

dbus_message_get_args (reply, NULL,
DBUS_TYPE_STRING, &name,
DBUS_TYPE_INVALID) ;

printf ("%$s\n", name);

dbus_message_unref (msg) ;

dbus_message_unref (reply) ;

dbus_connection_close (conn) ;

return 0;

}

Figure 4: Example in C

426 e Playing BlueZ on the D-Bus

Proceedings of the
Linux Symposium

Volume One

July 19th—-22nd, 2006
Ottawa, Ontario
Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM

Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation

C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

