Multiple Instances of the Global Linux Namespaces

Eric W. Biederman
Linux Networx

ebiederman@lnxi.com

Abstract

Currently Linux has the filesystem namespace
for mounts which is beginning to prove use-
ful. By adding additional namespaces for pro-
cess ids, SYS V IPC, the network stack, user
ids, and probably others we can, at a trivial
cost, extend the UNIX concept and make novel
uses of Linux possible. Multiple instances of a
namespace simply means that you can have two
things with the same name.

For servers the power of computers is growing,
and it has become possible for a single server
to easily fulfill the tasks of what previously re-
quired multiple servers. Hypervisor solutions
like Xen are nice but they impose a perfor-
mance penalty and they do not easily allow re-
sources to be shared between multiple servers.

For clusters application migration and preemp-
tion are interesting cases but almost impossibly
hard because you cannot restart the application
once you have moved it to a new machine, as
usually there are resource name conflicts.

For users certain desktop applications interface
with the outside world and are large and hard
to secure. It would be nice if those applications
could be run on their own little world to limit
what a security breach could compromise.

Several implementations of this basic idea have
been done succsessfully. Now the work is

to create a clean implementation that can be
merged into the Linux kernel. The discussion
has begun on the linux-kernel list and things are
slowly progressing.

1 Introduction

1.1 High Performance Computing

I have been working with high performance
clusters for several years and the situation is
painful. Each Linux box in the cluster is ref-
ered to as a node, and applications running or
queued to run on a cluster are jobs.

Jobs are run by a batch scheduler and, once
launched, each job runs to completion typically
consuming 99% of the resources on the nodes
it is running on.

In practice a job cannot be suspended,
swapped, or even moved to a different set of
nodes once it is launched. This is the oldest
and most primitive way of running a computer.
Given the long runs and high computation over-
head of HPC jobs it isn’t a bad fit for HPC en-
vironments, but it isn’t a really good fit either.

Linux has much more modern facilities. What
prevents us from just using them?



102 e Multiple Instances of the Global Linux Namespaces

HPC jobs currently can be suspended, but that
just takes them off the cpu. If you have suffi-
cient swap there is a chance the jobs can even
be pushed to swap but frequently these applica-
tion lock pages in memory so they can be en-
sured of low latency communication.

The key problem is simply having multiple ma-
chines and multiple kernels. In general, how
to take an application running under one Linux
kernel and move it completely to another kernel
is an unsolved problem.

The problem is unsolved not because it is fun-
damentally hard, but simply because it has
not be a problem in the UNIX environment.
Most applications don’t need multiple ma-
chines or even big machines to run on (espe-
cially with Moore’s law exponentially increas-
ing the power of small machines). For many of
the rest the large multiprocessor systems have
been large enough.

What has changed is the economic observation
that a cluster of small commodity machines is
much cheaper and equally as fast as a large su-
percomputer.

The other reason this problem has not been
solved (besides the fact that most people work-
ing on it are researchers) is that it is not im-
mediately obvious what a general solution is.
Nothing quite like it has been done before so
you can’t look into a text book or into the
archives of history and know a solution. Which
in the broad strokes of operating system theory
is a rarity.

The hard part of the problem also does not lie
in the obvious place people first look— how to
save all of the state of an application. Instead,
the problem is how do you restore a saved ap-
plication so it runs successfully on another ma-
chine.

The problem with restoring a saved applica-
tion is all of the global resources an application

uses. Process ids, SYS V IPC identifiers, file-
names, and the like. When you restore an appli-
cation on another machine there is no guarantee
that it can reuse the same global identifiers as
another process on that machine may be using
those identifiers.

There are two general approaches to solving
this problem. Modifying things so these global
machine identifiers are unique across all ma-
chines in a cluster, or modifying things so these
machine global identifiers can be repeated on
a single machine. Many attempts have been
made to scale global identifiers cluster-wide—
Mosix, OpenSSI, bproc, to name a few—and
all of them have had to work hard to scale. So
I choose to go with an implementation that will
easily scale to the largest of clusters, with no
communication needed to do so.

This has the added advantage that in a cluster
it doesn’t change the programming model pre-
sented to the user. Just some machines will
now appear as multiple machines. As the rise
of the internet has shown building applications
that utilize multiple machines is not foreign to
the rest of the computing world either.

To make this happen 1 need to solve the
challenging problem of how to refactor the
UNIX/Linux API so that we can have multi-
ple instances of the global Linux namespaces.
The Plan 9 inspired mount/filesystem name-
space has already proved how this can be done
and is slowly proving useful.

1.2 Jails

Outside the realm of high perfomance comput-
ing people have been restricting their server ap-
plication to chroot jails for years. The problems
with chroot jails have become well understood
and people have begun fixing them. First BSD
jails, and then Solaris containers are some of
the better known examples.



Under Linux the open source community has
not been idle. There is the linux-jail project,
Vserver, Openvz, and related projects like
SELinux, UML, and Xen.

Jails are a powerful general purpose tool use-
ful for a great variety of things. In resource
utilization jails are cheap, dynamically load-
ing glibc is likely to consume more memory
than the additional kernel state needed to track
a jail. Jails allow applications to be run in sim-
ple stripped down environments, increasing se-
curity, and decreasing maintenance costs, while
leaving system administrators with the familiar
UNIX environment.

The only problem with the current general pur-
pose implementation of jails under Linux is
nothing has been merged into the mainline ker-
nel, and the code from the various projects is
not really mergable as it stands. The closest I
have seen is the code from the linux-jail project,
and that is simply because it is less general pur-
pose and implemented completely as a Linux
security module.

Allowing multiple instances of global names
which is needed to restore a migrated applica-
tion is a more constrained problem than that of
simply implementing a jail. But a jail that en-
sures you can have multiple instances of all of
the global names is a powerful general purpose
jail that you can run just about anything in. So
the two problems can share a common kernel
solution.

1.3 Future Directions

A cheap and always available jail mecha-
nism is also potentially quite useful outside
the realm of high performance computing
and server applications. A general purupose
checkpoint/restart mechanism can allow desk-
top users to preserve all of their running appli-

2006 Linux Symposium, Volume One e 103

cations when they log out. Vulnerable or un-
trusted applications like a web browser or an irc
client could be contained so that if they are at-
tacked all that is gained is the ability to browse
the web and draw pictures in an X window.

There would finally be answer to the age old
question: How do I preserve my user space
while upgrading my kernel?

All this takes is an eye to designing the inter-
faces so they are general purpose and nestable.
It should be possible to have a jail inside a jail
inside a jail forever, or at least until there don’t
exist the resources to support it.

2 Namespaces

How much work is this? Looking at the ex-
isting patches it appears that 10,000 to 20,000
lines of code will ultimately need to be touched.
The core of Linux is about 130,000 lines of
code, so we will need to touch between 7% and
15% of the core kernel code. Which clearly
indicates that one giant patch to do everything
even if it was perfect would be rejected simply
because it is too large to be reviewed.

In Linux there are multiple classes of global
identifiers (i.e. process id, SYS V IPC keys,
user ids). Each class of identifier can be thought
of living in its own namespace.

This gives us a natural decomposition to the
problem, allowing each namespace to be mod-
ified separately so we can support multiple in-
stances of that namespace. Unfortunately this
also increases the difficulty of the problem, as
we need to modify the kernel’s reporting and
configuration interfaces to support multiple in-
stances of a namespace instead of having them
tightly coupled.



104 e Multiple Instances of the Global Linux Namespaces

The plan then is simple. Maintain backwards
compatibility. Concentrate on one namespace
at a time. Focus on implementing the abil-
ity to have multiple objects of a given type,
with the same name. Configure a namespace
from the inside using the existing interfaces.
Think of these things ultimately not as servers
or virtual machines but as processes with pe-
culiar attributes. As far as possible implement
the namespaces so that an application can be
given the capability bit for that allows full con-
trol over a namespace and still not be able to
escape. Think in terms of a recursive imple-
mentation so we always keep in mind what it
takes to recurse indefinitely.

What the system call interface will be to cre-
ate a new instance of a namespace is still up
for debate. The current contenders are a new
CLONE_ flag or individual system calls. I per-
sonally think a flag to clone and unshare is
all that is needed but if arguments are actually
needed a new system call makes sense.

Currently I have identified ten separate names-
paces in the kernel. The filesystem mount
namespace, uts namespace, the SYS V IPC
namespace, network namespace, the pid name-
space, the uid namespace, the security name-
space, the security keys namespace, the device
namespace, and the time namespace.

2.1 The Filesystem Mount Namespace

Multiple instances of the filesystem mount
namespace are already implemented in the sta-
ble Linux kernels so there are few real issues
with implementing it. There are still outstand-
ing question on how to make this namespace
usable and useful to unpriviledged processes, as
well as some ongoing work to allow the filesys-
tem mount namespace to allow bind mounts to
have bind flags. For example, so the the bind
mount can be restricted read only when other
mounts of the filesystem are still read/write.

int uname (struct utsname =*buf);
struct utsname {
char sysnamel[];
char nodename|[];
[]
[]

14

char release
char version
char machinel[];

char domainnamel[];

14

}i

Figure 1: uname

CAP_SYS_ADMIN is currently required to
modify the mount namespace, although there
has been some discussion on how to relax the
restrictions for bind mounts.

2.2 The UTS Namespace

The UTS namespace characterizes and identi-
fies the system that applications are running on.
It is characterizeed by the uname system call.
uname returns six strings describing the cur-
rent system. See Figure 1.

The returned ut sname structure has only two
members that vary at runtime nodename and
domainname. nodename is the classic host-
name of a system. domainname is the NIS
domainname. CAP_SYS_ADMIN is required
to change these values, and when the system
boots they start out as " (none) ".

The pieces of the kernel that report and mod-
ify the ut sname structure are not connected
to any of the big kernel subsystems, build even
when CONFIG_NET is disabled, and use CAP__
SYS_ADMIN instead of one of the more spe-
cific capabilities. This clearly shows that the
code has no affiliation with one of the larger
namespaces.

Allowing for multiple instances of the UTS
namespace is a simple matter of allocating a



2006 Linux Symposium, Volume One e 105

new copy of struct utsname in the kernel
for each different instance of this namespace,
and modifying the system calls that modify
this value to lookup the appropriate instance of
struct utsname by looking at current.

2.3 The IPC Namespace

The SYS V interprocess communication name-
space controls access to a flavor of shared mem-
ory, semaphores, message queues introduced in
SYS V UNIX. Each object has associated with
it a key and an id, and all objects are glob-
ally visible and exist until they are explicitly
destroyed.

The id values are unique for every object of
that type and assigned by the system when the
object is created.

The key is assigned by the application usually
at compile time and is unique unless it is speci-
fied as IPC_PRIVATE. In which case the key
is simply ignored.

The ipc namespace is currently limited by the
following universally readable and uid O setable
sysctl values:

e kernel.shmmax The maximum shared
memory segment size.

e kernel.shmall The maximum com-
bined size of all shared memory segments.

e kernel.shmni The maximum number
of shared memory segments.

e kernel.msgmax The maximum mes-
sage size.

e kernel.msgmni The maximum num-
ber of message queues.

e kernel.msgmnb The maximum num-
ber of bytes in a message queue.

e kernel.sem An array of 4 control inte-
gers

— sc_semms1 The maximum number
of semaphores in a semaphore set.

— sc_semmns The maximum number
of semaphores in the system.

— sc_semopm The maximum number
of semaphore operations in a single
system call.

— sc_semmni The maximum number
of semaphore sets in the system.

Operations in the ipc namespace are limited by
the following capabilities:

e CAP_TPC_OWNER Allows overriding the
standard ipc ownership checks, for the fol-
lowing operations: shm_attach, shm_
stat, shm_get, msgrcv, msgsnd,
msg_stat, msg_get, semtimedop,
sem_getall, sem_setall, sem_
stat, sem_getval, sem_getpid,
sem_getncnt, sem_getzcnt, sem__
setval, sem_get.

For filesystems namei.c uses CAP_
DAC_OVERRIDE, and CAP_DAC_READ_
SEARCH to provide the same level of con-
trol.

e CAP_TIPC_LOCK Required to control
locking of shared memory segments in
memory.

e CAP_SYS_RESOURCE Allows setting
the maximum number of bytes in a mes-
sage queue to exceed kernel .msgmnb

e CAP_SYS_ADMIN Allows changing the
ownership and removing any ipc object.

Allowing for multiple instances of the ipc
namespace is a straightforward process of du-
plicating the tables used for lookup by key and



106 e Multiple Instances of the Global Linux Namespaces

id, and modifying the code to use current
to select the appropriate table. In addition
the sysctls need to be modified to look at
current and act on the corresponding copy
of the namespace.

The ugly side of working with this namespace
is the capability situation. CAP_TIPC_OWNER
trivially becomes restricted to the current ipc
namespace. CAP_IPC_LOCK still remains dan-
gerous. CAP_DAC_OVERRIDE and CAP_DAC_
READ_SEARCH might be ok, it really depends
on the state of the filesystem mount name-
space. CAP_SYS_RESOURCE and CAP_SYS_
ADMIN are still unsafe to give to untrusted ap-
plications.

2.4 The Network Namespace

By volume the code implementing the net-
work stack is the largest of the subsystems that
needs its own namespace. Once you look at
the network subsystem from the proper slant it
is straightforward to allow user space to have
what appears to be multiple instances of the
network stack, and thus you have a network
namespace.

The core abstractions used by the network stack
are processes, sockets, network devices, and
packets. The rest of the network stack is de-
fined in terms of these.

In adding the network namespace 1 add a few
simple rules.

e A network device belongs to exactly one
network namespace.
e A socket belongs to exactly one network

namespace.

A packet comes into the network stack from the
outside world through a network device. We

can the look at that device to find the network
namespace and the rules to process that packet
by.

We generate a packet and feed it to the ker-
nel through a socket. The kernel looks at the
socket, finds the network namespace, and from
there the rules to process the packet by.

What this means is that most of the network
stack global variables need to be moved into
the network namespace data structure. Hope-
fully we can write this so the extra level of in-
direction will not reduce the performance of the
network stack.

Looking up the network stack global variables
through the network namespace is not quite
enough. Each instance of the network name-
space needs its own copy of the loopback de-
vice, an interface needs to be added to move
network devices between network namespaces,
and a two headed tunnel device (a cousin of the
loopback device) needs to be added so we can
send packets between different network names-
paces.

With these in place it is safe to give processes
a separate network namespace: CAP_NET_
BIND_ SERVICE, CAP_NET BROADCAST,
CAP_NET_ADMIN, and CAP_NET_RAW. All
of the functionality will work and working
through the existing network devices there
won’t be an ability to escape the network name-
space. Care should be given to giving an un-
trusted process access to real network devices,
though, as hardware or software bugs in the im-
plementation of that network device could be
reduce the security.

The future direction of the network stack is to-
wards Van Jackobson network channels, where
more of the work is pushed towards process
context, and happening in sockets. That work
appears to be a win for network namespaces



2006 Linux Symposium, Volume One e 107

in two ways. More work happening in pro-
cess context and in well defined sockets means
it is easier to lookup the network namespace,
and thus cheaper. Having a lightweight packet
classifier in the network drivers should allow a
single network device to appear to user space
as multiple network devices each with a dif-
ferent hardware address. Then based upon the
destination hardware address the packet can
be placed in one of several different network
namespaces. Today to get the same semantics
I need to configure the primary network device
as a router, or configure ethernet bridging be-
tween the real network and the network inter-
face that sends packets to the secondary net-
work namespace.

2.5 The Process Id Namespace

The venerable process id is usually limited to
16bits so that the bitmap allocator is efficient
and so that people can read and remember the
ids. The identifiers are allocated by the kernel,
and identifiers that are no longer in use are pe-
riodically reused for new processes. A single
identifier value can refer to a process, a thread
group, a process group and to a session, but ev-
ery use starts life as a process identifier.

The only capability associated with process ids
is CAP_KILL which allows sending signals to
any process even if the normal security checks
would not allow it.

Process identifiers are used to identify the cur-
rent process, to identify the process that died,
to specify a process or set of processes to send
a signal to, to specify a process or set of pro-
cesses to modify, to specify a process to de-
bug, and in system monitoring tools to spec-
ify which process the information pertains to.
Or in other words process identifiers are deeply
entrenched in the user/kernel interface and are
used for just about everything.

In a lot of ways implementing a process id
namespace is straightforward as it is clear how
everything should look from the inside. There
should be a group of all of the processes in
the namespace that ki1l -1 sends signals to.
Either a new pid hash table needs to be allo-
cated or the key in the pid hash table needs
to be modified to include the pid namespace.
A new pid allocation bitmap needs to be al-
located. /proc/sys/pid_max needs to be
modified to refer to the current pid allocation
bitmap. When the pid namespace exits all of
the processes in the pid namespace need to be
killed. Kernel threads need to be modified to
never start up in anything except the default pid
namespace. A process that has pid 1 must exist
that will not receive any signals except for the
ones it installs a signal handler for.

How a pid namespace should look from the out-
side is a much more delicate question. How
should processes in a non default pid name-
space be displayed in /proc? Should any of
the process in a pid namespace show up in any
other pid namespace? How much of the ex-
isting infrastructure that takes pids should con-
tinue to work?

This is one of the few areas where the discus-
sion on the kernel list has come to a complete
standstill, as an inexpensive technical solution
to everyones requirements was not visible at the
time of the conversation.

A big piece of what makes the process id name-
space different is that processes are organized
into a hierarchical tree. Maintaining the par-
ent/child relationship between the process that
initiates the pid namespace and the first process
in the new pid namespace requires first process
in the new pid namespace have two pids. A
pid in the namespace of the parent and pid 1
in its own namespace. This results in names-
paces that are hierarchical unlike most names-
paces that are completely disjoint.



108 e Multiple Instances of the Global Linux Namespaces

Having one process with two pids looks like a
serious problem. It gets worse if we want that
process to show up in other pid namespaces.

After looking deeply at the underlying mecha-
nisms in the kernel I have started moving things
away frompid_t to pointers to st ruct pid.
The immediate gain is that the kernel becomes
protected from pid wraparound issues.

Once all of the references that matter are
struct pid pointers inside the kernel a dif-
ferent implementation becomes possible. We
can hang multiple <pid namespace, pid_t>
tuples off struct pid allowing us to have a
different name for the same pid in several pid
namespaces.

With processes in subordinate pid namespaces
at least potentially showing up when we need
them we can preserve the existing UNIX api
for all functions that take pids and not need to
reinvent pid namespace specific solutions.

The question yet to be answered in my mind
is do we always map a process’s st ruct pid
into all of its ancestor’s pid namespaces, or do
we provide a mechanism that performs those
mappings on demand?

2.6 The User and Group ID Namespace

In the kernel user ids are used for both account-
ing and for for performing security checks.
The per user accounting is connected to the
user_struct. Security checks are done
against uid, euid, suid, fsuid, gid,
egid, sgid, £sgid, processes capabilities,
and variables maintained by a Linux security
module. The kernel allows any of the uid/gid
values to rotate between slots, or, if a process
has CAP_SETUID, arbitrary values to be set
into the filesystem uids.

With a uid namespace the security checks for
equality of uids become checks to ensure the

entire tuple <uid namespace, uid> is equal.
Which means if two uids are in different names-
paces the check will always fail. So the only
permitted cases across uid namespaces will be
when everyone is allowed to perform the action
the process is trying to perform or when the
process has the appropriate capability to per-
form the action on any process.

An alternative in some cases to modifying all
of the checks to be against <namespace, uid>
tuples is to modify some of the checks to be
against user_struct pointers.

Since uid namespaces are not persistent, map-
ping of a uid namespace to filesystems requires
some new mechanisms. The primary mech-
anism is to associate with the each super_
block the uid namespace of the filesystem;
probably moving that information into each
struct inode in the kernel for speed and
flexibility.

To allow sharing of filesystem mounts between
different uid namespaces requires either using
acls to tag inodes with non-default filesystem
namespace information or using the key infras-
tructure to provide a mapping between different
uid namespaces.

Virtual filesystems require special care as fre-
quently they allow access to all kinds of spe-
cial kernel functionality without any capability
checks if the uid of a process equals 0. So vir-
tual filesystems like proc and sysfs must spec-
ify the default kernel uid namespace in their
superblock orit will be trivial to violate the
kernel security checks.

There is a question of whether the change in
rules and mechanisms should take place in the
core kernel code, making it uid namespace
aware, or in a Linux security module. A
key of that decision is the uid hash table and
user_struct. From my reading of the ker-
nel code it appears that current Linux security



2006 Linux Symposium, Volume One o 109

modules can only further restrict the default
kernel permissions checks and there is not a
hook that makes it possible to allocate a dif-
ferent user_struct depending on security
module policies.

Which means at least the allocation of user_
struct, and quite possibly making all of the
uid checks fail if the uid namespaces are not
equal, should happen in the core of the ker-
nel with security modules standing in the back-
ground providing really advanced facilities.

With a uid namespace it becomes safe to give
untrusted users CAP_ SETUID without reduc-
ing security.

2.7 Security Modules and Namespaces

There are two basic approaches that can be pur-
sued to implement multiple instances of user
space. Objects in the kernel can be isolated by
policy and security checks with security mod-
ules, or they can be isolated by making visible
only the objects you are allowed to access by
using namespaces.

The Linux Jail module (http://sf.net/
projects/linuxjail) implemented by
"Serge E. Hallyn" <serue@us.ibm.com> is a
good example of what can be done with just
a security module and isolating a group of pro-
cesses with permission checks and policy rather
than simply making the inaccessible parts of
the system disappear.

Following that general principle Linux secu-
rity modules have two different roles they can
play when implementing multiple instances of
user space. They can make up for any unim-
plemented kernel namespace by isolating ob-
jects with additional permission checks, which
is good as a short term solution. Linux secu-
rity modules modified to be container aware

can also provide for enhanced security enforce-
ment mechanisms in containers. In essence this
second modification is the implementation of a
namespace for security mechanisms and policy.

2.8 The Security Keys Namespace

Not long ago someone added to the kernel what
is the frustration of anyone attempting to imple-
menting namespaces to allow for the migration
of user space. Another obscure and little known
global namespace.

In this case each key on a key ring is assigned
a global key_serial_t value. CAP_SYS_
ADMIN is used to guard ownership and permis-
sion changes.

I have yet to look in detail but at first glance
this looks like one of the easy cases, where we
can just simply implement another copy of the
lookup table. It appears the key_serial_
t values are just used for manipulation of the
security keys, from user space.

2.9 The Device Namespace

Not giving children in containers CAP_SYS__
MKNOD and not mounting sysfs is sufficient
to prevent them from accessing any device
nodes that have not been audited for use by
that container. Getting a new instance of the
uid/gid namespace is enough to remove access
from magic sysfs entries controlling devices al-
though there is some question on how to bring
them back.

For purposes of migration, unless all devices a
set of processes has access to are purely virtual,
pretending the devices haven’t changed is non-
sense. Instead it makes much more sense to ex-
plicitly acknowledge the devices have changed



110 e Multiple Instances of the Global Linux Namespaces

and send hotplug remove and add events to the
set of processes.

With the use of hotplug events the assumption
that the global major and minor numbers that a
device uses are constant is removed.

Equally as sensitive as CAP_SYS_MKNOD, and
probably more important if mounting sysfs is
allowed, is CAP_CHOWN. It allows changing
the owner of a file. Since it would be required
to change the sysfs owner before a sensitive file
could be accessed.

So in practice managing the device namespace
appears to be a user space problem with restric-
tions on CAP_SYS_MKNOD and CAP_CHOWN
being used to implement the filter policy of
which devices a process has access to.

2.10 The Time Namespace

The kernel provides access to several clocks
CLOCK_REALTIME, CLOCK_MONOTONIC,
CLOCK_PROCESS_CPUTIME_1ID, and
CLOCK_THREAD_CPUTIME_ID being the
primaries.

CLOCK_REALTIME reports the current wall
clock time.

CLOCK_MONOTONIC is similar to CLOCK__
REALTIME except it cannot be set and thus
never backs up.

CLOCK_PROCESS_CPUTIME_TID reports
how much aggregate cpu time the threads in a
process have consumed.

CLOCK_THREAD_CPUTIME_ID reports how
much cpu time an individual thread has con-
sumed.

If process migration is not a concern none
of these clocks except possibly CLOCK_

REALTIME is interesting. In the context of
process migration all of these clocks become
interesting.

The thread and process clocks simply need an
offset field so the amount of time spent on the
previous machine can be added in. So that we
can prevent the clocks from going backwards.

The monotonic timer needs an offset field so
that we can guarantee that it never goes back-
wards in the presence of process migration.

The realtime clock matters the least but hav-
ing an additional offset field for clock adds ad-
ditional flexibility to the system and comes at
practically no cost.

All of the clocks except for CLOCK_
MONOTONIC support setting the clock
with clock_sett ime so the existing control
interfaces are sufficient. For the monotonic
clock things are different, clock_settime
is not allowed to set the clock, ensuring that
the time will never run backwards, and there is
a huge amount of sense in that logic.

The only reasonable course I can see is setting
the monotonic clock when the time namespace
is created. Which probably means we will need
a syscall (and not a clone flag) to create the
clone flag and we should provide it with min-
imum acceptable value of the monotonic clock.

3 Modifications
faces

of Kernel Inter-

One of the biggest challenges with implement-
ing multiple namespaces is how do we modify
the existing kernel interfaces in a way that re-
tains backwards compatibility for existing ap-
plications while still allowing the reality of the
new situation to be seen and worked with.



2006 Linux Symposium, Volume One o 111

Modifying existing system calls is proba-
bly the easiest case. Instead of reference
global variables we reference variables through
current.

Modifying /proc is trickier. Ideally we would
introduce a new subdirectory for each class of
namespace, and in that folder list each instance
of that namespace, adding symbolic links from
the existing names where appropriate. Unfortu-
nately it is not possible to obtain a list of names-
paces and the extra maintenance cost does not
yet seem to just the extra complexity and cost of
a linked list. So for proc what we are likely to
see is the information for each namespace listed
in /proc/pid with a symbolic link from the
existing location into the new location under
/proc/self/.

Modifying sysctl is fairly straightforward
but a little tricky to implement. The problem
is that sysctl assumes it is always dealing
with global variables. As we put those vari-
ables into namespaces we can no longer store
the pointer into a global variable. So we need
to modify the implementation of sysctl to
call a function which takes a task_struct
argument to find where the variable is located.
Once that is done we can move /proc/sys
into /proc/pid/sys.

Modifying sysfs doesn’t come up for most
of the namespaces but it is a serious issue for
the network namespace. I haven’t a clue what
the final outcome will be but assuming we want
global visibility for monitor applications some-
thing like /proc/pid and /proc/self
needs to be added so we can list multiple in-
stances and add symbolic links from their old
location in sysfs.

The netlink interface is the most difficult
kernel interface to work with. Because control
and query packets are queued and not neces-
sarily processed by the application that sends

the query, getting the context information nec-
essary to lookup up the appropriate global vari-
ables is a challenge. It can even be difficult to
figure out which port namespace to reply to. As
long as the only users of netlink are part of the
networking stack I have an implementation that
solves the problems. However, as netlink has
been suggested for other things, I can’t count
on just the network stack processing packets.

Resource counters are one of the more chal-
lenging interfaces to specify. Deciding if an
interface should be per namespace or global is
a challenge, and answering the question how
does this work when we have recursive in-
stances of a namespace. All of these con-
cerns are exemplified when there are mul-
tiple untrusted users on the system. For
starters we should be able to punt and im-
plement something simple and require CAP__
SYS_RESOURCE if there are any per name-
space resource limits. Which should leave
us with a simple and correct implementation.
Then the additional concerns can be addressed
from there.



112 e Multiple Instances of the Global Linux Namespaces




Proceedings of the
Linux Symposium

Volume One

July 19th—-22nd, 2006
Ottawa, Ontario
Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM

Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation

C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



