
Incrementally Improving the Linux SCSI Subsystem

James E.J. Bottomley
SteelEye Technology, Inc.

http://www.steeleye.com

James.Bottomley@steeleye.com

Abstract

This paper tackles two issues in the current
SCSI subsystem: init time probing using the
new hotplug infrastructure and improvements
to the current error handler. We also include an
appendix sketching the operation of the SCSI
subsystem and another one listing other out-
standing problems not covered in this paper.

1 Introduction

Obviously, the scope of potential incremental
improvements to the SCSI subsystem is enor-
mous. In order to narrow the field quite a bit,
we will concentrate on just two particular ex-
amples.

1.1 Device Scanning and Inquiry

The first addresses the current weaknesses in
the device probing and inquiry code. As things
stand today, the SCSI subsystem will scan all
targets (up to 15) and, depending on compile
and run time variables, try to scan all LUNs on
those targets. There is also a compiled in ex-
ception table stored inscsi_scan.c which
can cope with the idiosyncrasies of certain de-
vices. The principle disadvantages of this sys-
tem are

1. It is extremely inflexible and rigid. New
devices that need exceptions have to be

patched into the kernel table and the ker-
nel recompiled before it does the correct
thing, and

2. The exception table is cumbersome and
does not cover all cases. For example,
how certain devices are probed can de-
pend on the SCSI host adaptor they are
attached to (mercifully, this is becoming
extremely rare).

It is the thesis of this paper that such complex
rules based logic should be abstracted entirely
from the kernel and placed in user land, where
it can easily be altered and extended without
even rebooting; and furthermore, that such a
system can be grafted on to the existing code
fairly easily.

1.2 Fixing the Error Handler

This topic is also broad, particularly as there
are several bio related errors in the 2.5 se-
ries kernel that make error handling especially
problematic (see appendix B). However, the
object here is to concentrate on the SCSI spe-
cific region of code inscsi_error.c and
assume that the kinks in the bio system will be
worked out as the kernel evolves.

The essential problem in
scsi_unjam_host() is that it tends
to execute on one command at once, and
have limited facilities for understanding that

Ottawa Linux Symposium 2002 41

error recovery on one command may affect a
large numbers of others. This is particularly
acute when drives start misbehaving because
they usually have the maximum number
of commands queued when error recovery
begins. Our presentation will be essentially
to clean up the error handler actions and to
restart command execution slowly and gently
(throttling) instead of slamming an entire set
of outstanding commands down again.

1.3 A Historical Context

Years ago, when the first monolithic UNIX
kernels were emerging into the light of day it
was recognised that you could draw a neat line
around most of the code used to boot the sys-
tem and configure its devices. Further, that this
code was never used again in the entirety of the
operation of the kernel.

Back in the mists of time, Linux began to sepa-
rate this initialisation code into a different com-
piler section and release it after the system had
completed booting. This worked well for a
while but as modular drivers came along, less
of the core kernel code which was used by
the boot process could be discarded because it
might be used by a module to initialise its de-
vices.

Much later, the concept of hotplugging devices
came along, and the Linux hotplug [1] project
was started.

2 Hotplug

The essence of the hotplug system and its util-
ity has been described elsewhere [2]. Hotplug
is primarily intended for computers whose con-
figurations change on the fly, obvious exam-
ples of which are the laptop PCMCIA system,
a USB daisy chain, firewire and so on. It was
recognised fairly early on in this project that

the problem of adding a device to a running
system is substantially similar to that of config-
uring a device at boot up, except that the oper-
ating system may not be completely initialised
(and thus the hotplug system may not be avail-
able) when boot probing is done. For this rea-
son, the boot probe issue is called “coldplug-
ging”.

2.1 Avoiding Coldplug

In general, the coldplug problem is similar to
most bootstrap problems. However, there is
a fairly neat way to avoid the difficulty for
several subsystems (SCSI being among them,
fortunately): by using an initial ramdisk. As
long as the hotplug system is built into the
initial ramdisk, the coldplug bootstrap prob-
lem is completely eliminated for any subsys-
tem which can be inserted entirely as modules,
since it would be handled as a genuine hotplug
event by the initial ramdisk hotplug system.

2.2 Hotplug and Device Scanning

A number of the devices that can be hot
plugged are also effectively “bridges”, that is
units which make onward connections to other
busses which may contain other devices. SCSI
Host Bus Adaptor (HBA) cards are a classic
example of this, since all they really do is
bridge the computer bus (often PCI) to an ex-
ternal or internal SCSI bus.

Whenever any type of bus bridge is added to
the system, logic must be invoked to scan the
devices beyond the bridge and add them into
the system. Usually, all this scanning is per-
formed inside the kernel; however, for this pa-
per we investigate transferring they scanning
logic to the user level hotplug system.

Ottawa Linux Symposium 2002 42

2.3 Bridge Insertion Events

In general, hotplug events are designed to al-
low the system to configure the particular de-
vice which has just been inserted and the inter-
action between the programs executed during
the hotplug event processing are designed to
perform this configuration. Scanning and con-
figuration of devices beyond the bridge device
should obviously not be begun until the bridge
device is properly configured and fully func-
tional. It therefore makes sense to fire a sepa-
rate “bridge scan” hotplug event after bridge
configuration and bus sanitisation to trigger
probing on the actual bus beyond the bridge.

Following the initiation of scanning beyond the
bridge, the job of the scanning routine should
be to notify the kernel of the existence of the
new devices, but allow the kernel to config-
ure them, or better yet trigger another hotplug
event to configure them.

One of the issues in bridge/device configura-
tion that require the bridge to be configured
before the scan are the setting or collecting of
intrinsic bus properties: things like bus speed,
width and configuration, all of which must be
known before the devices on the bus may be
probed. For instance, the SCSI bus can be con-
figured for various widths (wide or narrow).
The width is usually governed by the HBA,
but nothing prevents a wide device being con-
nected to a narrow only HBA. Thus, the de-
vice configuration is dependent on the parame-
ter rage of the bus, which are controlled by the
bridge (the HBA).

2.4 Bridge Configuration

We need a mechanism for making available to
both the user and kernel the parameters de-
tected and set during the prior bridge hotplug
event. There is an evolving infrastructure in the
new driver model[3] that may ultimately be ca-

pable of storing this information in a usefully
abstracted form. However, for the time be-
ing, we opted for a completely opaque bridge
programming model so that the bridge hotplug
event handler needs exact bridge programming
knowledge. Basically, we elected to place the
SCSI bus parameters in a SCSI specific field
which can be queried byioctl s.

3 Replacing SCSI Scan/Inquiry

This project essentially builds on top of the
ideas and code provided by the scsimon [4]
project. Although scsimon was designed to
provide notifications for device insertions, the
code it supplies and the design basics are es-
sentially reusable in the scan/inquiry replace-
ment.

3.1 What scsi_scan.c does now

This entire file of code is dedicated to scan-
ning busses and detecting and configuring de-
vices. It is driven entirely from a static ta-
ble (called device_list) which contains
inquiry strings matching devices for which spe-
cial actions are taken. Most of the actions are
geared to LUN scanning. Here is an example
of some of the flags:

• BLIST_FORCELUN: scan for LUNS
even if kernel is compiled not to.

• BLIST_NOLUN: Never scan LUNS on
this device.

• BLIST_SINGLELUN: only allow I/O to
one LUN at a time.

• BLIST_NOTQ: Device claims to support
Tag Command Queueing but in reality
cannot.

• . . .

Ottawa Linux Symposium 2002 43

Other flags deal with device type mis-
identification and so forth. All of which can
easily be accommodated in user land, with the
addition of two extra ioctls: one to set or clear
the tag bit (tagged_supported) and one to
alter the device type.

3.2 Adding the Bridge Insertion Hook

In the SCSI subsystem, the easiest way to add
the bus insertion hook is right at the end of
scsi_register_host() . We eliminate
the code inscan_scsis except for the hard
coded entry used byadd-single-device .

The Bus insertion hook is now used to begin
scanning the targets (at LUN zero) using the
add-single-device command (the scsi
and channel numbers being passed up from the
hotplug event).

It is certainly open to debate whether it is
worthwhile moving this functionality into user
land. However, in principle we could also set
up bus transfer parameters or actually opt to
use the SCSI-3 report LUNs command instead
for the scanning, so it still provides an arguably
much more flexible system. This will become
particularly important as newer standards are
adopted and the process of scanning for de-
vices changes.

3.3 Adding Device Insertion Hooks

Just as the majority of the work is done in
scsis_scan_single() , so most of the
work will be done in the code running after
the device insertion hotplug event. The correct
place for this is after the initial inquiry com-
mand, so that when the hotplug event is called
we know the inquiry parameters and can pass
them as event parameters.

The internaldevice_list table may now
be laced into a flat configuration file (which

is thus easily customised) which matches in-
quiry strings and triggers the appropriate ac-
tions. Since we now have more powerful tools
at our disposal, the matching can be much
more finely controlled using regular expres-
sions. The actions may also be much more
dynamic than simply sending parameters down
to the kernel: indeed, the system may now be
designed to be completely extensible so that
we could execute a vendor supplied script, in-
stalled in the system, whenever that vendor’s
device is detected.

There has been recent concern [5] about cer-
tain devices not respecting the SCSI standards
with regard to inquiry parameter lengths. This
could probably be handled either by allowing
the maximum inquiry length to be a bus pa-
rameter set by the bridge insertion event, or by
having the initial inquiry only be the minimum
length and allowing the device hotplug event to
use thesg device to formulate a second inquiry
to get all the parameters it needs. The counter
argument: that the low level drivers need to
snoop the inquiry data to set up their param-
eters could be avoided by allowing the device
insertion hotplug to communicate the relevant
parameters to the bridge.

3.4 Device and Bridge Interaction

If we managed to create the correct abstraction
of the SCSI bus, there would be no need for
special ioctls to be sent to inform the bridge
of device bus characteristics, nor would the
bridge need to snoop data (like inquiry returns)
being passed over the bus to obtain this infor-
mation.

However, until such an ideal state of affairs is
reached, it is possible that the bridge will need
to be made aware of extra parameters in the de-
vice. For this reason, we permit a “bridge call-
out” to be done at the end of the device hot-
plug event script (essentially the hotplug en-

Ottawa Linux Symposium 2002 44

gine checks to see if the bridge wishes to be
informed of device insertion events and exe-
cutes the script provided by the bridge if it
does). This should allow for arbitrary setting
of bridge/device parameters to suit the bus en-
vironment.

In the current implementation, it is the re-
sponsibility of the device/bridge script to
scan for additional LUNs (if necessary).
This leads to the unwanted side effect that
add-single-device for LUN 0 will now
trigger a complete LUN scan, which may not
be what was intended. This can be solved by
making “have scanned for LUNs” a property
of the device and passing it up on the device
insertion event.

3.5 Event Flow

The flow of events described above is shown in
figure 1 with time moving from left to right in
the diagram.

4 Error Handling

The current error handler thread begins when
a fatal error is detected (see Appendix A for
an operational sketch) it then quiesces the de-
vice and proceeds, one command at a time,
through its abort and reset sequence. It checks
the progress of error recovery at most points
by sending down a test unit ready (TUR) com-
mand. However, there are common SCSI
driver problems that the mid-layer ignores and
others that cause it to malfunction.

4.1 Who Owns the Tag Starvation Problem?

When Tag Command Queueing (TCQ) is en-
abled on a device, we pretty much (although
not always) use “unordered” tags. This leaves
it entirely within the province of the device

firmware to determine command execution or-
der. In theory, the device firmware has a mode
page which lays out guarantees about the maxi-
mum times it will take for the device to process
any given tag. However in practise, most (par-
ticularly older) devices govern tag execution by
closest head stepping times and thus some I/Os
to different parts of the disc surface can find
themselves ignored—a phenomenon called tag
starvation.

Since the problem can occur on almost every
parallel SCSI card, every driver that does TCQ
has to be aware of it and evolve a strategy to
cope. Therefore, the tag starvation problem is
pretty much owned by the low level drivers,
which is a pity, since it means code duplication
and lots of extra testing.

The two most general ways tag starvation is
handled are: sending an ordered tag with the
next command, or not sending down any more
commands until the starved tag is processed.
These are both extremely easy to implement
inside the mid-layer and would relieve the low
level drivers of a sizable amount of duplicated
code.

4.2 What Kinds of Errors Occur?

The SCSI operation model is essentially a
giant state machine. There are a wide
variety of error conditions which can oc-
cur but which are recognised as particular
states in the model. The SCSI mid-layer
translates these model states into actions in
scsi_decide_disposition() . How-
ever, anything that gets into this code is pretty
much part of the state model, since it is invoked
using a SCSI return code. Pretty much every-
thing other than an unrecognised return code
for a command still in progress will be handled
without troubling the error recovery thread.

The point is that the error handler thread is

Ottawa Linux Symposium 2002 45

User

Kernel

SCSI Card
detection

Bridge

Configuration
Inquiry Device Exists

Hotplug

Device Hotplug

Hotplug

Bridge/Device

Set device
parameters

set extra bridge
device params

time line

Bridge Hotplug

Bus scan using
add−single−device

Bridge Scan
Hotplug

Hotplug
LUN scan using

add−single−device

........

Figure 1: Time line for Hotplug Insertion Events

usually only invoked when the state model has
failed1 or a command has timed out (which is
pretty much the same thing, since it means we
sent a command to the device and it got lost),
so the remedies it applies have usually got to
be a drastic kick to get the device back into a
state the model recognises and can resume pro-
cessing from.

4.3 Why Abort?

The first action the error handler thread tries
is to issue an abort to the problem command.
Abort is a SCSI message that informs the de-
vice to discard a particular tag at whatever
point it has reached in processing it. It is
a command designed to fit inside the SCSI
state model and has several uses, particularly
for stopping linked commands which have en-
countered errors. However, its use as the first
port of call for the error handler thread try-
ing to recover a device is worse than useless,
since it is applying a course of action within
the state model to something already outside

1Here remember that the SCSI state model defined
by the standards is much larger than the oneimple-
mentedin the mid-layer.

of it. Following this logic, the abort sequence
and its associated driver hook may simply be
removed (or at least deprecated) in the SCSI
driver model.

4.4 Flavours of Reset

The next courses of actions, if abort failed, will
be to begin a series of resets culminating in the
complete reset of the HBA. The SCSI protocols
actually support three levels of reset: LUN, de-
vice and bus. The former is a message addition
from SCSI-3 and is only relevant for devices
with multiple LUNs. It does everything that
a device reset does, but operates only on a sin-
gle LUN—a device reset operates on all LUNs.
A device reset only operates on a single target
(but all of its LUNs) and a bus reset operates
on every device on a physical bus.

Resets are designedly very intrusive to device
operation. A reset basically causes the device
to drop everything on the floor and re-initialise
itself; it is allowed to spend quite a bit of time
(measured in seconds) on this re-initialisation
and is entitled to respond “not ready” to any
command received during this period.

Ottawa Linux Symposium 2002 46

The error handler, meanwhile, should be aware
of the extent of the potential disruption re-
sets cause to the device in question, particu-
larly with regard to losing all outstanding com-
mands. It should pull all commands affected
by the reset from both the pending and error
queues, cancelling the timers on the pending
commands and place them all in abeyance un-
til the error handling completes (it might make
sense at this point to push them back into the
bio queues so that they can be merged if nec-
essary, but hang on to the command we were
initially trying to recover).

After a reset has been sent, it should keep the
device quiesced and back off for a while (prob-
ably a second) before probing with a TUR—we
should also loop in this mode, probing every
second or so, until the TUR comes back as not
“not ready”.

Once we know the device is ready to accept
commands again, we should feed the first com-
mand from the error thread, wait for it to com-
plete and remove the device quiesce if it re-
turns successfully. We should probably also
lower the tag queue depth (if it had one) on the
assumption that the error may have been trig-
gered by over feeding.

4.5 Choosing a Reset

Often, the simplest reset for any device driver
writer to use is the bus reset. This is be-
cause all the other resets are actually phrased
as SCSI messages and thus need special pro-
cessing. The bus reset is activated simply by
pulling the reset line on the SCSI bus low for
25ms and is usually triggerable using a simple
chip register flip.

In choosing bus reset, one thing to beware of
is the SCSI standard soft reset alternative (see
section 6.2.2 of the SCSI-2 standard [6]). What
this does is allow the device to essentially ig-

nore some of the most useful aspects of the
bus reset (i.e. dropping everything and starting
over from a clean state). The mid layer picks
the flag indicating soft reset alternative out of
the inquiry data and sets thesoft_reset de-
vice flag in this case. We have never come
across one of these devices, but if we did it
would certainly cause huge problems for low
level drivers that rely solely on bus resets.

4.6 Device Offlining

The last response of the error handler, if it fails
to get the device to accept commands once
more is to place it offline. All outstanding com-
mands should be immediately failed with I/O
errors. However, the mid layer should continue
to accept commands for this device, but should
just immediately fail them with I/O errors. This
should break out of the unfortunate condition
where offlining a device with a huge outstand-
ing bio queue can leave lots of processes stuck
in D wait (see appendix B.2).

4.7 Multi-Initiator Scenarios

Previously, multi-initiator (where more than
one initiator, or HBA, is connected to the same
bus, so multiple machines may be talking to
the same devices) was a fairly esoteric config-
uration primarily limited to clustering environ-
ments. With the advent of Fibre Channel, this
all changed and shared busses are becoming
much more prevalent.

In the classic multi-initator scenario, a re-
set from another initiator, that you don’t see,
causes all of your outstanding commands to
be lost without trace. This can be particularly
nasty in the case where LUN reset is not im-
plemented, because you could be quietly pro-
cessing exclusively on LUN15 of an array only
to be reset because another initator was having
issues with LUN3.

Ottawa Linux Symposium 2002 47

About the best way to handle this is to take
special action whenever the signature for a re-
set occurs (which is a check condition followed
by unit attention sense on the next command to
be sent down to the device). On detecting this
condition, we should immediately proceed as
though we were the ones resetting the device as
part of error recovery: collect all the outstand-
ing commands, cancel the timers probe with a
TUR and start feeding them back down again
when the device is ready to accept them.

4.8 Testing Error Handler Changes

Once changes are made to error handling, one
of the main problems is actually testing them.
Most modern SCSI devices really don’t ac-
tually ever cause the error handler to be in-
voked. Even transmission line conditions or
other problems which cause the SCSI bus to go
marginal aren’t exactly very useful since there
is little chance of correct recovery from them.
What is needed is a method for simulating er-
rors in the SCSI subsystem and gauging what
happens next.

One particularly useful tool is the debug driver
of the Linux SCSI subsystem [7]. Although it
currently only comes with the ability to sim-
ulate a medium error, persuading it to drop
a SCSI command silently (and thus trigger a
timeout and error handling) isn’t that much of
a difficult problem. Once this enhancement is
made, it is comparatively easy to trigger a re-
coverable error an watch how the system be-
haves.

For those people with access to genuinely mal-
functioning devices (my favourite being an
old HP C3255 device which seems just to
stop working occasionally with high tag queue
depths), it is extremely nice to be able to plug
them in an watch the system cope (or not, as
the case may be).

A A Sketch of How the Current
SCSI Subsystem Works

Low Layer

Mid Layer

Mid Layer Interface

sg sd st
sr
scd

Request OperationsDevice Operations

SCSI Device Layer

Kernel Buffer/Page Cache and device input

(functional)

New EHObsolete

Low layer interface (same for
both mid−layers)

(aic7xxx etc)
Possible translator
e.g. scsi to fibre

low level driver

Not in 2.5

Figure 2: Block Diagram of the SCSI subsys-
tem

A complete block diagram of the SCSI sub-
system is shown in figure 2. The error han-
dler comprises a very small portion of the mid-
layer (shown as new EH—although for 2.5,
this is the only error handler). It’s code is
entirely inscsi_error.c and it is invoked
from the bottom half handler routine activated
by scsi_done() .

A.1 I/O in

All requests come in from the upper layer de-
vice drivers throughscsi_request_fn()
which loops over all pending requests. If the
device is in_recovery or plugged, it re-
turns.

Otherwise, it proceeds as follows:

1. Dequeue the request.

Ottawa Linux Symposium 2002 48

2. Copy the request into a scsi request struc-
ture and release the bio request.

3. Call scsi_init_io() to set up the
scatter/gather list on the request structure.

4. Call the device specific init command to
set up the appropriate SCSI command.

5. Initialise the error handler components
(mainly zero out sense and set up the time-
out).

6. Callscsi_dispatch_command() to
begin. This sets up the serial number
and pid, adds the timer and calls the host
queuecommand() if it can_queue
otherwise callscommand() .

A.2 I/O out

All finished commands come in from the low
layer throughscsi_done() with the queue
lock held. They are then added to the bottom
half (BH) queue and the BH is notified.

The BH handler (scsi_bottom_half
_handler()) runs later picking work off the
SCSI BH queue until none remains. It calls
scsi_device_disposition() which
returns four possibilities:

• SUCCESS: immediately com-
plete the command by calling
scsi_finish_command() .

• NEEDS_RETRY: send the command to
scsi_retry_command() which will
send it immediately down to the lower
layer unless the retry count has been ex-
ceeded.

• ADD_TO_MLQUEUE: call scsi
_mlqueue_insert() to send the
command back to its elevator queue.

• FAILED : set in_recovery , plug the
elevator queue and wake the error handler.

A.3 I/O Error

Once the error handler thread is awo-
ken, it calls the templateeh_strategy
_handler() if it exists, otherwise goes into
scsi_unjam_host .

scsi_unjam_host() loops over all pend-
ing commands and looks at theirstate field.
Really, it is only interested in theFAILED or
TIMEOUTstates.

Essentially, it loops over every failed or timed
out command and runs through first abort, then
device reset, then bus reset and finally host re-
set, sending a TUR to test the device if one of
these succeeded. If it gets all the way to the
end and still has failed commands, it offlines
the device.

B Unresolved Issues in the Mid-
Layer

This section is really a collection of issues on
my todo list, but obviously as I haven’t got
around to doing them yet, if anyone else wants
to step into the crease, they’re more than wel-
come.

B.1 queuecommand busy failure

The template hookqueuecommand() is al-
lowed to return 1 if the command has not been
queued. This can be for a variety of reasons,
but most commonly because of either tag star-
vation or static resource exhaustion. What is
supposed to happen is that the unqueued com-
mand goes back into the bio elevator and is re-
submitted at a later time.

It looks like the scsi_mlqueue
_insert() function or the bio is fail-
ing somehow, because on most 2.5.x, as soon
as queuecommand() returns 1, the buffer

Ottawa Linux Symposium 2002 49

hangs forever in D wait.

B.2 Device Offline Failure

After an initial complete failure of the error
handler, leading to a device being taken offline,
processes trying to use buffers on the device
often end hung in D wait. This is indicating
that the code which returns I/O errors on all
the outstanding I/O requests is missing some. I
suspect there may be a problem prizing the rest
of the I/O out of the bio, since it seems that the
code in the error handler to fail the I/O that has
reached the mid-layer is fairly bullet proof.

References

[1] http://sourceforge.net
/projects/linux-hotplug

[2] Greg Kroah-HartmanHotpluggable
Devices and the Linux KernelOttawa
Linux Symposium 2001

[3] Patrick MochelThe (New) Linux Kernel
Driver Model
Documentation/driver-model.txt

[4] Doug GilbertScsimon Driver for Linux
http://www.torque.net/scsi
/scsimon.html

[5] Martin Wilck Hack to make Datafab
KECF-USB work
http://marc.theaimsgroup.com
/?l=linux-usb-devel
&m=101304393027774

[6] X3T9.2 Project 375DInformation
Technology—Small Computer System
Interface 2
ftp://ftp.t10.org/t10
/drafts/s2/s2-r10l.pdf

[7] Originally by Eric Youngdale, but now
Maintained and enhanced by Doug

Gilbert
http://www.torque.net/sg
/sdebug.html

Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

