
Porting Drivers to HP ZX1

Grant Grundler
Linux Development Lab

Hewlett Packard
Cupertino, CA, USA, 95014

grundler@cup.hp.com

Abstract

“Porting” doesn’t accurately describe how one
gets a Linux driver to run on different archi-
tectures. If a driver doesn’t “just work,” gener-
ally it’s a matter of figuring out which wrong
assumptions about the HW (or OS) are embed-
ded in the driver. The goal of this talk is to
describe theHP ZX1 IO subsystem and some
of the wrong assumptions I’ve found in 2.4.17
kernel drivers.

A Block Diagram of the ZX1 IO subsystem is
quite similar to current PA-RISC systems. In
contrast to Intel Itanium boxes, neither sup-
ports legacy x86 IO space. For booting,EFI
drivers (ugh, DOS is back) are required and
IA32 Expansion ROMs are ignored.Platform
Servicesmust be used for DMA mapping, in-
terrupts, PCI device discovery. I’ll discuss
how those services are different between HP’s
ZX1 platform and my (weak) understanding of
IA32. Fortunately, use of these services is the
same between both architectures.

I was surprised by which drivers did notJust
Work (e.g. tulip, acenic) and will talk about
why they didn’t. Primarily, the timing of CPU
interaction with IO devices is different. ZX1
IO subsystem is also less tolerant of driver
“quirks”—things that are wrong but other plat-
forms don’t puke on. Lastly, I’ll explain what
an MCA is and how it’s useful for debugging

IO driver problems.

1 HP ZX1 IO Subsystem

The HP ZX1 chip set doesn’t have many sur-
prises to folks who’ve worked on RISC sys-
tems. Other architectures including PA-RISC,
Alpha, and SPARC have similar block dia-
grams. The main parts of HP’s implementation
are theSystem Bus Adapter(SBA) andLower
Bus Adapter(LBA).

From a very high level, most IO subsystems
aren’t that different since PCI bus behaviors
are defined by the various PCI specifications.
IO Interrupts (IRQ Line), IO Port, and MMIO
functionality provided have the same seman-
tics as on IA32. This is good since it makes
it possible to write (mostly) portable drivers.

The SBA provides an IO MMU, memory con-
troller, and interconnect between theropes
bus andMcKinley bus. The IO MMU de-
sign is based on the implementation used in
PA-RISC workstations and low end servers.
Two significant differences is how 64-bit DMA
addressing is supported and cache coherency
model. Other less obvious differences are
greater bandwidth of both the McKinley bus
and ropes bus.

The LBA is the PCI Host bus adapter and
also contains the IO SAPIC. Unlike its

Ottawa Linux Symposium 2002 184

Figure 1: HP ZX1 architecture

PA-RISC predecessor, this LBA supports
PCI-X (133MHz, 64-bit). The IO SAPIC
was also used in PA-RISC platforms. I’m
still amazed that 80% of the code is the
same between the IA64 and PA-RISC im-
plementations. Because of NDAs with
Intel, both implementations were developed
completely independently inside HP and
published on the same day (Feb 3, 2000) when
the IA64 source tree was published. (See
http://lists.parisc-linux.org
/hypermail/parisc-linux-cvs
/2860.html).

This type of architecture has some clear per-
formance advantages over legacy North/South
bridge topology in IA32 systems and also in-
troduces some new issues. The performance
advantage is more raw IO bandwidth between
IO, memory, and CPU which exceeds the sin-
gle PCI bus model by orders of magnitude.
Some obvious problems are ordering of trans-
actions (e.g. IRQ vs. DMA), DMA latency,
and PIO latency.

2 DMA Mapping

Use of PCI DMA mapping services is required
for several reasons:

• Address Translation: The primary pur-
pose is to provide a device view of mem-
ory for DMA.

• 32-bit DMA: IO MMU provides 32-bit
devices that ability to DMA into memory
which lives above 4GB address bound-
ary. This provides at least 3x better per-
formance than SW for block IO.

• Portability: The old interface,
virt_to_bus() , could only support
systems w/o IOMMU or the IOMMU
could map all of host memory statically.
HP ZX1 IOMMU can only map 1GB at
a time. That’s not as bad as it sounds
since only 32-bit PCI devices are required
to use the IO MMU. 64-bit PCI devices
(capable of DAC) can bypass the IO
MMU.

3 Interrupts

request_irq() works the same as before.
What’s really different from IA32 is the num-
ber and type of IRQs available. IA64 defines
256 vectors vs the woefully inadequate 15 in
legacy IA32. The following sections describe
some of the high level behaviors of IO SAPIC
and implementations.

3.1 Message Signalled Interrupts

As far as I can tell, no one is using this. At
least not directly. The IO SAPIC translates the
line based IRQ into a transaction on the “up-
stream” bus. The Local SAPIC in the CPU is
the target of this transaction and is identified
by its EID. The data portion of the transaction

Ottawa Linux Symposium 2002 185

identifies which interrupt vector is being deliv-
ered.

System Firmware assigns EIDs and initializes
the Local SAPICs. The IO SAPIC driver reads
the Interrupt Routing Table from ACPI. This
table describes how each of the 4 IRQPins
from each PCI device or slot is routed to a
particular IO SAPIC IRQ Line. When a de-
vice driver registers its interrupt handler via
request_irq() , the IO SAPIC driver pro-
grams the IRTE (an internal IO SAPIC regis-
ter) for the IRQ input line.

Note that Foster CPU is the first IA32 CPU to
use IO xAPIC (˜= SAPIC) and Local xAPIC.
Support for IO xAPIC was only recently added
to i386 arch in order to properly distribute
IRQs across CPUs. All architectures with IO
xAPICs (PA-RISC, IA64, IA32) direct inter-
rupts at specific CPUs. None use XTPR trans-
actions to enable the HW to redirect interrupts
to a “lower priority” CPU. For IA64 and IA32,
this is by design to preserve driver state in the
CPU cache associated with a given PCI in-
terface card. PA-RISC has no Local SAPIC
or XTPR support and consumes the interrupt
transaction directly.

So why talk about MSI? There’s several good
reasons for devices to use MSI:

• Interrupt Code Path: It allows the driver
interrupt to be directly called from the trap
handler—no traversing lists or lookup ta-
bles. Typically though, a layer of indirec-
tion is only needed if the HW can’t gen-
erate an EOI to the IO SAPIC or the IRQ
Line is shared.

• Exclusive Vector: The driver can avoid
shared PCI IRQ line and the the result-
ing shared vector. IO SAPIC implemen-
tations to date typically only have 7 IRQ
lines—not really enough if the PCI bus
hosts multiple devices/slots.

• DMA ordering: Normally, when the IRQ
is a line, it bypasses the normal DMA
data path. Thus race conditions exist
where a DMA might not reach memory
before the IRQ is delivered and acted
upon. For PCs and the like this isn’t a
problem since all the IO paths are short.

For larger systems, this can be a prob-
lem. When the interrupt is a transaction
on the bus, PCI ordering rules prevent it
from bypassing any inbound DMA trans-
action. Thus, when the interrupt finally
reaches the CPU, one can be certain all
DMA has reached memory as well and
not stuck in any coalescing buffers be-
tween the IO device and the memory it
was writing to. Thus one doesn’t need any
additional magic to guarantee the in-flight
DMA is coherent with CPU caches.

• Target multiple CPUs: This is wish list.
Given the right services, a smart device
can target transaction completions at dif-
ferent CPUs by generating interrupt trans-
actions for specific Local SAPICs. The
goal is to service the interrupt on the same
CPU that initiated the transaction. Trade-
offs between driver D-cache footprint and
interrupt latency would help determine
applications for this. Clustering folks I’ve
talked were looking at this but didn’t pro-
totype anything to test it out.

3.2 More than 256 Interrupts?

Large systems (32 CPU and up) can end up
using more than 256 vectors and exhaust the
Interrupt Vector Table. One example is cc-
Numa machines where one really doesn’t want
to (or can’t) deliver interrupts across the fabric.
Linux can gracefully work around this issue by
defining IRQ Regions. For IA64, each region
could represent a different Interrupt Vector Ta-
ble. PA-RISC uses IRQ regions for every level

Ottawa Linux Symposium 2002 186

of the interrupt handling that has to decode a
bit mask or handle an array of IRQs.

The ACPI Interrupt Routing Tables may not
need to collude if arch specific code can cor-
rectly direct interrupt transactions generated by
IO SAPIC to the targeted CPU. I’m not famil-
iar with details of ccNUMA support but know
it has been done.

4 Posted vs Non-Posted Writes

Nearly all linux drivers started out usingIO
Port address space since ISA/EISA was the
standard when linux was born. On IA32, spe-
cial instructions (yes, most of you know this
already) exist to access this alternative address
space.

What’s key here is IO Port space also has dif-
ferent semantics. One similarity is reads and
writes to either IO Port or MMIO space do
not interact with CPU Cache. A subtle differ-
ence is writes to IO Port space areNon-Post-
able. This meansthe CPU stalls waiting for
the transaction to complete.

4.1 IO Port space sucks

IO Port space has several serious issues:

• ISA Aliasing: Most of IO port address
space isn’t available because of ISA com-
patibility where to many ISA devices only
support 10 (or more) address lines and
alias everything above that.

• Legacy IO: serial, timers, fd, parallel and
a host of other devices occupy de-facto
standard addresses in IO port space.

• More Registers: Many new devices re-
quire more register space. Either more
mail boxes or on-board RAM. Just isn’t
room for a 4k or bigger shared RAM in

IO port space. Maybe for single devices,
but I’ve been told that’s not useful when 4
or more cards need to be installed in the
system.

• Device Discovery: For devices which
don’t have legacy addresses assigned,
they had to poke around in IO port space
to discovery where their devices where.
Fortunately with PCI, that’s no longer
necessary though some drivers still do that
for ISA compatibility.

Combined, all of these issues have encouraged
nearly all PCI devices to move to MMIO space
regardless of the Non-Post-able semantics.

4.2 Memory Mapped IO is better

Since PCI has become a standard, many PCI
devices support both IO Port space and MMIO
address space to provide compatibility and a
transition for drivers to use MMIO space. And
that transition has been taking place. In imple-
menting this transition, many driver writers as-
sume MMIO is the same as IO port space and
there’s just more of it.That’s wrong.

MMIO space isPost-able. The CPU writes the
data and just continues doing other work. The
CPU may not even wait for the transaction to
hit theCentral Bus(aka Front Side Bus) before
continuing. This is good. It means a burst of
writes are exactly that.

4.3 MMIO is harder to get Right

Evengood driver writers get MMIO space us-
age wrong.

This is from acenic, a “mature” driver. But here
is an example of this wrong assumption:

writel(local, ®s->LocalCtrl);

Ottawa Linux Symposium 2002 187

udelay(ACE_LONG_DELAY);
mb();
local |= EEPROM_CLK_OUT;
writel(local, ®s->LocalCtrl);

The problem is the CPU starts executing the
udelay() before the data reaches the device.
Thewritel() s are timing sensitive. And the
mb() is orthogonal to the udelay(). Switch-
ing the order around shouldn’t change things.
The fix is add a readl() after the first
writel() . PCI transaction ordering rules re-
quire the write get pushed to the device before
the read. Since the CPU has to wait for the
read return, the write is effectively flushed. We
don’t care what the read returns in this case.

In all fairness, Jes Sorensen caught what was
going on right away and accepted my patch. I
added 35 readl() calls. He did gripe about my
formatting. That’s OK. That’s Jes and it’s his
driver.

Dave Miller was a slightly harder sell for a
patch to tg3. Jeff Garzik caught on right away
and provided Dave with the explanation that I
somehow didn’t.

http://linux.bkbits.net:8080

/linux-2.4/cset@1.383.17.6

?nav=index.html|ChangeSet@-4w|

tg3 driver got 3 more reads for similar issues.
One was a slightly different case and worth
noting:

tw32(RX_CPU_BASE + CPU_STATE,
0xffffffff);

tw32(RX_CPU_BASE + CPU_MODE,
0x00000000);

+
+ /* Flush posted writes. */
+ tr32(RX_CPU_BASE + CPU_MODE);

return 0;

Code after the return was expecting the

CPU_MODEto have been cleared already. I got
lazy and stopped trying to figure out what.

4.4 CPU v.s. IO Timing Trend

The speed of the CPU is getting much faster
than the IO path is. HP likes high bandwidth
bridges that favor bandwidth over MMIO ac-
cess. Thus while a problem may not be visible
on a 2GHz Pentium, it will show up on on 800
or 1GHz HP ZX1 system. And probably on
other systems from SGI, SUN or IBM.

In the case of current HP ZX1 platforms, the
System Bus Adapter(aka SBA) andLower Bus
Adapter (aka LBA, PCI-X Controller) both
have FIFOs to queue data in both directions.
The fact the a MMIO transaction has to cross
3 busses to get to a device (Central, internal,
PCI) is a good hint that timing is going to be
longer than on systems with only one or two
busses.

One example of different timing was exposed
in the tulip driver where it resets thePhy
(DP83840A or LXT971D). No issue exists
with this code using the same 100BT cards on
400 MHz PA-RISC. The issue showed up oc-
casionally on 550MHz PA-RISC and consis-
tently on faster HP ZX1 platforms. HP 100BT
products needed the patch that appears in Fig-
ure 4.4.

Though this works, I want to be clear the patch
is wrong. I discovered this worked and sub-
mitted the patch before I found and read the
respective product data sheets. The right fix is
to poll the phy after thereset_sequence
until an “in-reset” bit clears. Then one should
wait about 500 microseconds before sending
the init_sequence .

Ottawa Linux Symposium 2002 188

Figure 2: Incorrect patch for HP 100BT products

diff -u -p -r1.2 media.c
--- drivers/net/tulip/media.c 25 Jan 2002 20:14:57 -0000 1.2
+++ drivers/net/tulip/media.c 25 Mar 2002 19:57:19 -0000
@@ -284,6 +284,10 @@ void tulip_select_media(struct net_devic

for (i = 0; i < init_length; i++)
outl(init_sequence[i], ioaddr + CSR12);

}
+
+ (void) inl(ioaddr + CSR6); /* flush CSR12 writes */
+ udelay(500); /* Give MII time to recover */
+

tmp_info = get_u16(&misc_info[1]);
if (tmp_info)

tp->advertising[phy_num] = tmp_info | 1;

4.5 MMIO Reads are expensive

The last time I measured the cost of an MMIO
read on a 400MHz PA-8500 system, I got
something around 500-600 CPU cycles. The
same measurement on an 800 MHz HP ZX1
system was around 900-1000 CPU cycles. PCI
bus traces from a 450MHz PII system sug-
gested the MMIO read time was in the same
ball park.
Conclusion:MMIO reads are expensive.

For an example of MMIO read avoidance, see

http://cvs.parisc-linux.org
/linux/arch/parisc/kernel
/sba_iommu.c?rev=1.66

and search forDELAYED_RESOURCE_CNT.
This code only works because MMIO writes
arePost-able.

4.6 Soft Fail v.s. Hard Fail

The first time we tried the bcm5700 driver it
came up and started talking on the LAN. I was
impressed until I tried toifconfig eth0 down
the NIC. The system MCA’d. Using MCA
state dump, I was able to determine the address
which failed to respond was a register on the
BCM5701 chip.

After tracing through lots of code, we finally
figured out what was happening. The bcm5700
driver was resetting the card twice during the
close(2) . And the bcm5700 chip wasn’t be-
ing re-enabled on the PCI bus after the second
reset. The MCA occurs after theclose(2)
when a request for statistics tries to read data
from the now defunct BCM5701 chip. Bad
driver. Don’t do that. HP implementsHard
Fail in its chipsets. HP engineers decided it’s
better to crash a server if it’s known the drivers
do not properly handle failed reads (return -1
typically).

The Intel Itanium systems don’t crash running
the bcm5700. I gather tradional PCs imple-

Ottawa Linux Symposium 2002 189

mentSoft Fail since it seems to be OK to get
garbage back from failed MMIO reads. I sus-
pect it’s because the problem will look like a
SW problem (which it is) and not a HW prob-
lem. I.e. the HW vendor doesn’t have to take
the support call and doesn’t look worse than its
competitors.

AFAIK, LBA supports this mode of operation
as well but can only be enabled by modifying
kernel source. I like using HW to expose SW
problems. I don’t expect this to change.

5 BIOS vs EFI drivers

Some drivers (e.g. VGA, megaraid) depend
on expansion BIOS to initialize and fire up the
card before the linux driver sees it. The pre-
vious Itanium platform EFI emulates x86 and
supports the x86 BIOSs. For better or worse,
HP decided to drive the migration to EFI at
the risk of backwards compatibility. In order
to work on HP ZX1 systems, an EFI “driver”
must be provided to do the same thing. To
date, all the IO card vendors that supply HP
have committed to providing such a driver and
I know they are delivering or have delivered.

6 iDebugging IO driver crash

You wrote a driver and tried it on an HP ZX1
box. It crashed. Welcome to hell . . . just
kidding. Like PA-RISC systems, IA64 plat-
forms provide a crash state under several cir-
cumstances. MCA and INIT are two of those
circumstances that are interesting for devel-
opers. For the PA-RISC literate, MCA and
INIT roughly equate toHPMC and TOC re-
spectively.

6.1 Intro to errdump MCA

MCAs will occur anytime an error signal is
broadcast on the McKinley bus. For driver
problems, this is typically a CPU read time
out. CPU read timeouts occur when a deref-
erenced MMIO address don’t return before a
timer in the CPU expires. Since MMIO writes
arePosted, normally thevictim is a MMIO read
even if a MMIO write caused the error.

Two cases can cause this: either the PCI de-
vice stopped responding (e.g. firmware died,
chip locked up, MMIO BAR disabled) or a
DMA was attempted to an invalid address. The
former cases can typically be debugged with
printk and knowing which address caused the
dump.

One can view the MCA dump witherrdump
MCAcommand at the EFI shell. Once the MCA
data is captured and saved, it’s usually a good
idea toerrdump clear . IA-64 Linux will
print this dump on the next boot. That’s ˜1000
lines of output in a less friendly format. And
make sure to save the matching System.map in
order to look up symbols. When loading kernel
modules, squirrel away the dynamically linked
symbols too.

Here is what some of the fields mean:

• IIP is the current Instruction Pointer
when the system noticed the error.

• XIP is the IIP of the most recent trap or
interrupt occurred.

• Requestor ID is the ID of the origina-
tor of a transaction.

• Responder ID is the ID of the device
that responded with data

• Target ID is IO address we are trying
to reach.

Ottawa Linux Symposium 2002 190

6.2 Intro to errdump INIT

An INIT is used like an NMI. It resets the ma-
chine and saves the current state. HP ZX1 plat-
forms have a small blue button in the back of
the box label which can be used to generate an
INIT. Like an MCA, similar data gets stored.

To be honest, I’ve never used an INIT and only
know of it. Problems I tend to chase are MCAs
and not lockups.

7 Acknowledgements

I’ve learned a lot from folks in the HPUX com-
munity when I worked on it and continue to
learn from them. I dare not name names for
fear of retribution.

And for the past two years, I’ve been learning
new things from (in no particular order): Lam-
ont “NMU” Jones, Ryan Bradetich, Matthew
Wilcox, Martin Petersen, Paul Bame, Bdale
Garbee, Jes Sorensen, Dave Miller, and a host
of other Open Source kernel and application
hackers.

More information about IA64-linux can be
found at:

http://www.linuxia64.org/
http://www.hp.com/

Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

