
Advanced Boot Scripts

Richard Gooch
EMC Corporation

rgooch@atnf.csiro.au
http://www.atnf.csiro.au/∼rgooch/linux/boot-scripts/

Abstract

This paper describes the design and imple-
mentation of a dependency-based scheme for
system boot scripts. This scheme preserves
the modularity of SysV-style boot scripts but
does not suffer from it’s limitations (such as
a complicated directory tree populated with
symlinks, and the need for global dependency
knowledge).

The dependency-based scheme simplifies the
creation and integration of boot scripts by re-
quiring only knowledge of direct dependencies
(i.e. local rather than global knowledge). De-
pendency management is performed bysim-
pleinit(8), which may execute boot scripts in
parallel, when those scripts have no cross de-
pendencies.

This paper seeks to expose this new scheme to
a wide audience, including disribution main-
tainers, with the hope that more widespread
adoption follows.

1 Introduction

I propose a new mechanism for booting user-
space on Unix-like systems. This scheme is a
significant departure from existing boot mech-
anisms, and is a response to their respective
limitations. The two main existing schemes are
the so-called “BSD” and “SysV” styles. Each
have their disadvantages, discussed below.

1.1 BSD-style

1.1.1 Mechanism

In this scheme, booting is controlled by one of
a very few number of boot scripts. Often, there
is a master boot script (typically/etc/rc)
which orchestrates the whole boot procedure.
This scheme is fairly easy to understand, as it
has only a small number of scripts to read and
the order in which things are started up is quite
clear from the master boot script. It is fast, sim-
ple, and efficient.

1.1.2 Limitations

Where this scheme fails is in its scalability. If
a 3rd-party package needs to have an initiali-
sation script run during the boot procedure, it
needs toedit one of the existing boot scripts.
Such editing is dangerous, as boot scripts are
fragile at the best of times. A simple mistake
by the installer can lead to an unbootable sys-
tem.

1.2 SysV-style

1.2.1 Mechanism

This scheme places a number of mini-
scripts in a master directory (typically
/etc/rc.d/init.d/) which collectively

Ottawa Linux Symposium 2002 177

can boot most of the system. Each of these
mini-scripts starts and stops one “service.”
This is quite neat and modular. A master boot
script is used to orchestrate the boot process,
which does some “special” setup (i.e. anything
which was considered too difficult to put into
a mini-script), and then proceeds to run each
of the mini-scriptsin another directory. The
order is based on shell wild-card expansion
rules.

The “other directory” is populated with sym-
bolic links back into/etc/rc.d/init.d/
(where the scripts are kept). Each script usu-
ally has two links to it. One starts with “S” and
the other with “K”. The “S*” scripts are called
when booting up the system, the “K*” scripts
are called when shutting down the system. The
desired ordering is achieved by using numbers
after the “S” and “K” in the link names.

So a link with name “S10” will run before
“S15”, which in turn runs before “S20”. It
is the responsibility of the system integrator
to name these links such that services are
started and stopped in the correct order. A
3rd-party software installer can “simply” place
their startup script in/etc/rc.d/init.d/
and then create a symbolic link to the script in
the “other directory.” The installer has to pick
a name that is not already taken, and has to de-
termine the number to use (which depends on
how far into the boot procedure the script must
be run).

The author of the system boot scripts must
therefore allocate numbers with sufficient gaps
between them to allow for later insertions.
Typically, the numbers 10, 20, 30, 40, 50, 60,
70 and so on are chosen. This reminds me of
when I was a youngster programming BASIC
on my Apple][. Every line had to be given
a number, and you had to be careful to leave
“space” for later insertions. The SysV number-
ing isn’t quite so restrictive, as it is possible to

append an arbitrary string to the number, which
effectively increases the number space. Typi-
cally, the name of the script is appended, such
as10inetd and10named. Thus, it is possi-
ble to “group” scripts so that the order between
groups is well-defined, while ordering within a
group is unknown (or knowable but not impor-
tant).

The SysV booting scheme also supports the
concept of “runlevels.” What this means is
that the system may be booted “all the way”
(by convention, this is runlevel 5) by default,
but may also be booted only part of the way.
The most common purpose is to allow the sys-
tem to be booted “single-user” (i.e. main-
tenance/repair mode), where only a handful
of services are started. The runlevel scheme
is supported by splitting the symlinks in the
“other directory” into a number of directo-
ries, each directory corresponding to a run-
level. These directories are typically named:

/etc/rc.d/rc0.d/
/etc/rc.d/rc1.d/
/etc/rc.d/rc2.d/
/etc/rc.d/rc3.d/
/etc/rc.d/rc4.d/
/etc/rc.d/rc5.d/

/etc/rc.d/rc6.d/.

The master boot script will start all scripts
in the runlevel directory corresponding to the
desired runlevel. Thus, the system can be
booted to runlevel 1 by running the scripts in
/etc/rc.d/rc1.d/ (this is often “single-
user” mode). Then, perhaps after some main-
tenance work the system can be booted all the
way by switching to runlevel 5 by stopping ser-
vices for runlevel 1 and starting the scripts in
/etc/rc.d/rc5.d/ . Similarly, the system
can be taken from a higher runlevel to a lower
one by stopping services.

These boot scripts, in the tradition of SysV, can

Ottawa Linux Symposium 2002 178

do anything. They are flexible and scalable and
are designed to run large systems.

1.2.2 Limitations

A significant disadvantage of this scheme is its
complexity. A simple measure of its complex-
ity is the quantity of text describing it com-
pared to that required for describing the BSD-
style scripts. Due to this complexity, it is often
difficult to see how the various scripts fit to-
gether and determine the execution sequence.

This intricate web of scripts, directories and
symbolic links is difficult to construct and diffi-
cult to administer. Even an experienced system
administrator can be confused by this scheme
when first exposed to it. Novice administrators
may be expected to be quite perplexed. With
the growing popularity of Linux, the vast ma-
jority of Linux users are not experienced sys-
tem administrators, but must still administer
their systems. The SysV scheme does not cater
to their needs.

While the SysV scheme is more scalable than
the BSD scheme, there remains a problem for
3rd-party boot scripts: which symlink name
should be chosen? Usually the script is started
in runlevel 6, because by that time “most” ser-
vices are available. The simplest solution is to
pick a random high number, which “should”
work.

Finally, the use of numerical runlevels is far
from intuitive. While old-guard SysV admin-
istrators may feel the runlevel definitions are
simple to learn, the reality is the numbers con-
vey no meaning. Certainly novice system ad-
ministrators (the bulk of the Linux population
now) will just scratch their collective heads and
say, “Ah well, I guess that’s just Unix.”

2 An Alternative

As indicated, each existing scheme has advan-
tages and disadvantages. The use of mini-
scripts provides scalability, and thus this aspect
of the SysV scheme should be preserved. What
is required is a mechanism that starts mini-
scripts in an ordered fashion yet is easy to un-
derstand and does not suffer from name-space
or number-space limitations.

The proposed solution is simple yet powerful.
There isno master script which orchestrates
everything. Instead, all scripts are executed in
parallel. Ordered sequencing is obtained by al-
lowing each script to declare which services it
needs available (i.e. what it depends on) in or-
der to successfully complete. Even the master
script found in SysV-style booting schemes is
eliminated.

Whenever a script declares that it needs an-
other, it is suspended (blocked) until the re-
quired service is available or is determined to
be unavailable. This simple mechanism en-
forces strict sequencing with precisely the level
of granularity desired.

Placing dependency information inside each
script has the following advantages:

• it is immediately clear what other services
a script depends on

• the information is localised, requiring no
global orchestration by the system inte-
grator

• 3rd-party scripts can fine-tune their de-
pendencies

• 3rd-party script installers need not be
aware of the global sequencing details.

A beneficial side-effect of executing scripts in
parallel is that some services will be started in

Ottawa Linux Symposium 2002 179

parallel, once the common services they de-
pend on are available. This can reduce the time
taken to boot the system.1

3 Implementation

The init(8) programme is responsible for ex-
ecuting the boot scripts and orchestrating the
correct sequencing. To accomplish this, I
modified thesimpleinit(8) programme from
theutil-linux package to support dependency-
based boot sequencing. I wrote theinitctl(8)
programme which is used by scripts to declare
their dependencies, and a set of boot scripts us-
ing this new mechanism. These boot scripts
may be used as a guide for writing another set,
or may be used directly in a production system.

The mini scripts are kept in a directory and
init(8) runsall of them, in random order. Or-
dering of the mini scripts is controlled by the
scripts themselves. Each script runs any other
scripts it depends on, using theneed(8)pro-
gramme (an alias ofinitctl(8)) which ensures
that a script is only run once. It doesn’t matter
which orderinit(8) starts running the scripts,
asneed(8)ensures scripts wait as required.

3rd-party scripts need only useneed(8)to en-
sure services they require are running. This
eliminates the problem of deciding where to
place the script in the sequence.

The changes tosimpleinit(8) and the new
initctl(8) have been incorporated into theutil-
linux package.

3.1 Implementation details

By default, simpleinit(8) will run /etc/rc
as its startup script. The modified version al-
lows the system administrator (either at the

1consideration must be given to the effect this may
have on disc head seek times, which could eliminate
gains due to parallelism

boot prompt or in/etc/inittab) to specify
an alternative script to run. If the script speci-
fied is in fact a directory, all the scripts in that
directory are run, in random order.

In the new scheme,init(8) is configured to run
all mini startup scripts in/sbin/init.d/ .
Each script starts/stops one service (i.e. print-
ing, file-system checks, NFS mounting and so
on). Take the example of the NFS export script,
which starts the daemonsrpc.mountd(8) and
rpc.nfsd(8), but must wait until the RPC
portmapper is running before starting the NFS
daemons. The sample script below demon-
strates this:

#! /bin/sh
/sbin/init.d/nfs-export

case "$1" in
start)

need portmap || exit 1
rpc.mountd
rpd.nfsd
;;

stop)
killall rpc.nfsd && \

killall rpc.mountd
;;

esac
End

Theneed(8)programme is used to run a script,
and wait for its completion. If the programme
has not been run before,need(8)will run it.
If it has already run,need(8) does nothing.
The exit code indicates whether the service (the
portmapper in this case) started successfully
or not. Since the portmapper is required, the
script tests the exit code fromneed(8)and fails
if it is unavailable for any reason.

Ottawa Linux Symposium 2002 180

3.1.1 Single-user and runlevels

For single-user mode,init(8) can be config-
ured to run a specific script (or directory). This
script can provide a simple or arbitrarily com-
plex single-user mode, at the discretion of the
designer of a set of boot scripts.

Different runlevels are supported in a simi-
lar fashion. Whatever argument is passed to
init(8) at the command line (boot prompt), it
is appended to a configurable prefix and to-
gether they specify the script (or directory) to
run. Thus, you can pass in "single", "3", "6" or
"multi" and all that is required is the appropi-
ately named script or directory.

There are two ways in which traditional run-
levels can be supported. One is that an appro-
priate directory is created with symlinks back
into /sbin/init.d/ . This approach may
be used when a rapid implementation of run-
levels is desired. A more elegant solution is
to have a script for each runlevel. An example
script is shown below:

#! /bin/sh
/sbin/init.d/runlevel.3

case "$1" in
start)

need runlevel.2 || exit 1
need portmap || exit 1
mount -vat nfs
;;

stop)
umount -vat nfs
;;

esac
End

In this example, the distinction between run-
levels 2 and 3 is that runlevel 3 will addition-
ally mount remote file-systems. Thus, runlevel
2 is required as is the portmapper.

3.1.2 The initctl(8) implementation

Originally, I had intended to put most of the in-
telligence intoinitctl(8) and haveinit(8) only
maintain the database of scripts. This approach
was quickly discarded, since it would require
reliable, full-duplex inter-process communica-
tion (IPC) services. Under Linux, these may
be available as loadable modules, and thus may
not be available at the timeinit(8) starts. The
only IPC facilities that may be relied on are
named pipes (FIFOs) and Unix signals. These
are not suited to parallel, full-duplex commu-
nications.

The approach I adopted was to place the re-
sponsibility for script starting and stopping, as
well as database management, with theinit(8)
programme, and have a simple control inter-
face. By limiting the amount of informa-
tion that is sent frominit(8) to initctl(8) to a
simple available/not-available/failed status, the
need for a second FIFO (for each instance of
initctl(8)) is avoided, and Unix signals may be
used instead.

The initctl(8) control interface is a trivial pro-
gramme which simply writes service requests
to the control FIFO and waits for a suc-
cess/failure signal.

Because the dependency table forinit(8) -
started processes is kept ininit(8) , it makes
partial and complete rollbacks (switching be-
tween runlevels and orderly shutdowns) eas-
ier to implement. Sinceinit(8) never dies, and
doesn’t crash (if it does, the system will hang),
it is quite safe to maintain the database in-
side the virtual memory space ofinit(8) . Also,
since the database is quite small, there is no
significant resource consumption.

Ottawa Linux Symposium 2002 181

3.2 Optimisations

A simple optimisation which can reduce boot-
ing time is the pre-fetching of all the script
files, which can reduce the number of disc head
seeks. Without this optimisation, the disc head
may have to travel back and forth between the
script files, the daemons they start and their
configuration files. Assuming the script files
are close to each other on the disc media, a
small number of seeks will suffice for pre-
fetching the script files. This optimisation has
been implemented, by reading the scripts in
file-system order into a dummy buffer.

3.3 Runlevels and rollback

Becauseinit(8) maintains a table of which boot
scripts have been run and which have failed (if
any), and sinceinit(8) runs for the lifetime of
the booted system, it is ideally suited to man-
aging orderly shutdown of the system. Fur-
ther, since at any timeneed(8)may be used
to run another boot script, with full depen-
dency checking, theninit(8) may also be used
to switch between runlevels.

An orderly shutdown is as simple as rolling
back the entire table. The algorithm is trivial:
obtain the last entry in the table and run the
appropriate stop script (which is then removed
from the table). The process is repeated until
the table is empty. All services will then have
been stopped in the reverse order in which they
were started.

Increasing runlevel is also quite simple: just
run the desired runlevel script. Thus go-
ing from runlevel 2 to 3 involves running
runlevel.3 under the dependency manage-
ment scheme.

Going from runlevel 3 to 2 is slightly
more complicated, but not much. Again,
the system needs to be rolled back, stop-

ping each script/service in reverse order.
As each is stopped, its entry is removed
from the dependency table. The process is
stopped atrunlevel.2 (without stopping
runlevel.2 itself).

This scheme works becauserunlevel.3 is
added to the dependency tableafter it regis-
ters new dependencies (because it’s added to
the list once it completes). So once the sys-
tem has rolled back torunlevel.2 , we can
be sure that all the servicesrunlevel.3 has
started have been stopped, plus all the services
it depended on,but not the services runlevel 2
depended on, or runlevel 2 itself.

For this switching between runlevels to work,
the burden is placed on the runlevel scripts, not
init(8) , which is an important point, because it
provides maximum flexibility in the construc-
tion of boot scripts and keepsinit(8) simple.
The same rollback mechanism required for or-
derly shutdown may be used to switch run-
levels. No extra logic is required.

3.4 Multiple providers and provide(8)

Sometimes, there may be multiple service
providers for the same generic service. For
example, you might havesendmail(8) and
qmail(8) installed on your system, and each
has a boot script associated with it. Each one
provides themta (Mail Transport Agent) ser-
vice.

In this case, only one of these scripts should
be started. It might not matter which one
is started, or perhaps each script may check
some system-specific configuration to deter-
mine whether or not it should start the service.
In either case, all scripts providing the generic
service should be run, but only one should start
the service.

The solution to this is theprovide(8) pro-
gramme. It tellsinit(8) that the calling pro-

Ottawa Linux Symposium 2002 182

gramme/script is able to provide the generic
service. init(8) then makes sure that only one
provider will actually provide this service. An
example script follows:

#! /bin/sh
/sbin/init.d/sendmail

case "$1" in
start)

if [! -f \
/etc/mail/sendmail.cf];

then exit 2
fi
provide mta || exit 2
need portmap
/usr/sbin/sendmail -bd -q15m
;;

stop)
killall sendmail
;;

esac
End

Here, the script first checks to see if its config-
uration file /etc/mail/sendmail.cf is
available. If not, the script exits with a “not
available” status code. Then, the script regis-
ters its intention to provide themta service. If
given permission, it proceeds to start the ser-
vice, otherwise it exits.

4 Future Work

I’ve considered keeping a full dependency his-
tory inside simpleinit(8) (right now it only
keeps track of the currently depended-on ser-
vice for each script). This would allow any
service to be stopped and all services which
depend on it to be stopped (dependent services
would be stopped first, of course). This would
be more flexible than either runlevels or roll-
back. In addition, a stopped service could still
be recorded in the database and thus restarted

with all the services that depended on it also
being restarted. It is not clear whether these
features would yield sufficient benefit to justify
the implementation effort.

5 Acknowledgements

This work is the result of an evening discussion
session between Patrick Jordan2 and myself.
The basic concept of a dependency-based boot-
ing scheme, and the semantics of theneed(8)
programme, were established during that ses-
sion. I thank Patrick for his enthusiasm for this
project and his willingness to try the new, ex-
perimental boot scripts.

The implementation of the multiple providers
feature (discussed in section 3.4) was added
as a result of discussions with Wichert Akker-
man (then Debian Project leader, email:
wichert@cistron.nl), where the needs ot De-
bian were raised.

A similar (although less complete)
dependency-based booting scheme has been
independently developed by David Parsons for
his Mastodon Linux3. Thanks to Larry McVoy
for pointing this out.

Except where otherwise noted, all work is my
own.

2http://www.ariel.com.au/∼patrick/
3http://www.pell.portland.or.us/∼orc/Mastodon/

Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

