
Online ext2 and ext3 Filesystem Resizing

Andreas E. Dilger
adilger@clusterfs.com,

http://www-mddsp.enel.ucalgary.ca/People/adilger/

Abstract

It is difficult to predict the future, yet this is
what you have to do each time you partition a
disk. There are several HOWTOs giving ad-
vice on ways to partition a disk for Linux, yet
everyone’s usage pattern is different. Invari-
ably, your filesystems fill up, often in the mid-
dle of doing something important.

With the advent of Linux LVM in 1999, Linux
was finally getting to the stage where one could
add space to “partitions” dynamically. The
missing link was allowing the widely-used ext2
filesystem to grow to use newly added disk
space without having to kill your applications,
unmount the filesystem, do an offline resize
(which was in its infancy at that time also), and
remount the filesystem.

We start with a brief overview of the layout
of the ext2 filesystem to give an understand-
ing of the constraints behind the design of the
online ext2 resizer. The three ext2 resizing
scenarios are discussed, and implementation of
each case is presented. The rationale behind
offline filesystem preparation is given, and the
(incompatible and yet unimplemented) alterna-
tive is presented. We continue with the require-
ments for ext3 online resizing discuss how this
leads to a totally different implementation.

1 Introduction

One of the many reasons why a system stops
doing the job it is intended to do is because it
runs out of space in an important filesystem.
While it is possible to increase the size of a
partition or disk which is in use (via software
or hardware RAID, LVM [LVM], and more re-
cently EVMS [EVMS]) you normally have to
stop applications and unmount ext2 and ext3
filesystems in order for the filesystem itself to
be resized to take advantage of this increased
space. To avoid an interruption to the system
(and applications, and users), one has to be able
to grow ext2 and ext3 filesystems while they
are mounted and in active use (i.e. read and
write operations in progress, current working
directory of a process, etc).

The GNU ext2resize package [resize]
is GPL licensed code which contains the
ext2online tool and a kernel patch, which
together allow increasing the size of a mounted
filesystem without interruption to processes
using that filesystem. In addition, the
ext2resize tool also allows you to grow
and shrink an unmounted filesystem. The
ext2prepare tool is also part of GNU
ext2resize , and is discussed later. While
ext2online only allows one to increase the
size of a mounted filesystem, in a vast ma-
jority of cases it is increasing the free space
in a filesystem which is the critical operation
needed to keep an application running. In rare
cases you might need to shrink one filesystem
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in order to grow another, but given the ease
of increasing the size of a mounted filesystem
on a system using LVM and online filesystem
resizing, there is little need to make filesys-
tems too large for their anticipated short-term
growth as was needed previously.

The bulk of the ext2 online resizing kernel
code was written in the fall of 1999 for the
2.0.36 and 2.2.10 kernels, but has remained rel-
atively unchanged through all of the kernels
since then, with only minor changes to locking
and patch context. The 2.4 “code freeze” of
the fall of 1999 prevented the patch from being
added to the kernel at that time, and ongoing
stabilization of 2.4 and other tasks have pre-
vented me from doing more than minor code
maintenance for the most part. The require-
ment to have online resizing for ext3 was the
first restructuring of the kernel code, and in-
volved a complete code rewrite. It is antic-
ipated that the ext2 and ext3 online resizing
code will be submitted for inclusion into the
2.4 and 2.5 kernels some time in the summer of
2002. The user space tools that form theGNU
ext2resize package have undergone a slow
evolution during their lifetime to support newer
ext2 features such as large files and offline re-
sizing of ext3 filesystems, as well as having
more complete support for unusual filesystem
layouts such as RAID stripe aligned metadata
and filesystems whose inode tables are not at
the same offset in every group.

In this paper we focus primarily on theonline
(mounted) aspect of filesystem resizing. For
offline (unmounted) filesystem resizing, there
are additional aspects of resizing, such as in-
ode renumbering, moving the contents of data
blocks and the inode table, and renumbering
the data block pointers within an inode. The
ext2resize tool can do all of these things.
In order to keep the amount of kernel code to a
minimum (and to make it actually work) these
aforementioned operations are never done dur-
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Figure 1: Block Group Layout

ing online filesystem resizing.

2 Anatomy of an ext2 File System

In order to understand the constraints under
which the ext2 filesystem resizer operates, we
must first have some understanding of the on-
disk filesystem layout. For the purposes of
filesystem resizing, the ext2 and ext3 on-disk
layouts are identical. We do not cover all as-
pects of the ext2 filesystem layout, such as in-
odes and directories, because for the purposes
of online filesystem resizing those details are
mostly irrelevant. They are covered in many
other general ext2 papers [ext2].

The on-disk layout of the ext2 filesystem is
strongly influenced by the layout of the BSD
Fast File System. The disk/partition is di-
vided into one or more sections, calledblock
groups. Block groups are of a fixed size, de-
termined at filesystem creation time, and all
contain the same number of blocks, except the
last block group which may have fewer blocks.
By default, ext2 block groups are created at
their maximum size (32MB for the default 4kB
blocksize), and are numbered from the begin-
ning of the filesystem starting with 0.

Each block group contains several key pieces
of filesystem metadata, as shown in

Figure 1. For each block group, there is one
block which is theblock bitmap, one block
which is the inode bitmap, and one or more
blocks which make up theinode table. In addi-
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tion, there may be a copy of both the filesys-
tem superblockand the filesystemgroup de-
scriptor table in a block group. Whether a
block group will contain either a primary or
backup superblock and group descriptor table
depends on the group number and/or parame-
ters at filesystem creation time.

The block bitmap describes the allocation sta-
tus of all data and metadata blocks within that
block group. If a bit is set, this indicates that
a block is in use as either a data or metadata
block, and if it is clear then the block is avail-
able for allocation. Since the block bitmap is
limited to a single block in size, this imposes
the maximum size of a block group - the num-
ber of bits which will fit in a single filesystem
block is 8 times the blocksize, and this is the
maximum number of blocks that can be in a
single group. For the last group in a filesys-
tem, the bits representing blocks past the end
of the filesystem will be set (marked in use) so
that the kernel does not need to special-case the
search for free blocks in the last group.

The inode bitmap describes the allocation sta-
tus of the inodes in its group’s inode table.
Since the inode bitmap is limited to a single
block in size, this imposes the maximum num-
ber of inodes that can be allocated in a sin-
gle group. If there are less than the maximum
number of inodes in a group, the bits corre-
sponding to non-existent inodes will be set (in
use).

The inode table contains one or more blocks
which hold the inode data. Each group has the
same number of blocks in the inode table, and
this number is determined at filesystem cre-
ation time. Multiple inodes are packed into
each inode table block, and fill the block com-
pletely, so this imposes the minimum number
of inodes that can be allocated in each group
- the number of inodes that fill a single block.
The maximum number of inodes in each group

is the same as with the maximum number of
blocks in each group - the number of bits that
fit within a single filesystem block, so 8 times
the blocksize.

The superblock contains critical filesystem
configuration parameters (e.g. blocksize, to-
tal number of blocks and inodes, group size,
number of inodes in each group, etc.) and also
dynamic filesystem status (e.g. the number of
free blocks and inodes, the number of times
the filesystem was mounted, the error status,
the last time it was checked, etc). The pri-
mary superblock is located at 1024 bytes from
the start of the filesystem, and is 1024 bytes
in size. There are backup copies of the su-
perblock stored in block groups1with numbers
which are integer powers of 3, 5, and 7 (i.e. 1,
3, 5, 7, 9, 25, 27, 49, ...). Under normal opera-
tion, only the primary copy of the superblock is
ever used, and the backups are only needed by
e2fsck in case the primary copy is corrupted
or overwritten.

The group descriptor table contains one or
more blocks which holdgroup descriptors. A
group descriptor contains the location of the
block bitmap, inode bitmap, and the start of the
inode table for its block group. It also contains
the count of free blocks, free inodes, and allo-
cated directories for its group. There is a group
descriptor for each group in the filesystem, so
the number of blocks that make up the group
descriptor depends on the number of groups in
the filesystem, which in turn depends on the
size of the filesystem. Because the group de-
scriptor table is critical in locating the filesys-
tem metadata, backup copies of the group de-
scriptor table are placed in the same groups as

1When the ext2 on-disk layout was first developed,
backup copies of the superblock were placed inevery
block group. For large filesystems, the amount of space
consumed by the backup superblocks and group descrip-
tor tables became too large, so modern ext2 filesystems
only place backups insparsegroups (i.e. as described
here).
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Figure 2: Several block groups make up
filesystem

backup superblocks.

Figure 2 shows a filesystem with several block
groups. Note that all but the last group have the
same number of blocks. The inode table is the
same size in each block group, and each block
group has both an inode and block bitmap. The
group descriptor table is the same size in each
group, if it exists. While this example shows
the most common case of the bitmaps and in-
ode table in the same location in each group,
the ext2 format allows the bitmaps and inode
table each to be in any (non-overlapping) lo-
cation within the group. The actual location
within each group is solely determined by the
entries in the group descriptor table for that
group. The backup superblock and group de-
scriptor table must be located in the first blocks
of the group so that they can be located in case
of filesystem corruption. By defaultmke2fs
will create the bitmaps and inode table in the
same position within each group.

3 Three Resizing Scenarios

3.1 Common Resizing Operations

There are several operations that are common
to all of the growth scenarios discussed here:

• Increasing the total number of filesys-
tem blocks in the primary and backup su-
perblocks by the number of blocks added
to the filesystem. Since it is possible

that the primary superblock may be cor-
rupted at some later date, we also need
to update the backup superblocks to re-
flect the new size of the filesystem. Oth-
erwise, e2fsck would believe that all
block numbers higher than the old filesys-
tem size are invalid and the data therein
would be discarded.

• Increase the count of free filesystem
blocks in the primary superblock and
group descriptor for that group. The
count of free blocks, like other dynamic
ext2 metadata, does not necessarily need
to be updated in the backup superblocks
or group descriptors. The total and
per-block-group count of free filesystem
blocks can be recovered by counting the
bits set in each of the block bitmaps,
and is only really a convenience for ef-
ficient statfs() and ENOSPCimple-
mentation.

• Increase the number of reserved filesys-
tem blocks proportional to the number of
new blocks added to the filesystem.

• In order to notify the filesystem that it
should begin its resizing operation, the
filesystem is remounted with the option
-o remount,resize=<new size> .
While this seems somewhat awkward, it
does have the benefit that it can be done
from the command-line with only the
mount command. It is also very practical
from the point of view that the resize
operation uses all of the same checks and
setup code inext2_setup_super()
as the initialmount call.

Since the goal of online resizing is to allow
the filesystem to continue to be used while the
resizing operation is being done, we need to
make sure that we do the appropriate locking of
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the filesystem structures that we update. Cur-
rently, there is only a single lock for the su-
perblock and all of the group descriptors, so
we only need to hold this superblock lock to
ensure our operations are safe. Also, the crit-
ical filesystem values are each stored in only
one place so we don’t need to ensure consis-
tency between multiple data fields of different
in-memory data structures. Obviously we want
to hold the superblock lock for as little time
as possible to avoid excluding other processes
from doing filesystem operations. It is antic-
ipated that in the future the filesystem lock-
ing will become more fine-grained to allow in-
creased parallelism in block and inode allo-
cation. This will likely be done by having a
read/write lock for each group’s block bitmap,
inode bitmap, and group descriptor, separate
from the superblock lock, and may be added
to the kernel during 2.5 development.

One other aspect of increasing the filesystem
size which makes it relatively trouble-free is
the fact that all of the blocks which are added
to the system are new. This means that there
can not be any users of these blocks or pages or
buffers mapped to them, so we do not need to
be concerned with hashing or locking or other
such aspects of block I/O which may cause
deadlocks or data corruption. This is one of
the major reasons why shrinking a mounted
filesystem is completely impractical. In lim-
ited cases it might be possible to shrink a
mounted filesystem by a single group, the na-
ture of the ext2 block and inode allocation al-
gorithms mean that the last group will almost
always have inodes and blocks allocated in
them. While it might be possible to relocate
data blocks on a mounted filesystem (exclud-
ing issues such asFIBMAPof those blocks ex-
porting the block numbers to user space), the
relocation of inodes is even more problematic
because of the use of inode numbers in directo-
ries and NFS file handles, let alone the locking
issues involved.

Group 4

Group 3

Group 2

Group 1

Group 0

NEWLY ADDED BLOCKS

Figure 3: Adding blocks to a single group

3.2 Adding Blocks to a Single Block Group

The first and simplest filesystem growth sce-
nario is adding blocks to the end of a sin-
gle block group, as shown in Figure 3. In
order to efficiently and safely implement the
operations of updating the block bitmap and
increasing the free blocks count in the su-
perblock and group descriptor, we take a short
cut and create a fake inode which spans the
newly-added blocks at the end of the last
block group. All we have to do now is in-
crease the total number of filesystem blocks in
the superblock, and delete the fake inode via
ext2_free_blocks() . This will take care
of updating the bitmaps and the free blocks
count in the superblock and group descrip-
tor. The fake node is only created in-memory
and only has enough fields filled in to satisfy
those accessed byext2_free_blocks()
and what it calls. This also has the advantage
that any locking changes which take place in
the ext2 code will be handled for us.

We can easily do everything we need for this
resizing operation from within the kernel, since
it has no more impact on performance than
deleting a file of the same size (less actually,
since we don’t need to update the on-disk in-
ode data). Since this resize operation is virtu-
ally identical to deleting a file, it is almost im-
possible for it to fail, excluding bugs in the core
ext2 code. This resizing operation needs no ad-
ditional updates to the on-disk metadata. De-
pending on the blocksize of the filesystem, this
scenario would allow us to grow a filesystem
up to the next 8MB, 16MB, or 32MB bound-
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Figure 4: Adding new block groups within the
same descriptor block

ary (for 1kB, 2kB, or 4kB blocks, respectively)
for all filesystems.

The only operation which is left to user-space
is that of copying the new primary superblock
to the backup superblock locations, if any.
Since the backup superblocks are never ac-
cessed by the kernel, there is no problem writ-
ing them directly to the block device from
user space. If the resize command is done
manually via themount command instead of
ext2online , the superblock is not copied
to the backup locations. Under all but the
most extreme failure conditions that will be
OK, and the ability to do a filesystem resize
using an available tool is convenient. The
backup superblocks will be updated the next
time e2fsck does a full check of the filesys-
tem.

3.3 Adding a Block Group Within a Group De-
scriptor Block

The second filesystem growth scenario is that
of adding a new group to the filesystem, as
shown in Figure 4, after the end of a full block
group. Each block group must have a block
bitmap, inode bitmap, and inode table, and
possibly a backup superblock and group de-
scriptor table. This means that we need to add
at least enough new blocks to the filesystem to
hold all of this metadata before we can actu-
ally increase the size of the filesystem. Since

we are adding an inode bitmap and inode ta-
ble, we also need to update the total number of
inodes in the primary and backup superblocks,
and the number of free inodes in both the pri-
mary superblock and group descriptor for the
new group. All of these operations can be done
by simply updating the appropriate fields in the
superblock while holding the superblock lock.

There are two things that distinguish this case
from the first case:

• We need to create a new block bitmap,
inode bitmap, and an inode table for
each group added to the filesystem. The
bitmaps have to be filled to reflect the
availability of blocks and inodes within
the new group.

• We need to add a new entry to the group
descriptor table for the new group. The
group descriptor table is stored on disk
and is accessed in the kernel via an ar-
ray of buffer heads. If we are adding a
group that fits within the last group de-
scriptor block then we do not need to add
a new buffer head, but we do need to in-
crease the number of groups in the filesys-
tem so that the block and inode allocation
routines know to check for free blocks in
the new group(s).

In order to minimize kernel code growth and
in-kernel processing overhead, the creation of
the block bitmap, inode bitmap, and inode ta-
ble are done from user space before the kernel
is told about the new group(s). This is per-
fectly safe even on a busy filesystem because
the blocks being modified from user space are
beyond the end of the existing filesystem, so
there will not be any other processes reading
from or writing to these blocks.

The creation of the new group descriptor entry
is slightly more problematic, because it is shar-
ing a block with other group descriptors that
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are in active use. Reading the block to user
space, modifying it, and writing it back to disk
cannot be done safely on an active filesystem
because it would lose any updates that had been
done by the kernel since the group descriptor
block had been read. Fortunately, existing ker-
nels have cache coherency between the block
device and the buffer heads in the kernel, so
it is possible with ext2 to write a new group
descriptor entry into the last group descriptor
block and have it visible to the kernel without
corrupting the existing group descriptors. The
new group descriptor entry has the correct val-
ues for the free block and inode counts of that
group, in addition to the location of the bitmaps
and inode table.

The new group descriptors are written to the
disk from user space before the resize opera-
tion takes place, as are the bitmaps and inode
table. The filesystem is notified via themount
parameter of the new filesystem size and adds
the new blocks and inodes to the free and to-
tal block and inode counts in the superblock.
As the group’s free block and inode counts are
added into the totals in the superblock (under
the superblock lock, of course), the new groups
are immediately available to the filesystem for
allocation. Again, once the kernel is finished
its resizing operation the new superblock and
group descriptor table is copied to the backup
locations, if any. Since we need to create
the bitmaps and inode table from user space,
it is not practical to do this resize operation
with anything other than theext2online
tool, which also handles the updating of the
backup superblock and group descriptor tables
once the resize operation has completed suc-
cessfully.

Resizing the filesystem in this manner allows
it to add groups until the last group descriptor
block is full. Since each group descriptor is a
fixed size (32 bytes), the number of group de-
scriptors that fit into a single filesystem block

depends on the blocksize. Likewise the size
of each group also depends on the blocksize.
The boundaries for group descriptor blocks are
256MB, 1GB, and 16GB for 1kB, 2kB, and
4kB blocks, respectively. This allows one to
resize any default 4kB blocksize filesystem a
considerable amount without any prior prepa-
ration.

The failure scenarios for this resizing case are
very minimal. The in-kernel code basically is
just adding the new block and inode counts
from the group descriptors into the superblock.
Although the group descriptors, bitmaps, and
inode table were just written from user space,
the kernel does some validity checks of every-
thing before activating each group to avoid any
problems.

3.4 Adding a Block Group in a New Group De-
scriptor Block

The final resizing scenario happens when the
last block in the group descriptor table is full.
This brings up one of the major limitations im-
posed by keeping on-disk compatibility with
the existing ext2 format. Because the number
of groups in the filesystem is linearly depen-
dent on the filesystem size, and we keep all
group descriptors in each group descriptor ta-
ble, eventually we need to allocate new blocks
for the group descriptor table in each group that
has a copy. As Figure 1 shows, the default
configuration of metadata within a group is to
have the superblock and group descriptor table
first (these twohaveto be first in the group),
with the block bitmap, inode bitmap, and inode
table following immediately afterward. This
means that the group descriptor table cannot
normally allocate a new block at the end be-
cause the block bitmap is using this block.

Fortunately, the design of the ext2 on-disk lay-
out allows us to circumvent this problem by
moving the bitmaps and inode table further
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group descriptor block

from the start of the group to allow the group
descriptor table to grow, as shown in Figure 5.
Since the location of the bitmaps and inode
table for each group can be set in the group
descriptor, it is simply a matter of creating a
filesystem with the bitmaps and inode table off-
set from the end of the group descriptor table.
For existing filesystems, theext2resize
package has anext2prepare tool which
will relocate the bitmaps and inode table.
Since the operation of relocating the bitmaps
and inode table is also necessary for resizing
the filesystem (for the same reason - because
the group descriptor table will grow to need
the blocks they occupy) theext2prepare
code can re-use most of the same code as
ext2resize . The moving of the bitmaps
and inode table must be done while the filesys-
tem is unmounted.

The second issue for this case is how to re-
serve the blocks after the end of the group de-
scriptor table so that they are not allocated to
regular files. One way would have been to
store an extra field in the superblock which
holds the number of reserved blocks. If the
blocks were set unused in the block bitmap,
kernels ande2fsck that do not know about
this scheme would happily assign those blocks
to files and potentially prevent the filesystem
from being resized later. If the blocks were set
as used in the block bitmap, then ane2fsck
which didn’t know about this scheme would
think they were unused and clear them the next
time it checked the filesystem. Instead, one of
the reserved ext2 inodes (#7) was used to hold

these reserved group descriptor blocks. To both
the kernel ande2fsck inode #7 is using the
reserved group descriptor blocks and everyone
is happy.

In order to do an online resize when we need to
add a new group descriptor block, we perform
all of the steps as before:

• Write a group descriptor, block bitmap,
inode bitmap, and inode table for each
group to the disk from user space.

• Tell the filesystem to grow to the new size.

• The kernel adds the new inodes and
blocks from each group to their respective
total and free counts in the superblock.

• Update the backup superblocks and group
descriptors from user space once the re-
size has completed successfully.

There are two additional steps which must be
done in order to handle the new group descrip-
tor block:

• The kernel must read the new block into
a buffer and add it into the array of
group descriptor block buffer heads be-
fore adding these groups to the filesys-
tem. In order to minimize kernel code
growth, the existing code to allocate the
array and read the buffers was extracted
into a function which could start reading
the group descriptor table at a non-zero
offset. The existing buffers are left un-
touched in order to avoid having other
parts of the filesystem code with point-
ers to no-longer-existing buffer data. Only
the group descriptor array is re-allocated
at the new size and filled in with pointers
to the existing and new buffers. A fail-
ure during this part of the resizing infor-
mation will simply cause the resize not to
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happen, as the old array is not freed un-
til after the new array and buffer(s) have
been allocated.

• We must transfer the blocks from the re-
served inode to the group descriptor table.
This is actually relatively simple. Because
the blocks are already marked as in-use
in the block bitmap, we do not need to
change it for blocks assigned to the group
descriptor table. The number of blocks
in the group descriptor table is calculated
from the total number of blocks in the
filesystem, so we do not need to update
the superblock to reflect this (we have al-
ready updated the total number of blocks).
The only thing that remains, for consis-
tency, is to deallocate the blocks from the
reserved inode. This can be done from
user-space by writing directly to the block
device after the resize is complete, be-
cause this reserved inode is not accessible
from the mounted filesystem. A failure
at this point will mean thate2fsck will
complain about blocks shared between the
reserved inode and the group descriptor
table, and will automatically clean it up.

3.5 Incompatible Online Resizing

Adding the reserved group descriptor blocks to
the reserved inode is done byext2prepare
while the filesystem is unmounted as it moves
the bitmaps and inode table out of the way.
The number of blocks to be reserved for each
group descriptor table copy is calculated from
the desired future maximum filesystem size
given by the user on the command line. For
the default 4kB block size, we only need to re-
serve 1 block for each 16GB of future growth,
so the overhead of reserving enough blocks
for a 2TB filesystem is fairly minimal —only
512kB per group descriptor copy. The require-
ment for users to prepare a filesystem while

it is unmounted, before doing large online re-
sizes is a fairly minimal price to pay in order
to keep 100% forward and backward compati-
bility with the existing ext2 filesystem layout.
This requirement could be removed by having
mke2fs create new filesystems that already
have these blocks allocated to the reserved in-
ode.

The alternative to doing offline filesystem
preparation is to make an incompatible change
to the on-disk layout when we run out of space
in the last group descriptor block. This change
would involve storing new group descriptor
blocks at the beginning of the first group that
needs a new block for its group descriptor. The
backup of this block would be stored in the
second group that needs this group descriptor
block. This has the added benefit that the group
descriptor of a group is relatively closer to
the groups that it describes, which may reduce
seeking some small amount. The major draw-
back of this scheme is that it results in a filesys-
tem that can not be mounted by older kernels,
nor can older ext2 filesystem tools work with
it. It also adds some small amount of additional
code to the kernel to deal with the two different
layouts of the group descriptor table, although
this is fairly minimal. There is also a proposed
filesystem change to allow larger contiguous
extents on the disk to be allocated which would
also benefit from this format change, so there
may be additional justification for making such
an incompatible change.

Given that people use online filesystem resiz-
ing when they are running out of space, they
may choose to pay this penalty in order to keep
their system running smoothly. The poten-
tial drawbacks are only a problem if you have
back-level filesystem tools or need to boot an
older kernel. This problem could be mitigated
by adding functionality toext2resize or
ext2prepare to remove the incompatibil-
ity from unmounted filesystems after the fact.
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This would be done by moving the bitmaps and
inode table out of the way and moving the new
group descriptor block(s) to their normal posi-
tion, in a manner very similar to resizing the
filesystem.

4 Online Resizing an ext3 Filesys-
tem

The ext3 filesystem is the journaling version
of ext2[ext3]. Interestingly, although ext2 and
ext3 share a virtually identical on-disk for-
mat (the ext3 journal is simply a regular file
stored inside the filesystem), the requirement
for a 100% consistent filesystem in the face
of a crash at any point during the resize made
the ext3 online resize implementation totally
different from that of ext2. Writing into the
filesystem from user space for ext2 online re-
sizing is not safe to do with an ext3 filesystem
because the journal layer may make copies of a
buffer while it is being written to disk, so there
is no guarantee of cache coherency between
user space access to the block device and ker-
nel space2. The requirement that the resize op-
eration be atomic and leave the filesystem cor-
rect also precludes writing directly to the block
device, because these writes will not be in the
journal.

Instead, all of the operations which were for-
merly done inside journaled transactions3 in
the kernel. The user space code is still re-

2In fact, the ext3 journaling layer has a large num-
ber of assertions embedded in it which will catch buffers
which enter the ext3 “food chain” incorrectly, to avoid
data corruption. This prevents such access as a rule,
rather than letting it succeed most of the time but fail
mysteriously at other times.

3Actually, the ext3 journal layer has a larger oper-
ation called atransaction. What is referred to here as
a transaction is actually called a journalhandle in the
code, but transaction more clearly represents the opera-
tion being described and the actual functionality is the
same.

sponsible for determining the locations of the
metadata structures within each group, but the
kernel code is responsible for creating the ac-
tual data. This turns out to be less complex
than initially thought, as most of the opera-
tions are simply tomemset() the buffers to
zero (for the inode table and group descriptor
and most of the bitmaps), then use the kernel
bitmap handling routines to mark appropriate
bits set, and finallymemset() any large parts
of the bitmap to 0xffffffff as necessary. Since
we are creating the data in the kernel, we do
not need to verify its correctness, excluding a
limited number of parameters passed from user
space.

The addition of each group is placed into its
own journal operation to avoid trying to create
too large of a single transaction. Transactions
which do not need to be atomic because they
do not affect filesystem recovery such as zero-
ing the blocks in the inode table and copying
data to the backup superblock and group de-
scriptor tables are put into separate transactions
to allow other filesystem operations to happen
concurrently. Those operations which need to
be atomic, such as moving blocks from the re-
served inode to the group descriptor table and
updating the superblock to include new groups,
are done within a single transaction. Because
the journal imposes ordering between transac-
tions, it is enough that a previous transaction
was closed and a new one opened to ensure that
the previous operations will exist after a crash
if any following operation also exists.

In order to keep in-kernel processing to a min-
imum, the layout of the reserved group de-
scriptor inode was changed from that used with
ext2. Under ext2 the updating of the reserved
inode was done in user space and searching the
inode for blocks that had been added to the
group descriptor table was acceptable. With
ext3 the layout was changed to allow group de-
scriptor blocks to be put into use by updating
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Figure 6: New arrangement of blocks in the
reserved inode

only a single inside the transaction, and with-
out searching the inode. This required a change
to the user spaceext2prepare tool to set up
the new format. I took advantage of this format
change to also add an ext2 compatible feature
flag to the ext2 superblock, so thate2fsck
could properly detect and verify the more rigid
layout requirements for the reserved inode.

Figure 6 shows the layout of the reserved GDT
blocks in the inode. The reserved blocks are
arranged such that the double indirect inode
block points to the primary copy of each re-
served group descriptor block, which is an in-
direct inode block. The reserved group de-
scriptor blocks are shown numbered starting
with X, which is the block number for the
block immediately following the last group de-
scriptor block currently in use. The offset of
the primary reserved group descriptor block is
X mod (blocksize/4) . which allows us
to locate each reserved group descriptor block
and its backups without any searching.

All of the backup copies for this group descrip-
tor block are leaf blocks attached to the in-
direct (primary) block. There is one backup
group descriptor block for each of the “sparse”

groups which have a backup superblock and
group descriptor table. Using this layout al-
lows us to transfer the reserved descriptor
blocks from the reserved inode to the group de-
scriptor table by simply zeroing out the indirect
block pointer in the double indirect block. This
is done within the same journal transaction as
creating the group descriptor data in the pri-
mary descriptor block and adding that group to
the filesystem, so if there is any error during
this process the filesystem remains consistent.

There is one additional point which needs to be
handled by the ext3 resizing code which cannot
exist in ext2. In the case where a resize opera-
tion was completed in the journal, but the sys-
tem crashes before the resize is flushed from
the journal to the filesystem, the filesystem
size in the superblock will still reflect the old
filesystem size. Journal recovery is normally
done bye2fsck , but for the root filesystem
or other ext3 filesystems mounted without an
fsck, journal recovery is done after the su-
perblock has been read from the disk. We de-
tect this case by comparing the filesystem size
from before journal recovery to that after jour-
nal recovery, and if the filesystem has grown
we need to read any additional group descrip-
tor blocks from disk in the same manner we
would do in a normal resizing operation.

5 Conclusion

The ext2 filesystem resizing code is a fairly
mature piece of code, even thought it has not
been included in the stock kernel yet. While
the thought of resizing the filesystem while it
is mounted and in use is somewhat daunting,
the actual simplicity of the resizing operations
gives little room for error. In fact, other than
minor math errors in updating the group or su-
perblock inode or block counts during devel-
opment (which are easily detected and/or fixed
by both the kernel ande2fsck ) , I have never
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had a reported filesystem corruption from the
online resizing.

The advent of online resizing for ext3 does
add additional complexity to the kernel code,
but the requirements for high-availability sys-
tems demand both online resizing and journal-
ing support, so the extra overhead can be jus-
tified. Since the online resizing code is only
used very rarely, it would be possible to put the
bulk of this code into a separate module that
is only loaded when a resize operation is done.
The cleaner layout of the reserved inode and
thee2fsck support for it mean that it is desir-
able to change the ext2 online resizing support
over to use the new inode format also. In the
short term this is accomplished by an updated
ext2online user tool.

As was previously mentioned, theGNU
ext2resize package is available
from Sourceforge at http://sf.net
/projects/ext2resize/ in .tgz
and .rpm formats. There is also a very
low volume mailing list dedicated which
can be accessed from this same page.
General ext2 and ext3 filesystem design
and coding discussions take place on the
ext2-devel@lists.sourceforge.net
mailing list.

Special thanks go to Ted Ts’o and Stephen
Tweedie, who helped me understand ext2 and
the kernel when I was first trying to learn what
kernel programming was all about, and all
the interesting ext2/ext3 discussions we’ve had
since then. Lennert Buytenhek was the orig-
inal author of theGNU ext2resize code
and libext2resize , and this gave me the
foundation on which to build the user tools for
online resizing and offline filesystem prepara-
tion.

Thanks also go to Miguel de Icaza, whose ext2-
volume patch[volume] gave me a rough idea of
where I should look at in the kernel to find the

ext2 filesystem code and how it all fit together.
The ext2-volume code was written to allow one
to concatenate full ext2 filesystems together to
form a single filesystem, prior to the availabil-
ity of MD RAID and LVM in the kernel, but
had the major drawbacks that it only supported
offline resizing, and produced a totally incom-
patible filesystem.
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