
Making Linux Safe for Virtual Machines

Jeff Dike (jdike@karaya.com)

Abstract

User-mode Linux (UML)1 is the port of Linux
to Linux. It has demonstrated that the Linux
system call interface is sufficiently powerful
to virtualize itself. However, the virtualization
isn’t perfect, in terms of individual UML per-
formance, aggregate performance of a number
of UML instances sharing a host, or, in one
way, functionality.

This paper discusses the current weaknesses in
the ability of Linux to host virtual machines
and proposes some ways of correcting those
shortcomings.

1 Introduction

User-mode Linux (UML) is a port of the Linux
kernel to the Linux system call interface. Since
this had not been done before, it is impressive
that, except for one trivial patch, Linux already
provided the functionality needed to virtualize
itself.

However, as development of UML has contin-
ued, some weaknesses in this support have be-
come evident. Although UML has been suc-
cessfully implemented using the existing sys-
tem call interface, in some respects, it is highly
non-optimal. This results in poor performance
in some areas of UML and poor code in others.

The principal area which hurts UML perfor-
mance is the Linuxptrace interface, which
is used to virtualize system calls. Every kernel

1http://user-mode-linux.sourceforge.net

entry and kernel exit in UML requires two full
context switches on the host. This makes sys-
tem calls, in particular, far more expensive than
on the host, but it also hurts the performance of
interrupts, which also require four host context
switches to complete.

For better context switching performance, each
UML process has an associated host process.
The host processes are created to gain access to
their address spaces. The fact that threads also
need to be created wastes host kernel memory
and complicates UML context switching. To
fix this problem, this paper proposes that Linux
address spaces be made independent of threads
and that they be created, populated, switched
between, and destroyed as separate Linux ob-
jects.

Finally, there is the issue of maximizing the
capacity of a given server to host virtual ma-
chines. Dealing with the issues described
above will certainly help, but when considering
the hosting throughput of a server, new prob-
lems arise. The largest one is memory man-
agement. The host and the virtual machines
sharing it all have independent virtual memory
systems which likely will have completely dif-
ferent pictures of how scarce memory is. Over-
all, this will lead to inefficient use of the host’s
memory because some virtual machines will
perceive a memory shortage when there isn’t
one and free memory too aggressively. Simi-
larly, others will not feel any memory pressure
when there is some, and will consume mem-
ory that could more productively be used else-
where. So, there will need to be new mecha-
nisms for the host to communicate the true ex-



Ottawa Linux Symposium 2002 108

tent of memory pressure to the UMLs that it’s
hosting and for the UMLs to respond appropri-
ately to that information.

2 Debugging interface enhance-
ments

2.1 Background

2.1.1 System call virtualization

UML runs the same executables as the host.
Since those executables invoke system calls by
trapping into the host kernel, UML needs some
way to intercept and cancel them, and then ex-
ecute them in its own context.

This is done through theptrace mechanism.
ptrace allows one process to intercept the
system calls of another, letting it read them out
and modify them. UML virtualizes the system
calls of its processes by having a master thread,
the tracing thread, useptrace to trace the
system calls of all UML processes. It annuls
them in the host kernel by changing them into
getpid() .

This works well, but it’s slow, since each UML
system call involves four context switches, to
the tracing thread and back at the start of each
system call and again at the end.

2.1.2 Kernel debugging

ptrace is exclusive in the sense that a given
process can be traced by only one other process
at a time. This is inconvenient for UML be-
cause the use ofptrace by the tracing thread
precludesgdb from attaching to UML threads,
making it harder to use as a UML debugger.

This was solved by having the tracing thread
also tracegdb , intercepting its system calls,

and manipulating theptrace calls in order
to fakegdb into believing that it’s attached to
UML.

This works well, but it’s inconvenient, and has
some unpleasant side-effects. Sinceptrace
reparents the process to whatever has attached
to it, the original parent can change its behav-
ior as a result. This generally isn’t a problem,
since UML usually runsgdb itself, or gdb is
run under a shell oremacs, which don’t no-
tice the reparenting. However, a prominent ex-
ception isddd , which spawnsgdb , and calls
wait() on it periodically. When UML at-
taches to thatgdb , wait starts behaving dif-
ferently forddd , resulting in it not working at
all.

2.2 A new debugging interface

To solve the performance problems of
ptrace , UML needs a way for a process
to intercept its own system calls. This could
be done by delivering a signal whenever it
performs a system call and having the signal
handler nullify it in the host kernel and execute
it inside UML.

Another possibility, which is more elegant, is
to introduce a notion of two contexts within a
single process. One context would trace the
other, gaining control whenever it entered the
kernel. This would be implemented by the
debugging interface saving the master context
state while the traced context runs. When the
traced context makes a system call or receives a
signal, the master context would be restored. It
would have the state of the traced context avail-
able, and it could modify it however it saw fit.

This would reduce the cost of a UML system
call from four host context switches to about
two host system calls.

To allow gdb to debug UML, it would also be
necessary to simultaneously allow other pro-



Ottawa Linux Symposium 2002 109

cesses to trace it. This doesn’t pose any prob-
lems as long as their needs don’t interfere with
each other or with UML’s own system call trac-
ing.

These requirements are sufficiently different
from what ptrace provides that a new in-
terface is called for. David Howells of Red
Hat is working on aptrace replacement. It
doesn’t allow threads to trace themselves, but
that looks like it can be added, and it satisfies
all of the other requirements that UML has.

3 Address spaces

3.1 Background

3.1.1 UML address space switching

Currently, each UML process gets a process on
the host. This is to provide each UML pro-
cess with a separate host address space, which
makes context switching faster. The alterna-
tive, all UML processes sharing a host address
space, requires that that address be completely
remapped on each context switch. So, if UML
switches from a bash to an Apache, that ad-
dress space would need to be changed from
a bash address space to an Apache address
space. In fact, this is how UML was first im-
plemented. The change to giving each process
a different host address space was done in or-
der to avoid the overhead of walking the ad-
dress space and remapping it on every context
switch.

This optimization nearly converts a UML con-
text switch into a host context switch. The
exception is when a process has had its ad-
dress space changed while it was not running.
Most commonly, this is the result of the pro-
cess being swapped. It can also happen when
a threaded process forks. The thread that’s out
of context will have its address space COWed.

When the process is next run, its address space
needs to be updated to reflect these changes.

This is done with the help of two architecture-
specific flag bits in the pte,_PROT_NEWPAGE
and_PROT_NEWPROT. In a process that’s not
running, when a page is unmapped or a new
page is mapped,_PROT_NEWPAGEis set in
the page’s pte. Similarly, when a page’s pro-
tection is changed,_PROT_NEWPROTis set.
When that process is next run, the page tables
are scanned for these bits, and the appropri-
ate action (mmap, munmap, or mprotect ) is
taken on the host in order to bring those pages
up to date.

A second complication with bringing an ad-
dress space up to date during a context switch
is the kernel virtual memory area. The ker-
nel, including its VM, is mapped into each
process address space. When a process
causes a change in the kernel virtual map-
pings, by adding or removing swap areas or
by loading a module, those mappings need
to be updated in each process that subse-
quently runs. The_PROT_NEWPAGEand
_PROT_NEWPROTbits can’t be used in this
case because the kernel page tables, which
store those mappings, are shared by all pro-
cesses. So, there’s no way for a single pte bit
to indicate which processes are up to date and
which aren’t.

This problem is handled by using a counter
which increments each time a change is made
in the kernel VM area. Each UML process
holds in its thread structure the value of that
counter when it last went out of context. If the
counter hasn’t changed, then the process has
an up to date kernel VM area. If it has, then
it scans the kernel page tables in order to bring
its address space up to date.



Ottawa Linux Symposium 2002 110

3.1.2 Execution context switching

The fact that every UML process has an associ-
ated host process has implications for switch-
ing execution contexts. The obvious way of
doing this is for the outgoing process to do the
following

1. send the incoming processSIGCONT

2. send itselfSIGSTOP

However, this is unfixably racy. To see this,
consider this sequence of events (process A is
the outgoing process, and B is the incoming
process).

1. A sends BSIGCONT

2. B is now runnable on the host, so the host
scheduler switches to it, putting A to sleep
temporarily

3. B finishes its work before its UML quan-
tum expires, so it switches back to A

4. A now runs on the host and finishes its
original UML context switch by sending
itself SIGSTOP

Now, all UML processes are asleep and will
never wake up, effectively hanging the ma-
chine.

This was the first implementation of UML’s
context switching. When this race was discov-
ered, it was eliminated by having the tracing
thread mediate context switches. The outgo-
ing process would send a message to the trac-
ing thread asking it to start the incoming pro-
cess. The tracing thread would do that, leav-
ing the outgoing process stopped. Using the
tracing thread as a synchronization point elim-
inated the race.

In order to eliminate the role of the tracing
thread in context switching, two further de-
signs were tried. The first avoided the race
by the outgoing process stopping itself with
a signal, but blocking that signal and using
sigsuspend to atomically sleep and enable
it:

1. A blocksSIGTERM

2. A sends BSIGTERM

3. A calls sigsuspend, simultaneously sleep-
ing and enablingSIGTERM

In this case, if B runs and switches back to A
before it sleeps, then theSIGTERMwon’t be
delivered until thesigsuspend call, avoid-
ing the race.

However, implementing this involved some
non-obvious signal manipulation, so a simpler
method was implemented, and it is the current
context switching mechanism.

Now, each UML process creates a pipe which
is used by other processes to bring it into con-
text. A context switch now works as follows:

1. A writes a character to B’s pipe

2. B, which has been blocked in a read on
that pipe, returns and continues running

3. A calls read on its own pipe

This avoids races in a similar, but simpler, way
to theSIGTERMdesign.

3.2 The solution

So, while assigning a host process to each
UML process provides reasonable context
switching performance, it has a number of
problems of its own:



Ottawa Linux Symposium 2002 111

• Changes to address spaces of other pro-
cesses can’t be effective immediately be-
cause one process can’t change the ad-
dress space of another. So, whenever a
process is switched in, it must bring its ad-
dress space up to date if necessary.

• Context switching is complicated by the
need to avoid races when one host process
continues another and stops itself

The proposed solution is to allow Linux ad-
dress spaces to be created, manipulated, and
destroyed just as processes are. In effect, this
would turn address spaces into objects in their
own right, separating them from threads. The
capabilities that are needed are

• Creation of a new address space

• Changing the mappings in an arbitrary ad-
dress space

• Switching between address spaces

• Destruction of address spaces

The implementation of this is fairly straight-
forward. Address spaces are already repre-
sented by a separate structure within the kernel,
the mm_struct . Access to anmm_struct
can be provided by a new driver which pro-
vides userspace access to it through a file
descriptor. So, a handle to a process’ ad-
dress space may be obtained by opening
/proc/ pid /mm and a new, empty address
space may be created by opening/proc/mm .
Creating a new handle to anmm_struct
would increment its reference count, and clos-
ing it would decrement it. So, an address
space would not disappear as long as there are
processes running in it or there are processes
which have handles to it.

Allowing a process to change the mappings in
another address space would be done with an
extension tommap:

void *mmap2(void *start,
size_t length, int
prot, int flags, int
src_fd, off_t offset,
int dest_fd);

The new argument,dest_fd , specifies the
address space within which the new mapping is
to take place. A value of -1 would specify the
current address space, making this interface a
superset of the existingmmap.

munmap and mprotect would need to be
similarly extended.

3.3 Moving the UML kernel to a separate ad-
dress space

With the ability to arbitrarily create new ad-
dress spaces, and the debugging interface de-
scribed in section 2.2, it is possible to move the
UML kernel out of its process address spaces.
What’s needed is for the debugging interface
to switch to the kernel address space when it
restores the tracing context.

This would hurt performance somewhat by
adding a memory switch to each kernel entry
and exit, but would have some large compen-
sating advantages.

The primary gain from doing this would be that
it would make UML’s data completely inacces-
sible to its processes. Currently, UML text and
data occupy the top .5G of its process’ address
spaces. By default, this memory is not write-
protected when userspace code is running.

This is a problem for applications of UML
such as jails and honeypots that need to con-
fine a hostile root user. There is a jail mode



Ottawa Linux Symposium 2002 112

in UML which write-protects kernel memory
while userspace code is executing by using
mprotect to enable write permission on kernel
entry and to disable it on kernel exit.

However, there is a severe performance penalty
doing this. Implementing jail mode by locating
the kernel in a different address space would
replace the calls to mprotect with two mem-
ory context switches. This is likely to be much
faster, and if it’s enough faster, it could become
the default for UML.

4 AIO

5 Memory management primitives

6 Cooperative memory manage-
ment between host and guest

6.1 Background

The changes discussed elsewhere in this pa-
per are focussed on improving the performance
of an individual UML instance. However, in
some applications, such as virtual hosting, the
aggregate performance of UML is of equal
or greater importance. The aggregate perfor-
mance is the performance of a set of UML in-
stances running on the same host. Improving
this at the expense of the individual UMLs can
improve the economics of a virtual hosting in-
stallation if the capacity of the host improves
enough to increase its overall throughput.

The consumption and use of host memory by
UML is a crucial aspect of the server’s hosting
capacity. There are currently a number of as-
pects of Linux and UML which cause it to use
more host memory than is necessary and to use
it less efficiently than it should.

6.1.1 Unused memory is wasted memory

A basic assumption of the Linux VM system is
that memory should be used for something, and
if memory is plentiful, it doesn’t matter what
the excess is used for, because it might prove
useful in the future. So, data is not thrown out
of memory until there is a shortage.

This is fine for a physical machine which con-
tains memory which can’t possibly be used by
anything else, but this policy hurts the UML
hosting capacity of Linux. UML inherits this
from the generic, architecture-independent ker-
nel and thus won’t free memory until it is feel-
ing a shortage.

The problem is that the host may be short of
memory without any of the UMLs it’s host-
ing being short. So, they will hang on to their
own data even though they could increase the
host’s performance by giving up some of it. If
the host is swapping enough, they could even
improve their own performance by giving up
enough of their data to stop the host from need-
ing to swap.

6.1.2 UML memory isn’t shared

UML memory is instantiated by creating a tem-
porary file on the host and mapping that into
the UML address space. When some of this
memory is used for file data, the UML block
driver requests, via theread() system call,
that the data be copied from the host’s page
cache into its own page cache. There are now
two copies of that data in the host’s memory.
If ten UMLs each boot from separate copies of
the same filesystem and copy the data into their
own page caches, there will be twenty copies of
that data on the host, ten in the host page cache
because it loaded ten identical filesystems, and
one for each UML. Clearly, this is a waste of
memory.



Ottawa Linux Symposium 2002 113

This waste can be alleviated by having them
boot from the same filesystem image with sep-
arate, private COW files. This will reduce the
number of copies of shared data from twenty to
eleven. Since they are sharing the same under-
lying filesystem, the number of copies in the
host page cache is now one. However, there is
still one copy per UML. This is still a waste of
memory.

The problem is that there is currently no mech-
anism for reducing this any further. Clearly,
the copy count could be reduced to one by hav-
ing UML map data directly from the host page
cache into its own page cache.

This would require a different I/O model in the
generic kernel. Currently, Linux considers that
it has a fixed amount of memory available to
is, and when it reads data from disk, it has to
allocate memory for that data and copy it from
the disk. A UML instance mapping file data di-
rectly from the host memory is akin to having
that memory, with the data already in it, mate-
rialize from nowhere.

6.1.3 VM information isn’t shared

A further problem is that the host and the UML
instances running on it all have completely in-
dependent VM systems which likely will have
completely different ideas of how scarce mem-
ory is at any given moment. This is a problem
because they are all sharing the same memory,
and there is only one true picture of how scarce
it is, and it is held in the host’s VM system.

Somehow, this information needs to be com-
municated to the UMLs in a way that they can
respond to. There are a number of require-
ments that need to be met if this is to happen:

• UML instances need to be able to
free memory to the host. This can be

done by unmapping unneeded mem-
ory or by calling madvise(...,
MADV_DONTNEED). The basic mecha-
nisms are available on the host, but the
generic kernel provides no clean way of
using them.

• The host needs to be able to demand that a
UML free a certain amount of memory of
a certain type, i.e. dirty or clean pages, in
a given time. This is needed in order for
UML instances to feel memory pressure
when the host does and to respond appro-
priately to it.

• UML instances need to be able to tell the
host that memory which appears dirty, be-
cause it has been changed and not writ-
ten to its backing store, is really clean, be-
cause it is in sync with its backing store
from the UML point of view. This would
happen when the UML instance had itself
swapped the data to its own swap area. In
this case, the host could treat the memory
as clean and reallocate it without swap-
ping it out.

6.2 Improving memory management coopera-
tion

In contrast to the other problems identified in
this paper, this is not a single problem that has
a single fix as much as it is a set of problems
which will require a set of improvements. This
will likely require thought and work for some
time to come in order to develop solutions that
work reasonably well.

So, I will outline a set of possible partial solu-
tions rather than the single fixes that have been
described so far. Some of these may turn out to
be of limited value, while other ideas, not de-
scribed here, may be the ones that solve major
parts of the problem.



Ottawa Linux Symposium 2002 114

6.2.1 Passing memory pressure from the
host to UML

If there is to be any cooperation at all between
the host and its UML instances in memory
management, the host needs to be able to com-
municate memory pressure and its severity to
UML. There are currently no mechanisms at
all for doing this in Linux.

The host would need to be able to communi-
cate the following information to the UML in-
stances that it is hosting:

• the existence of memory pressure

• the amount of memory that a given in-
stance should release

• the type of memory, i.e. dirty or clean
pages, that should be released

• a deadline

The amount of memory that the host asks for
may be more a guess than a calculation. It
may be more useful for the host to decide
what it will do to a UML instance if it doesn’t
get enough memory released from all sources.
This would likely be some number of pages
of that UML’s memory that will be swapped
out. Then, the UML instance can decide what
it will do in order to try to avoid that fate. It
would likely have a better idea of what mem-
ory it can do without than the host, so it could
release pages that it thinks it needs less than
what the host would choose to swap out.

Whether the host wants clean or dirty pages
released depends on whether the host is also
I/O-bound and on the timeframe within which
it wants the memory. If it is I/O-bound, then
freeing dirty pages isn’t going to be useful be-
cause they would need to be written to swap
before they could be freed, adding to the I/O

congestion. Similarly, if the need for memory
is immediate, then releasing dirty pages won’t
help because there will be a significant time lag
between their release by UML and their avail-
ability to the system.

A UML instance will have some pages which
it considers to be clean, but which the host
considers to be dirty. A mechanism to inform
the host that these should be considered clean
would increase the proportion of clean pages
available for release.

Another possible mechanism for reclaiming
memory is for the host to just take clean pages
from a UML without it explicitly releasing
them. This would require that the host sig-
nal the UML instance when it next accesses
such a page. It would have to refill the page
with its original data before it could continue
to be reused. This has the disadvantage that the
UML has no choice in what pages are taken, so
there is no guarantee that the host will choose
pages that the UML instance can do without.
The host could make reasonable guesses by
looking at the hardware access bit, but it will
still not have information about access patterns
within the UML that may be relevant.

6.2.2 Freeing memory to the host

Currently, a UML instance is assigned a cer-
tain amount of memory which is considered to
be its physical memory. It is not allocated on
the host immediately. Rather, the host allocates
it as it is used. However, once it is used, it is
never given back. So an instance with a large
amount of memory that has not been used re-
cently will hold onto it even if there are other
instances which have a much greater need for
it.

As described above, there are mechanisms for a
process to free memory back to the host. How-



Ottawa Linux Symposium 2002 115

ever, there is no way in the generic Linux ker-
nel to give up memory. With some hooks in
the page allocation and page release code, it is
possible for the architecture to do some things.

Given a hook in the page release path, the ar-
chitecture could release a page to the host by
unmapping it or callingmadvise appropri-
ately. It also has a choice between freeing it to
the page allocator or not. This decision would
be based on whether the UML instance is to
reduce the amount of memory it has at its dis-
posal. If the page is made available to the page
allocator, it will very likely be reallocated and
reused. Thus, the host will need to reallocate
the page soon after having it freed. This will
limit the benefits to the host of freeing the page
in the first place.

So, there would appear to be benefits to not
freeing pages to the page allocator if the host
is under memory pressure. However, if this is
done, there would need to be some way of get-
ting those pages back when the memory pres-
sure on the host has abated.

Given a mechanism of the sort described in
section 6.2.1, there should also be an obvi-
ous way of indicating that the memory pressure
has diminished, and that the UML instance can
start reclaiming the memory that it gave up. In
both cases, there would need to be some indica-
tion from the host of how much memory should
be given up and how much can be reclaimed.
This would prevent undershooting and over-
shooting in both cases and make it more likely
that the host will have a reasonable amount of
free memory.

7 Conclusion

Fixing the problems described above will
greatly increase both the performance of indi-
vidual UML instances and the hosting capacity
of a given server.

A more efficient system call interception in-
terface will greatly increase the performance
of system-intensive applications running inside
UML. Compute-bound processes typically run
as fast inside UML as on the host, but other,
more system-intensive workloads can run two
to three times slower. Allowing a thread to in-
tercept its own system calls would bring the
performance of these processes much closer to
their performance on the host.

Similarly, using AIO to allow many out-
standing I/O requests would help I/O-intensive
workloads. Without AIO, UML is limited to
one outstanding I/O request at a time. As a re-
sult, I/O-intensive processes can spend much
of their time idle, waiting for their data to
be read from the host. This isn’t a waste of
the host’s processing power like the use of
ptrace is, so it may not hurt the host’s capac-
ity, but it does noticeably hurt the performance
of individual UML instances.

Allowing host address spaces to be manipu-
lated as objects separate from threads would
help UML’s context switching performance.
It would also greatly simplify the low-level
context-switching code. There would be no
need to traverse the address spaces of pro-
cesses coming into context in order to bring
them up to date with whatever changes were
made while they were out of context. There
would also be no need for the optimizations
that have been made in order to make the ex-
isting algorithms faster. A further benefit to
the code would be that the execution context
switch would be completely race-free, since
it would no longer be switching between host
processes. This code has been significantly
simplified over time, but it would become triv-
ial once a single thread could switch between
address spaces arbitrarily.

This enhancement, in conjunction with a
single-thread system call interception capabil-



Ottawa Linux Symposium 2002 116

ity, would also allow the UML kernel to be lo-
cated in a completely different address space
than its processes. This would be particularly
beneficial to jailing applications, which cur-
rently suffer from the poor performance of the
current mechanism of protecting UML kernel
data from userspace.

Finally, by improving the ability of the host to
communicate memory pressure to the UML in-
stances running on it and improving their abil-
ity to respond would noticeably improve the
hosting capacity of a given server. In some
cases, this would also improve the individual
performance of the UML instances.

This area is also interesting because this is
of much more general use than the others.
ptrace , AIO, and address spaces are of fairly
limited use to most applications. In contrast,
memory management is of concern to practi-
cally all processes. So, implementing meth-
ods of cooperative memory management be-
tween the host and UML instances would pro-
vide those mechanism to other processes as
well. This would open the way to this sort of
cooperation being common, presumably with
the result that the system performs better than
it would otherwise.

This relatively small list summarizes the prob-
lems that Linux has as a virtual machine host-
ing environment. They mostly appear to have
fairly straight-forward fixes, and some of these
fixes are in progress already. The most com-
plicated area is the cooperative memory man-
agement. That is a set of related problems that
will require a set of measure to deal with them,
rather than a single problem with a single fix.
In contrast to the others, it will likely be the
subject of study and work for some time to
come.

Linux is currently quite viable as a virtual ma-
chine platform for a number of applications.
Once these problems are fixed, Linux will be-

come even more attractive for hosting virtual
machines.



Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


