
Enhancing Linux Scheduler Scalability

Mike Kravetz
IBM Linux Technology Center

Hubertus Franke, Shailabh Nagar, Rajan Ravindran
IBM Thomas J. Watson Research Center
{mkravetz,frankeh,nagar,rajancr}@us.ibm.com

http://lse.sourceforge.net

Abstract

This paper examines the scalability of the Linux
2.4.x scheduler as the load and number of CPUs
increases. We show that the current scheduler de-
sign involving a single runqueue and lock can suffer
from lock contention problems which limits its scal-
ability. We present alternate designs using multiple
runqueues and priority levels that can reduce lock
contention while maintaining the same functional
behavior as the current scheduler. These implemen-
tations demonstrate better overall scheduling per-
formance over a wide spectrum of loads and system
configurations.

1 Introduction

Linux has seen tremendous growth as a server op-
erating system and has been successfully deployed
in enterprise environments for Web, file and print
serving. Often, the increased demand in such en-
vironments can be met by horizontally scaling the
system with clustering. For such applications, the
operating system needs to efficiently support SMPs
consisting of only a small number of CPUs.

More demanding applications, such as database, e-
business or departmental servers, tend to be de-
ployed on larger SMP systems. To support such ap-
plications, Linux must scale well vertically as more
CPUs are added to an SMP. It must also scale
with the increased number of processes and threads
that such SMPs are expected to handle. In both
these situations, the scheduler can be a key factor
in achieving or limiting operating system scalabil-

ity. The current Linux scheduler (2.4.x kernel) has
two defining characteristics. First, there is a sin-
gle unordered runqueue for all runnable tasks in
the system, protected by a single spinlock. Second,
during scheduling, every task on the runqueue is
examined while the runqueue lock is held. These
have a two-fold effect on scalability. As the num-
ber of CPUs increases, there is more potential for
lock contention. As the number of runnable tasks
increases, lock hold time increases due to the linear
examination of the runqueue. Independent of the
number of CPUs, increased lock hold time can also
cause increased lock contention, depending on the
frequency of scheduling decisions. For spinlocks, in-
creased lock hold time and lock contention result in
a direct increase in lock wait time which is a waste
of CPU cycles. These observations are reinforced
by recent studies. Measurements using Java bench-
marks [2] show that the scheduler can consume up
to 25% of the total system time for workloads with
a large number of tasks. Another study [3] has ob-
served run queue lock contention to be as high as
75% on a 32-way SMP.

Lock contention problems can generally be ad-
dressed in two ways. First, the protected data struc-
ture can be reorganized so that it can be traversed
faster with a corresponding decrease in the aver-
age lock hold time. Second, the data structure can
be broken up or partitioned into smaller parts, each
protected by its own separate lock. This reduces the
probability of lock contention overall. Additionally,
it allows multiple examinations of the subparts to
proceed in parallel, reducing lock wait time for the
data structure as a whole.

The main contribution of this paper is the design,
implementation and evaluation of two new Linux
schedulers which improve scalability using these two



approaches. The priority level scheduler (PLS) aims
at reducing lock hold time by maintaining runnable
tasks in priority lists. The multiqueue scheduler
(MQ) reduces lock contention by maintaining per-
cpu runqueues. Both of these solutions are deployed
on commercial operating systems but have not been
seriously considered for Linux. Though priority
level schedulers have been implemented for Linux
[5] and have shown improvements over the vanilla
scheduler, we show here that the reduction in lock
hold time by such methods only improves scalability
with an increased number of tasks. However, it is
not sufficient to improve scalability with increasing
CPU counts. In particular, though our PLS also
does better than the current scheduler at moderate
to high task counts, MQ outperforms the current
scheduler and PLS over a wide range of workloads.
More importantly, these improvements are obtained
while maintaining functional equivalence with the
current scheduler, leaving room for further improve-
ments.

The rest of the paper is organized as follows. Sec-
tion 2 presents a description of the implementation
of the current scheduler. The parts which define the
functionality (and need to be retained) are identified
along with the bottlenecks. Section 3 presents the
priority queue scheduler implementation. The main
contribution of this paper, the multiqueue sched-
uler, is described in Section 4. Results using mi-
crobenchmarks and a decision support workload are
shown in Section ??. Section 5 concludes with di-
rections for future work.

2 Default SMP Scheduler (DSS)

The default SMP scheduler (DSS) in Linux 2.4.x
treats processes and threads the same way, referring
to them as tasks. Each task has a corresponding
data structure which maintains state related to ad-
dress space, memory management, signal manage-
ment, open files and privileges. Traditional thread-
ing models and light-weight processes are supported
through the clone system call.

For the purpose of scheduling, time is mea-
sured in architecture-dependent units called ticks.
On x86 systems, timer ticks are generated at a
10ms resolution. Each task maintains a counter
(tsk->counter) which expresses the time quantum
for which it can execute before it can be preempted.

By decrementing this counter on timer tick inter-
rupts, DSS implements a priority-decay mechanism
for non-realtime tasks. The priority of a task is de-
termined by a goodness() value that depends on its
remaining time quantum, nice value and the affin-
ity towards the last CPU on which it ran. DSS
supports preemption of tasks only when they run
in user mode. The responsiveness of lengthy kernel
code can be increased by checking for scheduling
requirements at appropriate locations. Priority pre-
emption can occur any time the scheduler runs.

The kernel scheduler consists of two primary func-
tions :

1. schedule(void) : This function is called syn-
chronously by a processor to select the next
task to run e.g. at the end of sleep(),
wait for IO() or schedule timeout(). It is
also called preemptively on the return path
from an interrupt e.g. a reschedule-IPI (in-
terprocessor interrupt) from another proces-
sor, I/O completion or system call. In such
cases, the schedule() function is called if the
need resched field of the current task is set.

2. reschedule idle(task struct *tsk) :
This function is called in wake up process()
to find a suitable processor on which
the parameter task can be dispatched.
wake up process() is called when a task is
first created or when it has to be re-entered
into the runqueue after an I/O or sleep oper-
ation. reschedule idle() tries to find either
an idle processor or one which is running a
task with a lower goodness value. If successful,
it sends an IPI to the target CPU, forcing it to
invoke schedule() and preempt its currently
running task.

Internally, the scheduler maintains a single run-
queue protected by a spinlock. The queue is un-
ordered, which allows tasks to be inserted and
deleted efficiently. However, in order to select a
new task to run, the scheduler has to lock and tra-
verse the entire runqueue, comparing the goodness
value of each schedulable task. A task is considered
schedulable if it is not already running and it is en-
abled for dispatch on the target CPU. The goodness
value, determined by the goodness() function, dis-
tinguishes between three types of tasks : realtime
tasks (values 1000+), regular tasks (values between
0 and 1000) and tasks which have yielded the proces-
sor (value -1). For regular tasks, the goodness value



consists of a static or non-affinity part and a dy-
namic or affinity part. The non-affinity goodness de-
pends on the task’s counter and nice values. The
affinity part accounts for the anticipated overheads
of cache misses and page table switches incurred as
a result of migrating tasks across CPUs. If the in-
voking CPU is the same as the one the task last ran
on, the goodness value is boosted by an architecture
dependent value called PROC CHANGE PENALTY. If the
memory management object (tsk->mm) is the same,
goodness values are boosted by 1. The counter val-
ues of all tasks are recalculated when all schedula-
ble tasks on the runqueue have expired their time
quanta. Due to space limitations, we refer the
reader to detailed descriptions of DSS in [5, 1].

3 Priority Level Scheduler (PLS)

The priority level scheduler (PLS) seeks to reduce
the number of tasks examined during a scheduling
decision. It reorganizes the single runqueue of the
default SMP scheduler (DSS) into an array of lists
indexed by the non-affinity goodness of tasks. The
indices of the currently running task, and the high-
est schedulable task together with an affinity boost,
determine the range of lists to be searched for the
next candidate. The priority lists are still protected
by a single runqueue lock as they conceptually pro-
vide a single runqueue.

In our implementation, we coalesce all realtime
tasks into a single list at the highest index. This
method of enqueueing tasks results in 61 lists for
the x86 platform and up to 335 lists for other archi-
tectures. A task’s goodness value can change dur-
ing its execution, e.g. during fork, timer, exit,
and recalculate, requiring it to be reassigned to
a different priority list. To avoid frequent requeue-
ing, yielding tasks are enqueued according to their
non-yield goodness values and handled appropri-
ately while walking the lists. The implementation
ensures that yielding tasks do not execute before
any other runnable task.

At schedule() time, the currently running task
is the default candidate to run next, and if it is
not yielding, also establishes the lowest list to be
scanned (as no task on a lower list can receive
an affinity boost which results in a priority higher
than that of the currently running task.) If the
task stopped executing, e.g. due to I/O wait, the

idle-task becomes the default candidate and all
lists need to be searched by default. Tasks with ex-
pired counters fall into the lowest list and are never
inspected.

The determined range of lists is now scanned in
top-down priority order for non-yielding schedula-
ble tasks and if one is found and its goodness value
is better then the default candidates, it becomes the
default candidate. Further search can be limited to
lists whose priority lie within PROC CHANGE PENALTY
of the default candidate’s list, as no list below that
can have a higher goodness value even after get-
ting an affinity boost. Even within this range, the
search can be terminated as soon as a task is found
that last ran on the invoking CPU. As a further
optimization, we maintain a bitmap of non-empty
list indices that allows us to efficiently skip empty
lists, using the find first zero() function. We
disregard the tsk->mm boost, which essentially pro-
vides a tie-breaker between two task of equal prior-
ity, as it would require a complete scan of the last
reached list and the one below it. We have also im-
plemented versions of priority level schedulers that
account for the tsk->mm boost but only observed
infrequent differences in scheduling behavior com-
pared to DSS, while suffering from degraded per-
formance. We chose to present the best performing
PLS implementation to highlight the need for re-
ducing lock contention as done in MQ. We have also
implemented versions that limit the number of lists,
by utilizing a different hash function, but did not ob-
serve performance improvements. Since PLS keeps
running tasks on the runqueue (i.e. in their list) and
therefore inspects these tasks during scheduling, we
can expect that for low task counts (≈ #CPUs),
PLS will introduce additional overhead compared
to DSS. However, with the increase in the number
of tasks, the probability of finding a task that ran
last on the invoking CPU increases as does the ben-
efit of limiting the number of tasks that need to be
traversed. Together, we expect an reduced average
lock hold time.

4 Multi-Queue Scheduler (MQ)

The multi-queue scheduler (MQ) is designed to ad-
dress scalability by reducing lock contention and
lock hold times while maintaining functional equiv-
alence with DSS. It breaks up the global run-queue
and global run-queue lock into corresponding per-



CPU structures. Lock hold times are reduced by
limiting the examination of tasks to those on the
runqueue of the invoking CPU along with an in-
telligent examination of data corresponding to the
non-local runqueues. Moreover, the absence of a
global lock allows multiple instances of the sched-
uler to be run in parallel, reducing lock wait time
related to lock contention. Together these reduce
the scheduler related lock contention seen by the
system.

MQ defines per-CPU runqueues which are similar to
the global runqueue of the DSS scheduler. Related
information such as the number of runnable tasks
on this runqueue is maintained and protected by a
per-CPU runqueue lock.

The schedule() routine of MQ operates in two dis-
tinct phases. In the first phase, it examines the local
runqueue of the invoking CPU and finds the best
local task to run next. Schedulers incorporating
only this phase exist [4], but can lead to problems
of priority inversion and load imbalances amongst
the runqueues. The load imbalance problem is il-
lustrated in Fig 1 which shows the deviations from
the mean runqueue length over time for 4-way SMP
executing a kernel build and using such a restricted
multi-queue scheduler. MQ directly addresses pri-
ority inversion in the second phase by comparing
the local candidate with the top candidates from
remote runqueues before making the final selection.
This also has a load balancing effect.

-10

-5

0

5

10

15

20

25

30

0 20 40 60 80 100

D
ev

ia
tio

n 
fr

om
 m

ea
n

�

Time

CPU 1
CPU 2
CPU 3
CPU 4
Mean

Figure 1: Deviation from mean of runqueue lengths
for a 4-way SMP during a kernel build and running
a scheduler which only looks at the local runqueue

In more detail, the schedule() routine of MQ ac-
quires the runqueue lock of the invoking CPU’s run-
queue and scans the latter looking for the schedu-
lable task with the highest goodness value. To fa-
cilitate the global decision in the second phase, it
also records the second highest non-affinity good-

ness value in the max na goodness field of the lo-
cal runqueue. The non-affinity goodness (hence-
forth called na goodness) is the goodness value of a
task without any consideration for CPU or memory
map affinity. The best local candidate’s goodness
value (which includes appropriate affinity boosts)
is compared with the max na goodness of all other
runqueues to determine the best global candidate.
If the global candidate is on a remote runqueue,
schedule() tries to acquire the corresponding lock
and move the candidate task over to its local run-
queue. If it fails to acquire the lock or the remote
task is no longer a candidate (its na goodness value
has changed), schedule() skips the corresponding
runqueue and tries again with the next best global
candidate. In these situations, MQ’s decisions devi-
ate slightly from those made by DSS e.g. the third
best task of the skipped runqueue could also have
been a candidate but is not considered as one by
MQ.

The reschedule idle() function attempts to find
a CPU for a task which becomes runnable. It cre-
ates a list of candidate CPUs and the na goodness
values of tasks currently running on those CPUs. It
chooses a target CPU in much the same way as the
schedule() routine, trying to acquire a runqueue
lock and verifying that the na goodness value is still
valid. Once a target CPU is determined, it moves
the task denoted by its argument onto the target
CPU’s runqueue and sends an IPI to the target CPU
to force a schedule(). reschedule idle() main-
tains functional equivalence with DSS in other ways
too. If a tasks’ previous CPU is idle, it is chosen
as the target. Amongst other idle CPUs, the one
which has been idle the longest is chosen first.

MQ’s treatment of realtime tasks takes into account
the conflicting requirements of efficient dispatch
and the need to support Round Robin and FIFO
scheduling policies. Like DSS, it keeps runnable re-
altime tasks on a separate global runqueue and pro-
cesses them the same way.

An important aspect of MQ’s implementation is the
care taken to avoid unnecessary cache misses and
false sharing. Runqueue data is allocated in per-
CPU cache-aligned data structures.



5 Conclusion and Future Work

The Linux 2.4 kernel provides a concise SMP sched-
uler that does well for small SMPs running moderate
loads. However, we have shown that, as the number
of CPUs or the load increases, the scalability limi-
tations of the scheduler start showing up. Profiling
data for a range of workloads show that the problem
is due to high lock contention and large lock hold
times.

Reducing the lock hold times, as is done in the PLS
scheduler presented here, does alleviate the prob-
lem somewhat with a corresponding improvement
in scalability. However, this is not sufficient to ad-
dress the overall scalability as the number of CPUs
increases. Also, at low loads, the overheads of PLS
make it perform worse than DSS. The MQ sched-
uler directly addresses lock contention by breaking
up the single runqueue and its associated locks into
per-CPU equivalents. This brings a significant im-
provement in lock contention, scalability and overall
performance of the scheduler.

We are currently working on more extensive evalua-
tions of the ideas presented in this paper. We want
to use more realistic workloads such as those seen
on compute and database servers. Further extend-
ing the MQ design, we are looking at schedulers
which use CPU pooling. CPU pooling divides the
CPUs of a system into a set of pools. Each pool
consists of one or more CPUs. Scheduling decisions
are localized to the individual CPU pools, and load
balancing algorithms are put in place to balance the
load among the pools. CPU Pooling provides a con-
tinuum between complete runqueue separation, as
provided in [4], and MQ with its global scheduling
decisions.

It is our belief that CPU pooling will be beneficial on
large SMP machines where making global schedul-
ing decisions will become more expensive. In addi-
tion, CPU pooling may be a good choice for NUMA
architectures where CPUs on individual compute
nodes can be mapped to CPU pools.

6 Acknowledgments

We would like to thank the many people on
the lse-tech@lists.sourceforge.net mailing list

who provided us with valuable comments and sug-
gestions during the development of these alterna-
tive scheduler implementations. In particular, we
would like to recognize John Hawkes, for running
our implementations on some large systems at SGI,
and Bill Hartner for related discussions and help
with the experiments. This work was developed as
part of the Linux Scalability Effort on SourceForge
(lse.sourceforge.net). Here you can find more
detailed descriptions of our scheduler implementa-
tions as well as the latest source code.

References

[1] Daniel P. Bovet and Marco Cesati. Understand-
ing the Linux Kernel. OŔeilly Associates.

[2] R. Bryant and B. Hartner. Java Technology,
Threads, and Scheduling in Linux. Java Tech-
nology Update, 4(1), Jan 2000.

[3] R. Bryant and J. Hawkes. Lockmeter: Highly-
Informative Instrumentation for Spin Locks in
the Linux Kernel. In Proc. Fourth Annual Linux
Showcase and Conference, Atlanta, Oct 2000.

[4] Hewlett Packard Inc. Process resource man-
agers for Linux : Linux plug-in schedulers.
http://resourcemanagement.unixsolutions.hp.com
/WaRM/schedpolicy.html.

[5] S. Molloy and P. Honeyman. Scalable Linux
Scheduling. In Usenix Annual Technical Con-
ference (Freenix Track), June 2001. To appear.


