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Abstract

Network applications are typically developed with
frameworks that hide the details of low-level network-
ing. The motivation is to allow developers to focus
on application-specific logic rather than low-level me-
chanics of networking, such as name resolution, relia-
bility, asynchronous processing and quality of service.
In this article, we characterize statistically how open-
source applications use the Sockets API and identify a
number of requirements for network applications based
on our analysis. The analysis considers five fundamental
questions: naming with end-host identifiers, name res-
olution, multiple end-host identifiers, multiple transport
protocols and security. We discuss the significance of
these findings for network application frameworks and
their development. As two of our key contributions, we
present generic solutions for a problem with OpenSSL
initialization in C-based applications and a multihoming
issue with UDP in all of the analyzed four frameworks.

1 Introduction

The Sockets API is the basis for all internet applica-
tions. While the number of applications using it directly
is large, some applications use it indirectly through in-
termediate libraries or frameworks to hide the intrica-
cies of the low-level Sockets API. Nevertheless, the in-
termediaries still have to interface with the Sockets API.
Thus, the Sockets API is important for all network appli-
cations either directly or indirectly but has been studied
little. To fill in this gap, we have statistically analyzed
the usage of Sockets API to characterize how contem-
porary network applications behave in Ubuntu Linux.
In addition to merely characterizing the trends, we have

also investigated certain programming pitfalls pertain-
ing the Sockets APL.

As a result, we report ten main findings and how they
impact a number of relatively new sockets API exten-
sions. To mention few examples, the poor adoption of
a new DNS look up function slows down the migration
path for the extensions dependent on it, such as the APIs
for IPv6 source address selection and HIP. OpenSSL
library is initialized incorrectly in many applications,
causing potential security vulnerabilities. The manage-
ment of the dual use of TCP/UDP transports and the
dual use of the two IP address families creates redun-
dant complexity in applications.

To escape the unnecessary complexity of the Sock-
ets API, some applications utilize network application
frameworks. However, the frameworks are themselves
based on the Sockets API and, therefore, subject to the
same scrutiny as applications using the Sockets API. For
this reason, it is natural to extend the analysis for frame-
works.

We chose four example frameworks based on the Sock-
ets API and analyzed them manually in the light of the
Sockets API findings. Since frameworks can offer high-
level abstractions that do not have to mimic the Sockets
API layout, we organized the analysis of the frameworks
in a top-down fashion and along generalized dimensions
of end-host naming, multiplicity of names and trans-
ports, name look up and security. As a highlight of the
framework analysis, we discovered a persistent problem
with multiplicity of names in all of the four frameworks.
To be more precise, the problem was related to multi-
homing with UDP.

In this article, we describe how to solve some of the dis-
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covered issues in applications and frameworks using the
Sockets API. We also characterize some of the inherent
limitations of the Sockets API, for instance, related to
complexity.

2 Background

In this section, we first introduce the parts of the Berke-
ley Sockets and the POSIX APIs that are required to un-
derstand the results described in this article. Then, we
briefly introduce four network application frameworks
built on top of the two APIs.

2.1 The Sockets API

The Sockets API is the de-facto API for network pro-
gramming due to its availability for various operating
systems and languages. As the API is rather low level
and does not support object-oriented languages well,
many networking libraries and frameworks offer addi-
tional higher-level abstractions to hide the details of the
Sockets APL

Unix-based systems typically provide an abstraction of
all network, storage and other devices to the applica-
tions. The abstraction is realized with descriptors which
are also sometimes called handles. The descriptors are
either file or socket descriptors. Both of them have
different, specialized accessor functions even though
socket descriptors can be operated with some of the file-
oriented functions.

When a socket descriptor is created with the socket()
function, the transport protocol has to be fixed for the
socket. In practice, SOCK_STREAM constant fixes the
transport protocol to TCP and SOCK_DGRAM constant to
UDP. For IPv4-based communications, an application
uses a constant called AF_INET, or its alias PF_INET, to
create an [Pv4-based socket. For IPv6, the application
uses correspondingly AF_INET6 or PF_INET6.

2.1.1 Name Resolution

An application can look up names from DNS by calling
gethostbyname () or gethostbyaddr() functions. The
former looks up the host information from the DNS by
its symbolic name (forward look up) and the latter by its
numeric name, i.e., IP address (reverse look up). While

both of these functions support IPv6, they are obsolete
and their modern replacements are the getnameinfo()
and getaddrinfo() functions.

2.1.2 Delivery of Application Data

A client-side application can start sending data immedi-
ately after creation of the socket; however, the applica-
tion typically calls the connect() function to associate
the socket with a certain destination address and port.
The connect() call also triggers the TCP handshake
for sockets of SOCK_STREAM type. Then, the networking
stack automatically associates a source address and port
with the socket if the application did not choose them
explicitly with the bind() function. Finally, a close()
call terminates the socket gracefully and, when the type
of the socket is SOCK_STREAM, the call also initiates the
shutdown procedure for TCP.

Before a server-oriented application can receive incom-
ing datagrams, it has to call a few functions. Minimally
with UDP, the application has to define the port number
and IP address to listen to by using bind(). Typically,
TCP-based services supporting multiple simultaneous
clients prepare the socket with a call to the listen()
function for the following accept () call. By default, the
accept() call blocks the application until a TCP con-
nection arrives. The function then “peels off” a new
socket descriptor from existing one that separates the
particular connection with the client from others.

A constant INADDR_ANY is used with bind () to listen for
incoming datagrams on all network interfaces and ad-
dresses of the local host. This wildcard address is typi-
cally employed in server-side applications.

An application can deliver and retrieve data from the
transport layer in multiple alternative ways. For in-
stance, the write() and read() functions are file-
oriented functions but can also be used with socket de-
scriptors to send and receive data. For these two file-
oriented functions, the Sockets API defines its own spe-
cialized functions.

For datagram-oriented networking with UDP, the
sendto() and the recvfrom() functions can be
used. Complementary functions sendmsg() and
recvmsg() offer more advanced interfaces for applica-
tions [19]. They operate on scatter arrays (multiple non-
consecutive I/O buffers instead of just one) and also sup-



port so-called ancillary data that refers to meta-data and
information related to network packet headers.

In addition to providing the rudimentary service of send-
ing and receiving application data, the socket calls also
implement access control. The bind() and connect()
limit ingress (but not egress) network access to the
socket by setting the allowed local and remote desti-
nation end point. Similarly, the accept() call effec-
tively constrains remote access to the newly created
socket by allowing communications only with the par-
ticular client. Functions send() and recv() are typi-
cally used for connection-oriented networking, but can
also be used with UDP to limit remote access.

2.1.3 Customizing Networking Stack

The Sockets API provides certain default settings for ap-
plications to interact with the transport layer. The set-
tings can be altered in multiple different ways.

With “raw” sockets, a process can basically create its
own transport-layer protocol or modify the network-
level headers. A privileged process creates a raw socket
with constant SOCK_RAW.

A more constrained way to alter the default behav-
ior of the networking stack is to set socket options
with setsockopt(). As an example of the options, the
SO_REUSEADDR socket option can be used to disable the
default “grace period” of a locally reserved transport-
layer port. By default, consecutive calls to bind() with
the same port fail until the grace period has passed. Es-
pecially during the development of a networking ser-
vice, this grace period is usually disabled for conve-
nience because the developed service may have to be
restarted quite often for testing purposes.

2.2 Sockets API Extensions

Basic Socket Interface Extensions for IPv6 [5] de-
fine additional data structures and constants, including
AF_INET and sockaddr_in6. The extensions also de-
fine new DNS resolver functions, getnameinfo() and
getaddrinfo(), as the old ones, gethostbyname() and
gethostbyaddr (), are now obsoleted. The older ones
are not thread safe and offer too little control over the
resolved addresses. The specification also defines IPv6-
mapped IPv4 addresses to improve IPv6 interoperabil-

ity.
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An IPv6 application can typically face a choice of mul-
tiple source and destination IPv6 pairs to choose from.
Picking a pair may not be a simple task because some of
the pairs may not even result in a working connectivity.
IPv6 Socket API for Source Address Selection [13] de-
fines extensions that restrict the local or remote address
to a certain type, for instance, public or temporary IPv6
addresses. The extensions include new socket options to
restrict the selection local addresses when, e.g., a client
application connects without specifying the source ad-
dress. For remote address selection, new flags for the
getaddrinfo() resolver are proposed. The extensions
mainly affect client-side connectivity but can affect also
at the server side when UDP is being used.

The Datagram Congestion Control Protocol (DCCP) is
similar to TCP but does not guarantee in-order delivery.
An application can use it - with minor changes - by using
SOCK_DCCP constant when a socket is created.

Multihoming is becoming interesting because most of
the modern handhelds are equipped with, e.g., 3G and
WLAN interfaces. In the scope of this work, we as-
sociate “multihoming” to hosts with multiple IP ad-
dresses typically introduced by multiple network inter-
faces. Multihoming could be further be further char-
acterized whether it occurs in the initial phases of the
connectivity or during established communications. All
of the statistics in this article refer to the former case be-
cause the latter requires typically some extra logic in the
application or additional support from the lower layers.

When written correctly, UDP-based applications can
support multihoming for initial connectivity and the suc-
cess of this capability is investigated in detail in this ar-
ticle. However, supporting multihoming in TCP-based
applications is more difficult to achieve and requires ad-
ditional extensions. A solution at the application layer
is to recreate connections when they are rendered bro-
ken. At the transport layer, Multipath TCP [4] is a TCP-
specific solution to support multihoming in a way that is
compatible with legacy applications with optional APIs
for native applications [16].

The Stream Control Transmission Protocol (SCTP, [21])
implements an entirely new transport protocol with
full multihoming capabilities. In a nutshell, SCTP of-
fers a reliable, congestion-aware, message-oriented, in-
sequence transport protocol. The minimum requirement
to enable SCTP in an existing application is to change
the protocol type in socket() call to SCTP. However,



10 e Sockets and Beyond: Assessing the Source Code of Network Applications

the application can only fully harness the benefits of the
protocol by utilizing the sendmsg() and recvmsg() in-
terface. Also, the protocol supports sharing of a single
socket descriptor for multiple simultaneous communi-
cation partners; this requires some additional logic in
the application.

Transport-independent solutions operating at the lower
layers include Host Identity Protocol [11] and Site Mul-
tihoming by IPv6 Intermediation (SHIM6) [12]. In
brief, HIP offers support for end-host mobility, mul-
tihoming and NAT traversal. By contrast, SHIM6 is
mainly a multihoming solution. From the API perspec-
tive, SHIMG offers backwards compatible identifiers for
IPv6—in the sense that they are routable at the network
layer—whereas the identifiers in HIP are non-routable.
HIP has its own optional APIs for HIP-aware applica-
tions [9] but both protocols share the same optional mul-
tihoming APIs [8].

Name-based Sockets are a work-in-progress at the IETF
standardization forum. While the details of the spec-
ification [23] are rather immature and the specification
still lacks official consent of the IETF, the main idea is to
provide extensions to the Sockets API that replace IP ad-
dresses with DNS-based names. In this way, the respon-
sibility for the management of IP addresses is pushed
down in the stack, away from the application layer.

2.3 NAT Traversal

Private address realms [18] were essentially introduced
by NATs, but Virtual Private Networks (VPNs) and
other tunneling solutions can also make use of private
addresses. Originally, the concept of virtual address
spaces was created to alleviate the depletion of the IPv4
address space, perhaps, because it appeared that most
client hosts did not need publicly-reachable addresses.
Consequently, NATs also offer some security as a side
effect to the client side because they discard new incom-
ing data flows by default.

To work around NATSs, Teredo [7] offers NAT traver-
sal solution based on a transparent tunnel to the applica-
tions. The protocol tries to penetrate through NAT boxes
to establish a direct end-to-end tunnel but can resort to
triangular routing through a proxy in the case of an un-
successful penetration.

2.4 Transport Layer Security

Transport Layer Security (TLS) [22] is a cryptographic
protocol that can be used to protect communications
above the transport layer. TLS, and its predecessor Se-
cure Socket Layer (SSL), are the most common way to
protect TCP-based communications over the Internet.

In order to use SSL or TLS, a C/C++ application is usu-
ally linked to a library implementation such as OpenSSL
or GNU TLS. The application then calls the APIs of
the TLS/SSL-library instead of using the APIs of the
Sockets API. The functions of the library are wrappers
around the Sockets API, and are responsible for secur-
ing the data inside the TCP stream.

2.5 Network Frameworks

The Sockets API could be characterized as somewhat
complicated and error-prone to be programmed directly.
It is also “flat” by its nature because it was not designed
to accommodate object-oriented languages. For these
reasons, a number of libraries and frameworks have
been built to hide the details of the Sockets API and
to introduce object-oriented interfaces. The Adaptive
Communication (ACE) [17] is one such framework.

ACE simplifies the development of networking applica-
tions because it offers abstracted APIs based on net-
work software patterns observed in well-written soft-
ware. Among other things, ACE includes network
patterns related to connection establishment and ser-
vice initialization in addition to facilitating concurrent
software and distributed communication services. It
supports asynchronous communications by inversion of
control, i.e., the framework takes over the control of the
program flow and it invokes registered functions of the
application when needed.

Boost::Asio is another open source C++ library that of-
fers high-level networking APIs to simplify develop-
ment of networking applications. Boost::Asio aims to
be portable, scalable, and efficient but, most of all, it
provides a starting point for implementing further ab-
straction. Several Boost C++ libraries have already been
included in the C++ Technical Report 1 and in C++11.
In 2006 a networking proposal based on Asio was sub-
mitted to request inclusion in the upcoming Technical
Report 2.
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Java provides an object-oriented framework for the cre-
ation and use of sockets. Java.net package (called
Java.net from here on) supports TCP (Socket class) and
UDP (Datagram class). These classes implement com-
munication over an IP network.

Twisted is a modular, high-level networking framework
for python. Similarly to ACE, Twisted is also based
on inversion of control and asynchronous messaging.
Twisted has built-in support for multiple application-
layer protocols, including IRC, SSH and HTTP. What
distinguishes Twisted from the other frameworks is
the focus on service-level functionality based adapt-
able functionality that can be run on top of several
application-layer protocols.

3 Materials and Methods

We collected information related to the use of Sockets
API usage in open-source applications. In this article,
we refer to this information as indicators. An indi-
cator refers to a constant, structure or function of the
C language. We analyzed the source code for indica-
tors in a static way (based on keywords) rather than dy-
namically.! The collected set of indicators was limited
to networking-related keywords obtained from the key-
word indexes of two books [20, 15].

We gathered the material for our analysis from all of the
released Long-Term Support (LTS) releases of Ubuntu:
Dapper Drake 6.06, Hardy Heron 8.04, Lucid Lynx
10.04. Table 1 summarizes the number of software
packages gathered per release. In the table, “patched”
row expresses how many applications were patched by
Ubuntu.

LR I3 LR T3

We used sections “main”, “multiverse”, “universe” and
“security” from Ubuntu. The material was gathered on
Monday 7th of March 2011 and was constrained to soft-
ware written using the C language. Since our study was
confined to networking applications, we selected only
software in the categories of “net”, “news”, “comm”,
“mail”, and “web” (in Lucid, the last category was re-

named “httpd”).

We did not limit or favor the set of applications, e.g.,
based on any popularity metrics. We believed that an

! Authors believe that a more dynamic or structural analysis
would not have revealed any important information on the issues
investigated

Dapper Hardy Lucid
Total 1,355 1,472 1,147
Patched 1,222 1,360 979
C 721 756 710
C++ 57 77 88
Python 126 148 98
Ruby 19 27 13
Java 9 10 8

Other 423 454 232

Table 1: Number of packages per release version.

application was of at least of some interest if the ap-
plication was being maintained by someone in Ubuntu.
To be more useful for the community, we analyzed
all network applications and did not discriminate some
“unpopular” minorities. This way, we did not have
to choose between different definitions of popularity—
perhaps Ubuntu popularity contest would have served as
a decent metric for popularity. We did perform an outlier
analysis in which we compared the whole set of appli-
cations to the most popular applications (100 or more
installations). We discovered that the statistical “foot-
print” of the popular applications is different from the
whole. However, the details are omitted because this
contradicted with our goals.

In our study, we concentrated on the POSIX networking
APIs and Berkeley Sockets API because they form the
de-facto, low-level API for all networking applications.
However, we extended the API analysis to OpenSSL to
study the use of security as well. All of these three APIs
have bindings for high-level languages, such as Java and
Python, and can be indirectly used from network appli-
cation frameworks and libraries. As the API bindings
used in other languages differs from those used in C lan-
guage, we excluded other languages from this study.

From the data gathered,2 we calculated sums and means
of the occurrences of each indicator. Then we also cal-
culated a separate “reference” number. This latter was
formed by introducing a binary value to denote whether
a software package used a particular indicator (1) or not
(0), independent of the number of occurrences. The
reference number for a specific indicator was collected
from all software packages, and these reference num-
bers were then summed and divided by the number of
packages to obtain a reference ratio. In other words, the
reference ratio describes the extent of an API indicator

2http ://www.cs.helsinki. fi/u/sklvarjo/LS12/
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with one normalized score.

We admit that the reference number is a very coarse
grained metric; it indicates capability rather than 100%
guarantee that the application will use a specific indica-
tor for all its runs. However, its binary (or “flattened”)
nature has one particular benefit that cancels out an un-
wanted side effect of the static code analysis, but this
is perhaps easiest to describe by example. Let us con-
sider an application where memory allocations and de-
allocations can be implemented in various ways. The
application can call malloc() a hundred times but then
calls free() only once. Merely looking at the volumes
of calls would give a wrong impression about mem-
ory leaks because the application could have a wrapper
function for free() that is called a hundred times. In
contrast, a reference number of 1 for malloc() and O
for free() indicates that the application has definitely
one or more memory leak. Correspondingly, the refer-
ence ratio describes this for the entire population of the
applications.

In our results, we show also reference ratios of com-
bined indicators that were calculated by taking an union
or intersection of indicators, depending on the use case.
With combined indicators, we used tightly coupled in-
dicators that make sense in the context of each other.

4 Results and Analysis

In this section, we show the most relevant statistical re-
sults. We focus on the findings where there is room for
improvement or that are relevant to the presented Sock-
ets API extensions. Then, we highlight the most signif-
icant patterns or key improvements for the networking
applications. Finally, we derive a set of more generic
requirements from the key improvements and see how
they are met in four different network application frame-
works.

4.1 Core Sockets API

In this section, we characterize how applications use
the “core” Sockets API. Similarly as in the background,
the topics are organized into sections on IPv6, DNS,
transport protocols and customization of the networking
stack. In the last section, we describe a multihoming
issue related to UDP.

In the results, the reference ratios of indicators are usu-
ally shown inside brackets. All numeric values are from
Ubuntu Lucid unless otherwise mentioned. Figure 1 il-
lustrates some of the most frequent function indicators
by their reference ratio and the following sections ana-
lyze the most interesting cases in more detail.

4.1.1 IPv6

According to the usage of AF and PF constants, 39.3%
were [Pv4-only applications, 0.3% IPv6-only, 26.9%
hybrid and 33.5% did not reference either of the con-
stants. To recap, while the absolute use of IPv6 was not
high, the relative proportion of hybrid applications sup-
porting both protocols was quite high.

4.1.2 Name Resolution

The obsolete DNS name-look-up functions were refer-
enced more than their modern replacements. The ob-
solete forward look-up function gethostbyname () was
referenced roughly twice as often as its modern replace-
ment getaddrinfo(). Two possible explanations for
this are that either that the developers have, for some
reason, preferred the obsolete functions, or have ne-
glected to modernize their software.

4.1.3 Packet Transport

Connection and datagram-oriented APIs were roughly
as popular. Based on the usage of SOCK_STREAM and
SOCK_DGRAM constants, we accounted for 25.1% TCP-
only and 11.0% UDP-only applications. Hybrid appli-
cations supporting both protocols accounted for 26.3%,
leaving 37.6% of the applications that used neither of
the constants. By combining the hybrids with TCP-only
applications, the proportion of applications supporting
TCP is 51.4% and, correspondingly, 37.3% for UDP. It
should not be forgotten that typically all network appli-
cations implicitly access DNS over UDP by default.

4.1.4 Customizing Networking Stack

While the Sockets API provides transport-layer abstrac-
tions with certain system-level defaults, many applica-
tions preferred to customize the networking stack or to
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Figure 1: The most frequent functions in Ubuntu Lucid

override some of the parameters. The combined ref-
erence ratio of SOCK_RAW, setsockopt(), pcap_pkthdr
and ipq_create_handle() indicators was 51.4%. In
other words, the default abstraction or settings of the
Sockets API are not sufficient for the majority of the ap-
plications.

It is worth mentioning that we conducted a brute-force
search to find frequently occurring socket options sets.
As aresult, we did not find any recurring sets but merely
individual socket options that were popular.

4.1.5 Multihoming and UDP

In this section, we discuss a practical issue related
to UDP-based multihoming, but one which could be
fixed in most applications by the correct use of SO_
BINDTODEVICE (2.3%) socket option. The issue affects
UDP-based applications accepting incoming connec-
tions from multiple interfaces or addresses.

On Linux, we have reason to believe that many UDP-
based applications may not handle multihoming prop-
erly for initial connections. The multihoming problem
for UDP manifests itself only when a client-side appli-
cation uses a server address that does not match with the
default route at the server. The root of the problem lies
in egress datagram processing at the server side.

The UDP problem occurs when the client sends a “re-
quest” message to the server and the server does not
send a “response” using the exact same address pair that
was used for the request. Instead, the sloppy server im-
plementation responds to the client without specifying
the source address, and the networking stack invariably
chooses always the wrong source address - meaning that

the client drops the response as it appears to be arriving
from a previously unknown IP address.

A straightforward fix is to modify the server-side pro-
cessing of the software to respect the original IP address,
and thus to prevent the network stack from routing the
packet incorrectly. In other words, when the server-side
application receives a request, it should remember the
local address of the received datagram and use it explic-
itly for sending the response.

Explicit source addressing can be realized by using
the modern sendmsg() interface. However, a poorly
documented alternative to be used especially with the
sendto() function is the socket option called SO_
BINDTODEVICE. The socket option is necessary because
bind() can only be used to specify the local address for
the ingress direction (and not the egress).

We discovered the UDP problem by accident with iperf,
nc and nc6 software. We have offered fixes to main-
tainers of these three pieces of software. Nevertheless,
the impact of the problem may be larger as a third of
the software in our statistics supports UDP explicitly.
To be more precise, the lack of SO_BINDTODEVICE us-
age affects 45.7% (as an upper bound) of the UDP-
capable software, which accounts for a total of 121
applications. This figure was calculated by finding
the intersection of all applications not using sendmsg()
and SO_BINDTODEVICE, albeit still using sendto() and
SOCK_DGRAM. We then divided this by the number of ap-
plications using SOCK_DGRAM.

4.2 Sockets API Extensions

In this section, we show and analyze statistics on SSL
and the adoption of a number of Sockets API extensions.
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4.2.1 Security: SSL/TLS Extensions

Roughly 10.9% of the software in the data set used
OpenSSL and 2.1% GNU TLS. In this section, we limit
the analysis on OpenSSL because it is more popular.
Unless separately mentioned, we will, for convenience,
use the term SSL to refer both TLS and SSL protocols.
We only present reference ratios relative to the applica-
tions using OpenSSL because this is more meaningful
from the viewpoint of the analysis. In other words, the
percentages account only the 77 OpenSSL-capable ap-
plications and not the whole set of applications.

The applications using OpenSSL consisted of both
client and server software. The majority of the appli-
cations using OpenSSL (54%) consisted of email, news
and messaging software. The minority included net-
work security and diagnostic, proxy, gateway, http and
ftp server, web browsing, printing and database soft-
ware.

The reference ratios of SSL options remained roughly
the same throughout the various Ubuntu releases. The
use of SSL options in Ubuntu Lucid is illustrated in Fig-
ure 2.

The wuse of SSL_get_verify_result() function
(37.7%) indicates that a substantial proportion
of SSL-capable software has interest in obtain-
ing the results of the certificate verification. The
SSL_get_peer_certificate() function (64.9%) is
used to obtain the certificate sent by the peer.

The use of the SSL_CTX_use_privatekey_file() func-
tion (62.3%) implies that a majority of the software is
capable of using private keys stored in files. A third
(27.3%) of the applications use the SSL_get_current_
cipher() function to request information about the ci-
pher used for the current session.

The SSL_accept() function (41.6%) is the SSL equiv-
alent for accept(). The reference ratio of SSL_
connect() function (76.6%), an SSL equivalent for
connect(), is higher than for ssl_accept() (41.6%).
This implies that the data set includes more client-based
applications than server-based. Furthermore, we ob-
served that SSL_shutdown() (63.6%) is referenced in
only about half of the software that also references
SSL_connect (), indicating that clients leave dangling
connections with servers (possibly due to sloppy coding
practices).

We noticed that only 71.4% of the SSL-capable soft-
ware initialized the OpenSSL library correctly. The cor-
rect procedure for a typical SSL application is that it
should initialize the library with SSL_library_init()
function (71.4%) and provide readable error strings
with SSL_load_error_strings() function (89.6%) be-
fore any SSL action takes place. However, 10.4% of
the SSL-capable software fails to provide adequate er-
ror handling.

Only 58.4% of the SSL-capable applications seed the
Pseudo Random Number Generator (PRNG) with RAND_
load_file() (24.7%), RAND_add() (6.5%) or RAND_
seed() (37.7%). This is surprising because incorrect
seeding of the PRNG is considered a common security
pitfall.

Roughly half of the SSL-capable software set the
context options for SSL with SSL_CTX_set_options
(53.3%); this modifies the default behavior of the SSL
implementation. The option SSL_OP_ALL (37.7%) en-
ables all bug fixes.

SSL_OP_NO_SSLV2 option (31.2%) turns off SSLv2 and
respectively SSL_OP_NO_SSLV3 (13.0%) turns off the
support for SSLv3. The two options were usually com-
bined so that the application would just use TLSv]1.

SSL_OP_SINGLE_DH_USE (7.8%) forces the implementa-
tion to re-compute the private part of the Diffie-Hellman
key exchange for each new connection. With the ex-
ception of low-performance CPUs, it is usually recom-
mended that this option to be turned on since it improves
security.

The option SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS
(6.5%) disables protection against an attack on the
block-chaining ciphers. The countermeasure is disabled
because some of the SSLv3 and TLSvl implementa-
tions are unable to handle it properly.

37.7% of the SSL-capable software prefers to use only
TLSv1 (TLSvl_client_method()) and 20.1% of the
SSL-capable software prefers to fall back from TLSv1
to SSLv3 when the server does not support TLSvI.
However, the use of SSL_OP_NO_TLSV1 option indicates
that 7% of the software is able to turn off TLSv1 sup-
port completely. SSL_OP_CIPHER_SERVER_PREFERENCE
is used to indicate that the server’s preference in the
choosing of the cipher takes precedence. SSL_OP_
NO_SESSION_RESUMPTION_RENEGOTIATION indicates the
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Figure 2: The number of occurrences of the most common SSL options

need for increased security as session resumption is dis-
allowed and a full handshake is always required. The
remaining options are workarounds for various bugs.

As a summary of the SSL results, it appears that SSL-
capable applications are interested of the details of the
security configuration. However, some applications ini-
tialize OpenSSL incorrectly and also trade security for
backwards compatibility.

4.2.2 IPvé6-Related Extensions

During the long transition to IPv6, we believe that the
simultaneous co-existence of IPv4 and IPv6 still repre-
sents problems for application developers. For example,
IPv6 connectivity is still not guaranteed to work every-
where. At the client side, this first appears as a prob-
lem with DNS look-ups if they are operating on top of
IPv6. Therefore, some applications may try to look up
simultaneously over IPv4 and IPv6 [25]. After this, the
application may even try to call connect() simultane-
ously over IPv4 and IPv6. While these approaches can
decrease the initial latency, they also generate some ad-
ditional traffic to the Internet and certainly complicate
networking logic in the application.

At the server side, the applications also have to main-
tain two sockets: one for IPv4 and another for IPv6. We
believe this unnecessarily complicates the network pro-
cessing logic of applications and can be abstracted away
by utilizing network-application frameworks.

An immediate solution to the concerns regarding ad-
dress duplication is proposed in RFC4291 [6], which
describes IPv6-mapped IPv4 addresses. The idea is to
embed IPv4 addresses in IPv6 address structures and
thus to provide a unified data structure format for storing
addresses in the application.

Mapped addresses can be employed either manually or
by the use of AI_VAMAPPED flag for the getaddrinfo()
resolver. However, the application first has to explicitly
enable the TPV6_V60NLY socket option (0.1%) before the
networking stack will allow the IPv6-based socket to be
used for IPv4 networking. By default, IPv4 connectivity
with IPv6 sockets is disallowed in Linux because they
introduce security risks [10]. As a bad omen, of the total
six applications referencing the AI_V4MAPPED flag, only
one of them set the socket option as safe guard.

The constants introduced by the IPv6 Socket API for
Source Address Selection [13] are available in Ubuntu
Lucid even though the support is incomplete. The flags
to extend the getaddrinfo() resolver and the proposed
auxiliary functions remain unavailable and only source
address selection through socket options is available.
Nevertheless, we calculated the proportion of IPv6-
capable client-side applications that explicitly choose a
source address. As an upper bound, 66.9% percent ap-
plications choose source addresses explicitly based the
dual use of connect() and bind(). This means that a
majority of IPv6 applications might be potentially inter-
ested of the extensions for IPv6 Socket API for Source
Address Selection.
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4.2.3 Other Protocol Extensions

The use of SCTP was very minimal in our set of ap-
plications and only three applications used SCTP. Net-
perf is a software used for benchmarking the network
performance of various protocols. Openser is a flexi-
ble SIP proxy server. Linux Kernel SCTP tools (lksctp-
tools) can be used for testing SCTP functionality in the
userspace.

As with SCTP, DCCP was also very unpopular. It was
referenced only from a single software package, despite
it being easier to embed in an application by merely us-
ing the SOCK_DCCP constant in the socket creation.

As described earlier, multipath TCP, HIP and SHIM6
have optional native APIs. The protocols can be used
transparently by legacy applications. This might boost
their deployment when compared with the mandatory
changes in applications for SCTP and DCCP.

The APIs for HIP-aware applications [9] may also face
a similar slow adoption path because the APIs require
a new domain type for sockets in the Linux kernel.
While getaddrinfo() function can conveniently look
up “wildcard” domain types, the success of this new
DNS resolver (23.5%) is still challenged by the depre-
cated gethostbyname () (43.3%). SHIMG6 does not face
the same problem as it works without any changes to
the resolver and connections can be transparently “up-
graded” to SHIMG6 during the communications.

The shared multihoming API for HIP- and SHIM6-
aware applications [8] may have a smoother migration
path. The API relies heavily on socket options and little
on ancillary options. This strikes a good balance be-
cause setsockopt() is familiar to application develop-
ers (42.8%) and sendmsg() / recvmsg() with its ancil-
lary option is not embraced by many (7%). The same
applies to the API for Multipath TCP [16] that consists
solely of socket options.

4.2.4 A Summary of the Sockets API Findings and
Their Implications

Table 2 highlights ten of the most important findings in
the Sockets APIs. Next, we go through each of them and
argue their implications to the development of network
applications.

Core Sockets API

1 IPv4-IPv6 hybrids 26.9%
2 TCP-UDP hybrids 26.3%
3 Obsolete DNS resolver 43.3%
4  UDP-based apps with multihoming issue 45.7%
5  Customize networking stack 51.4%
OpenSSL-based applications

6  Fails to initialize correctly 28.6%
7  Modifies default behavior 53.3%
8  OpenSSL-capable applications in total 10.9%
Estimations on IPvé6-related extensions

9  Potential misuse with mapped addresses  83.3%
10 Explicit IPv6 Source address selection 66.9%

Table 2: Highlighted indicator sets and their reference
ratios

Finding 1. The number of hybrid applications support-
ing both IPv4 and IPv6 was fairly large. While this is a
good sign for the deployment of IPv6, the dual address-
ing scheme doubles the complexity of address manage-
ment in applications. At the client side, the application
has to choose whether to handle DNS resolution over
IPv4 or IPv6, and then create the actual connection with
either family. As IPv6 does not even work everywhere
yet, the client may initiate communications in parallel
with IPv4 and IPv6 to minimize latency. Respectively,
server-side applications have to listen for incoming data
flows on both families.

Finding 2. Hybrid applications using both TCP and
UDP occur as frequently as TCP-only applications. Ap-
plication developers seem to write many application
protocols to be run with both transports. While it is pos-
sible to write almost identical code for the two trans-
ports, the Sockets API favors different functions for
the two. This unnecessarily complicates the application
code.

Finding 3. The obsolete DNS resolver was referenced
twice as frequently as the new one. This has negative
implications on the adoption of new Sockets API exten-
sions that are dependent on the new resolver. As con-
crete examples, native APIs for HIP and source address
selection for IPv6 may experience a slow adoption path.

Finding 4. We discovered a UDP multihoming problem
at the server side based on our experiments with three
software included in the data set. As an upper bound,
we estimated that the same problem affects 45.7% of
the UDP-based applications.
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Finding 5. Roughly half of the networking software is
not satisfied with the default configuration of network-
ing stack and alters it with socket options, raw sockets or
other low-level hooking. However, we did not discover
any patterns (besides few popular, individually recurring
socket options) to propose as new compound socket op-
tion profiles for applications.

Findings 6, 7 and 8. Roughly every tenth application
was using OpenSSL but surprisingly many failed to ini-
tialize it appropriately, thus creating potential security
vulnerabilities. Half of the OpenSSL-capable applica-
tions were modifying the default configuration in some
way. Many of these tweaks improved backwards com-
patibility at the expense of security. This opens a ques-
tion why backwards compatibility is not well built into
OpenSSL and why so many “knobs” are even offered to
the developer.?

Finding 9. 1Pv6-mapped IPv4 addresses should not be
leaked to the wire for security reasons. As a solution,
the socket option IPV6_V60NLY would prevent this leak-
age. However, only one out of total six applications
using mapped addresses were actually using the socket
option. Despite the number of total applications using
mapped address in general was statistically small, this
is an alarming sign because the number can grow when
the number of IPv6 applications increases.

Finding 10. IPv6 source address selection lets an appli-
cation to choose the type of an IPv6 source address in-
stead of explicitly choosing one particular address. The
extensions are not adopted yet, but we estimated the
need for them in our set of applications. Our coarse-
grained estimate is that two out of three IPv6 applica-
tions might utilize the extensions.

We have now characterized current trends with C-based
applications using Sockets API directly and highlighted
ten important findings. Of these, we believe findings 3,
4, 6 and 9 can be directly used to improved the exist-
ing applications in our data set. We believe that most of
the remaining ones are difficult to improve without in-
troducing changes to the Sockets API (findings 1, 2, 5)
or without breaking interoperability (finding 7). Also,
many of the applications appear not to need security at
all (finding 8) and the adoption of extensions (finding
10) may just take some time.

3Some of the implementations of SSL/TLS are considered “bro-
ken”; they do not implement at all or fix incorrectly some of the bugs
and/or functionalities in SSL/TLS.

As some of the findings are difficult to adapt to the appli-
cations using Sockets API directly, perhaps indirect ap-
proaches as offered by network application frameworks
may offer easier migration path. For example, the first
two findings are related to management of complexity
in the Sockets API and frameworks can be used to hide
such complexity from the applications.

4.3 Network Application Frameworks

In this section, we investigate four network application
frameworks based the Sockets and POSIX APIL In a
way, these frameworks are just other “applications” us-
ing the Sockets API and, thus, similarly susceptible to
the same analysis as the applications in the previous
sections. However, the benefits of improving a sin-
gle framework transcend to numerous applications as
frameworks are utilized by several applications. The
Sockets API may be difficult to change, but can be eas-
ier to change the details how a framework implements
the complex management of the Sockets API behind its
high-level APIs.

4.3.1 Generic Requirements for Modern Frame-
works

Instead of applying the highlighted findings described
in Section 4.2.4 directly, some modifications were made
due to the different nature of network application frame-
works.

Firstly, we reorganize the analysis “top down” and split
the topics into end-host naming, look up, multiplicity of
names and transport protocols and security. We also be-
lieve that the reorganization may be useful for extending
the analysis in the future.

Secondly, we arrange the highlighted findings according
to their topic. A high-level framework does not have
to follow the IP address oriented layout of the Sockets
API and, thus, we investigate the use of symbolic host
names as well. The reconfiguration of the stack (finding
5) was popular but we could not suggest any significant
improvements on it, so it is omitted. Finally, we split
initiating of parallel connectivity with IPv4 and IPv6 as
their own requirements for both transport connections
and DNS look ups.
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Consequently, the following list reflects the Sockets API
findings as modified requirements for network applica-
tion frameworks:

R1: End-host naming

R1.1 Does the API of the framework support sym-
bolic host names in its APIs, i.e., does the
framework hide the details of hostname-to-
address resolution from the application? If
this is true, the framework conforms to a sim-
ilar API as proposed by Name Based Sockets
as described in section 2.2. A benefit of this
approach is that implementing requirements
R1.2, R2.2, R3.1 and 3.3 becomes substan-
tially easier.

R1.2 Are the details of IPv6 abstracted away from
the application? In general, this requirement
facilitates adoption of IPv6. It could also be
used for supporting Teredo based NAT traver-
sal transparently in the framework.

R1.3 IPv6-mapped addresses should not be present
on the wire for security reasons. Thus, the
framework should manually convert mapped
addressed to regular IPv4 addresses before
passing to any Sockets API calls. Alter-
natively, the frameworks can use the AI_
VAMAPPED option as a safe guard to prevent
such leakage.

R2: Look up of end-host names

R2.1 Does the framework implement DNS look
ups with getaddrinfo()? This is important
for IPv6 source address selection and native
HIP API extensions because they are depen-
dent on this particular function.

R2.2 Does the framework support parallel DNS
look ups over IPv4 and IPv6 to optimize la-
tency?

R3: Multiplicity of end-host names

R3.1 IPv6 source address selection is not widely
adopted yet but is the framework modular
enough to support it especially at the client
side? As a concrete example, the framework
should support inclusion of new parameters

to its counterpart of connect() call to sup-
port application preferences for source ad-
dress types.

R3.2 Does the server-side multihoming for UDP
work properly? As described earlier, the
framework should use SO_BINDTODEVICE op-
tion or sendmsg() /recvmsg() interfaces in a
proper way.

R3.3 Does the framework support parallel
connect() over IPv4 and IPv6 to minimize
the latency for connection set-up?

R4: Multiplicity of transport protocols

R4.1 Are TCP and UDP easily interchangeable?
“Easy” here means that the developer merely
changes one class or parameter but the APIs
are the same for TCP and UDP. It should be
noted that this has also implications on the
adoption of SCTP and DCCP.

R5: Security

R5.1 Does the framework support SSL/TLS?

R5.2 Does the SSL/TLS interface provide reason-
able defaults and abstraction so that the de-
veloper does not have to configure the details
of the security?

R5.3 Does the framework initialize the SSL/TLS
implementation automatically?

4.3.2 ACE

ACE version 6.0.0 denotes one end of a transport-layer
session with ACE_INET_Addr class that can be initiated
both based on a symbolic host name and a numeric
IP address. Thus, the support for IPv6 is transparent
if the developer relies solely on host names and uses
AF_UNSPEC to instantiate the class. ACE also supports
storing of IPv4 addresses in the IPv6-mapped format in-
ternally but translates them to the normal IPv4 format
before returning them to the requesting application or
using on the wire.

In ACE, IP addresses can be specified using strings.
This provides a more unified format to name hosts.

ACE supports getaddrinfo() function and resorts to
getnameinfo() only when the OS (e.g. Windows) does
not support getaddrinfo().



With UDP, ACE supports both connected (class
ACE_SOCK_CODgram) and disconnected communications
(class ACE_SOCK_Dgram). We verified the UDP mul-
tihoming problem with test software included in the
ACE software bundle. More specifically, we managed
to repeat the problem with connected sockets which
means that the ACE library shares the same bug as
iperf, nc and nc6 software as described earlier. Discon-
nected UDP communications did not suffer from this
problem because ACE does not fix the remote com-
munication end-point for such communications with
connect (). It should be also noted that a separate class,
ACE_Multihomed_INET_Addr, supports multiaddressing
natively.

A client can connect to a server using TCP with class
ACE_SOCK_Connector in ACE. The instantiation of the
class supports flags which could be used for extending
ACE to support IPv6 source address selection in a back-
wards compatible manner. While the instantiation of
connected UDP communications does not have a similar
flag, it still includes few integer variables used as binary
arguments that could be overloaded with the required
functionality. Alternatively, new instantiation functions
with different method signature could be defined using
C++. As such, ACE seems modular enough to adopt
IPv6 source address selection with minor changes.

For basic classes, ACE does not support accepting of
communications simultaneously with both IPv4 and
IPv6 at the server side. Class ACE_Multihomed INET_
Addr has to be used to support such behaviour more
seamlessly but it can be used both at the client and server
side.

Changing of the transport protocol in ACE is straight-
forward. Abstract class ACE_Sock_IO defines the basic
interfaces for sending and transmitting data. The class
is implemented by two classes: an application instanti-
ates ACE_Sock_Stream class to use TCP or ACE_SOCK_
Dgram to use UDP. While both TCP and UDP-specific
classes supply some additional transport-specific meth-
ods, switching from one transport to another occurs
merely by renaming the type of the class at the in-
stantiation, assuming the application does not need the
transport-specific methods.

ACE supports SSL albeit it is not as interchangeable
as TCP with UDP. ACE has wrappers around accept ()
and connect() calls in its Acceptor-Connector pattern.
This hides the intricacies of SSL but all of the low-level
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details are still configurable when needed. SSL is ini-
tialized automatically and correctly.

4.3.3 Boost::Asio

Boost::Asio version 1.47.0 provides a class for denot-
ing one end of a transport-layer session called endpoint
that can be initiated through resolving a host name or a
numeric IP. By default, the resolver returns a set of end-
points that may contain both IPv4 and IPv6 addresses.*
These endpoints can be given directly to the connect ()
wrapper in the library that connects sequentially to the
addresses found in the endpoint set until it succeeds.
Thus, the support for IPv6 is transparent if the devel-
oper has chosen to rely on host names. Boost::Asio
can store IPv4 addresses in the IPv6-mapped form. By
default, the mapped format is used only when the de-
veloper explicitly sets the family of the address to be
queried to IPv6 and the query results contain no IPv6
addresses. The mapped format is only used internally
and converted to IPv4 before use on the wire.

Boost::Asio uses POSIX getaddrinfo() when the un-
derlying OS supports it. On systems such as Windows
(older than XP) and Cygwin, Boost::Asio emulates
getaddrinfo() function by calling gethostbyaddr()
and gethostbyname() functions. The resolver in
Boost::Asio includes flags that could be used for imple-
menting source address selection (and socket options are
supported as well).

Boost::Asio does not support parallel IPv4 and IPv6
queries, nor does it provide support for simultaneous
connection set up using both IPv4 and IPv6.

We verified the UDP multihoming problem with exam-
ple software provided with the Boost::Asio. We man-
aged to repeat the UDP multihoming problem with con-
nected sockets which means that the Boost:: Asio library
shares the same bug as iperf, nc and nc6 as described
earlier.

Boost::Asio defines basic interfaces for sending and re-
ceiving data. An application instantiates ip::tcp::
socket to use TCP or ip::udp::socket to use UDP.
While both classes provide extra transport-specific
methods, switching from one transport to another oc-
curs merely by renaming the type of the class at the in-

4IPv6 addresses are queried only when IPv6 loopback is present
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stantiation assuming the application does not need the
transport-specific methods.

Boost::Asio supports SSL and TLS. The initializa-
tion is wrapped into the SSL context creation. In
Boost::Asio, the library initialization is actually done
twice as OpenSSL_add_ss1_algorithms() is a synonym
of SSL_library_init() and both are called sequen-
tially. PRNG is not automatically initialized with RAND_
load_file(), RAND_add() or RAND_seed(), although
Boost::Asio implements class random_device which
can be easily used in combination with RAND_seed() to
seed the PRNG.

4.3.4 Java.net

Java.net in OpenJDK Build b147 supports both auto-
mated connections and manually created ones. Within a
single method that inputs a host name, its API hides re-
solving a host name to an IP address from DNS, creation
of the socket and connecting the socket. Alternatively,
the application can manage all of the intermediate steps
by itself.

The API has a data structure to contain multiple ad-
dresses from DNS resolution. The default is to try a
connection only with a single address upon request, al-
beit this is configurable. The internal presentation of a
single address, InetAddress, can hold an IPv4 or IPv6
address and, therefore, the address family is transpar-
ent when the developer resorts solely on the host names.
The API supports v4_mappedaddress format as an inter-
nal presentation format but it is always converted to the
normal IPv4 address format before sending data to the
network.

Before using IPv6, Java.net checks the existence of the
constant AF_INET6 and that a socket can be associated
with a local IPv6 address. If java.net discovers support
for IPv6 in the local host, it uses the getaddrinfo() but
otherwise gethostbyname () function for name resolu-
tion. DNS queries simultaneously over IPv4 and IPv6
are not supported out-of-the-box. However, the SIP Par-
allelResolver package in SIP communicator® could be
used to implement such functionality.

We verified the UDP multihoming problem with exam-
ple software provided with the java.net. We managed to

Snet.java.sip.communicator.util.dns. ParallelResolver

repeat the UDP multihoming problem with connected
sockets. This means that the java.net library shares the
same bug as iperf, nc and nc6 as described earlier.

Java.net naming convention favors TCP because a
“socket” always refers to a TCP-based socket. If the de-
veloper needs a UDP socket, he or she has to instantiate
a DatagaramSocket class. Swapping between the two
protocols is not trivial because TCP-based communica-
tion uses streams, where as UDP-based communication
uses DatagramPacket objects for I/O.

IPv6 source address selection is implementable in
java.net. TCP and UDP-based sockets could include
a new type of constructor or method, and java has
socket options as well. The method for DNS look ups,
InetAddress.getByName(), is not extensive enough
and would need an overloaded method name for the pur-
pose.

Java.net supports both SSL and TLS. Their details are
hidden by abstraction, although it is possible to config-
ure them explicitly. All initialization procedures are au-
tomatic.

4.3.5 Twisted

With Twisted version 10.2, python-based applications
can directly use host names to create TCP-based con-
nections. However, the same does not apply to UDP;
the application has to manually resolve the host name
into an IP address before use.

With the exception of resolving of AAAA records from
the DNS, IPv6 support is essentially missing from
Twisted. Thus, mapped addresses and parallel connec-
tions over IPv4 and IPv6 remain unsupported due to lack
of proper IPv6 support. Some methods and classes in-
clude “4” suffix to hard code certain functions only to
IPv4 which can hinder IPv6 interoperability.

Introducing IPv6 source address selection to Twisted
would be relatively straightforward, assuming IPv6 sup-
port is eventually implemented. For example, Twisted
methods wrappers for connect() function input host
names. Therefore, the methods could be adapted to in-
clude a new optional argument to specify source address
preferences.

The twisted framework uses gethostbyname () but has
also its own implementation of DNS, both for the client
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and server side. As IPv6 support is missing, the frame-
work cannot support parallel look ups.

The UDP multihoming issue is also present in Twisted.
We observed this by experimenting with a couple of
client and server UDP applications in the Twisted source
package.

TCP and UDP are quite interchangeable in Twisted
when the application uses the Endpoint class because
it provides abstracted read and write operations. How-
ever, two discrepancies exists. First, Creator class
is tainted by TCP-specific naming conventions in its
method connectTCP(). Second, applications cannot
read or write UDP datagrams directly using host names
but first have to resolve them into IP addresses.

Twisted supports TLS and SSL in separate classes.
TLS/SSL can be plugged into an application with rela-
tive ease due to modularity and high-level abstraction of
the framework. The details of SSL/TLS are configurable
and Twisted provides defaults for applications that do
not need special configurations. With the exception of
seeding the PRNG, the rest of the details of TLS/SSL
initialization are handled automatically.

4.3.6 A Summary of the Framework Results

We summarize how the requirements were met by each
of the four frameworks in Table 3. Some of the require-
ments were unmet in all of the frameworks. For exam-
ple, all frameworks failed to support UDP-based mul-
tihoming (R3.2) and parallel IPv4/IPv6 connection ini-
tialization for clients (R3.3). Also, SSL/TLS initializa-
tion (R5.3) was not implemented correctly in all frame-
works. In total, 56 % of our requirements were com-
pletely met in all of the frameworks.

5 Related and Future Work

At least three other software-based approaches to ana-
lyze applications exist in the literature. Camara et al. [3]
developed software and models to verify certain errors
in applications using the Sockets API. Ammons et al. [1]
have investigated machine learning to reverse engineer
protocol specifications from source code based on the
Sockets API. Palix et al. [14] have automatized finding
of faults in the Linux kernel and conducted a longitudi-
nal study.

Req. | ACE Boost::Asio Java.net Twisted
RI.1 | V v W)
R12 | VvV v v

R13 | V v v N/A
R2.1 | V v v

R2.2

R3.1 | VvV v v v
R3.2

R3.3

R4l | v v )
R51 | VvV v v v
R52 | Vv v v v
R53 | VvV ) v )

Table 3: Summary of how the frameworks meet the re-
quirements

We did not focus on the development of automatized
software tools but rather on the discovery of a number
of novel improvements to applications and frameworks
using the Sockets API. While our findings could be fur-
ther automatized with the tools utilized by Camara, Am-
mons and Palix et al., we believe such an investigation
would be in the scope of another article.

Similarly to our endeavors with multihoming, Multiple
Interfaces working group in the IETF tackles the same
problem but in broader sense [2, 24]. Our work supple-
ments their work, as we explained a very specific multi-
homing problem with UDP, the extent of the problem in
Ubuntu Linux and the technical details how the problem
can be addressed by developers.

6 Conclusions

In this article, we showed empirical results based on
a statistical analysis of open-source network software.
Our aim was to understand how the Sockets APIs and its
extensions are used by network applications and frame-
works. We highlighted ten problems with security, IPv6
and configuration. In addition to describing the generic
technical solution, we also reported the extent of the
problems. As the most important finding, we discov-
ered that 28.6% of the C-based network applications in
Ubuntu are vulnerable to attacks because they fail to ini-
tialize OpenSSL properly.

We applied the findings with C-based applications to
four example frameworks based on the Sockets API.
Contrary to the C-based applications, we analyzed the
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frameworks in a top-down fashion along generalized di-
mensions of end-host naming, multiplicity of names and
transports, name look up and security. Consequently, we
proposed 12 networking requirements that were com-
pletely met by a little over half of the frameworks in
total. For example, all four frameworks consistently
failed to support UDP-based multihoming and parallel
IPv4/IPv6 connection initialization for the clients. Also
the TLS/SSL initialization issue was present in some of
the frameworks. With the suggested technical solutions
for Linux, we argue that hand-held devices with multi-
access capabilities have improved support for UDP, the
end-user experience can be improved by reducing la-
tency in IPv6 environments and security is improved for
SSL/TLS in general.
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Abstract

Most commercial embedded devices have been de-
ployed with a single processor architecture. The code
size and complexity of applications running on embed-
ded devices are rapidly increasing due to the emer-
gence of application business models such as Google
Play Store and Apple App Store. As a result, a high-
performance multicore CPUs have become a major
trend in the embedded market as well as in the personal
computer market.

Due to this trend, many device manufacturers have been
able to adopt more attractive user interfaces and high-
performance applications for better user experiences on
the multicore systems.

In this paper, we describe how to improve the real-time
performance by reducing the user waiting time on mul-
ticore systems that use a partitioned per-CPU run queue
scheduling technique. Rather than focusing on naive
load-balancing scheme for equally balanced CPU usage,
our approach tries to minimize the cost of task migration
by considering the importance level of running tasks and
to optimize per-CPU utilization on multicore embedded
systems.

Consequently, our approach improves the real-time
characteristics such as cache efficiency, user responsive-
ness, and latency. Experimental results under heavy
background stress show that our approach reduces the
average scheduling latency of an urgent task by 2.3
times.

Changwoo Min
Sungkyungkwan University
Samsung Electronics
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Younglk Eom
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1 Introduction

Performance improvement by increasing the clock
speed of a single CPU results in a power consump-
tion problems [19, 8]. Multicore architecture has been
widely used to resolve the power consumption problem
as well as to improve performance [24]. Even in embed-
ded systems, the multicore architecture has many advan-
tages over the single-core architecture [17].

Modern operating systems provide multicore aware in-
frastructure including SMP scheduler, synchronization
[16], interrupt load-balancer, affinity facilities [22, 3],
CPUSETS [25], and CPU isolation [23, 7]. These func-
tions help running tasks adapt to system characteristics
very well by considering CPU utilization.

Due to technological changes in the embedded mar-
ket, OS-level load-balancing techniques have been high-
lighted more recently in the multicore based embedded
environment to achieve high-performance. As an exam-
ple, the needs of real-time responsiveness characteristics
[1] have increased by adopting multicore architecture
to execute CPU-intensive embedded applications within
the desired time on embedded products such as a 3D
DTV and a smart phone.

In embedded multicore systems, efficient load-
balancing of CPU-intensive tasks is very important for
achieving higher performance and reducing scheduling
latency when many tasks running concurrently. Thus, it
can be the competitive advantage and differentiation.

In this paper, we propose a new solution, operation zone
based load-balancer, to improve the real-time perfor-
mance [30] on multicore systems. It reduces the user
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Figure 1: Load-balancing operation on Linux

waiting time by using a partitioned scheduling—or per-
CPU run-queue scheduling—technique. Our solution
minimizes the cost of task migration [21] by consid-
ering the importance level of running tasks and per-
CPU utilization rather than focusing on naive CPU load-
balancing for balanced CPU usage of tasks.

Finally, we introduce a flexible task migration method
according to load-balancing operation zone. Our
method improves operating system characteristics such
as cache efficiency, effective power consumption, user
responsiveness, and latency by re-balancing the activi-
ties that try to move specific tasks to one of the CPUs
on embedded devices. This approach is effective on the
multicore-based embedded devices where user respon-
siveness is especially important from our experience.

2 Load-balancing mechanism on Linux

The current SMP scheduler in Linux kernel periodically
executes the load-balancing operation to equally utilize
each CPU core whenever load imbalance among CPU
cores is detected. Such aggressive load-balancing oper-
ations incur unnecessary task migrations even when the
CPU cores are not fully utilized, and thus, they incur
additional cache invalidation, scheduling latency, and
power consumption. If the load sharing of CPUs is
not fair, the multicore scheduler [10] makes an effort to
solve the system’s load imbalance by entering the proce-
dure for load-balancing [11]. Figure 1 shows the overall
operational flow when the SMP scheduler [2] performs
the load-balancing.

At every timer tick, the SMP scheduler determines
whether it needs to start load-balancing [20] or not,
based on the number of tasks in the per-CPU run-queue.
At first, it calculates the average load of each CPU [12].
If the load imbalance between CPUs is not fair, the load-
balancer selects the task with the highest CPU load [13],
and then lets the migration thread move the task to the
target CPU whose load is relatively low. Before mi-
grating the task, the load-balancer checks whether the
task can be instantly moved. If so, it acquires two
locks, busiest->1lock and this_rq->1lock, for syn-
chronization before moving the task. After the suc-
cessful task migration, it releases the previously held
double-locks [5]. The definitions of the terms in Fig-
ure 1 are as follows [10] [18]:

e Rebalance_tick: update the average load of the run-
queue.

e Load_balance: inspect the degree of load imbal-
ance of the scheduling domain [27].

e Find_busiest_group: analyze the load of groups
within the scheduling domain.

e Find_busiest_queue: search for the busiest CPU
within the found group.

e Move_tasks: migrate tasks from the source run-
queue to the target run-queue in other CPU.

e Dequeue_tasks: remove tasks from the external
run-queue.

e Enqueue_tasks: add tasks into a particular CPU.

e Resched_task: if the priority of moved tasks is
higher than that of current running tasks, preempt
the current task of a particular CPU.

At every tick, the scheduler_tick() function calls
rebalance_tick() function to adjust the load of
the run-queue that is assigned to each CPU. At
this time, load-balancer uses this_cpu index of lo-
cal CPU, this_rq, flag, and idle (SCHED_IDLE,
NOT_IDLE) to make a decision. The rebalance_
tick() function determines the number of tasks that
exist in the run-queue. It updates the average load of the
run-queue by accessing nr_running of the run-queue
descriptor and cpu_load field for all domains from the
default domain to the domain of the upper layer. If the
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load imbalance is found, the SMP scheduler starts the
procedure to balance the load of the scheduling domain
by calling 1oad_balance() function.

It is determined by idle value in the sched_domain
descriptor and other parameters how frequently load-
balancing happens. If idle value is SCHED_IDLE,
meaning that the run-queue is empty, rebalance_
tick() function frequently calls load_balance()
function. On the contrary, if idle value is NOT_IDLE,
the run-queue is not empty, and rebalance_tick()
function delays calling load_balance() function. For
example, if the number of running tasks in the run-queue
increases, the SMP scheduler inspects whether the load-
balancing time [4] of the scheduling domain belonging
to physical CPU needs to be changed from 10 millisec-
onds to 100 milliseconds.

When load_balance () function moves tasks from the
busiest group to the run-queue of other CPU, it calcu-
lates whether Linux can reduce the load imbalance of
the scheduling domain. If load_balance() function
can reduce the load imbalance of the scheduling do-
main as a result of the calculation, this function gets pa-
rameter information like this_cpu, this_rq, sd, and
idle, and acquires spin-lock called this_rq->1ock
for synchronization. Then, load_balance() function
returns sched_group descriptor address of the busiest
group to the caller after analyzing the load of the group
in the scheduling domain by calling find_busiest_
group() function. At this time, load_balance()
function returns the information of tasks to the caller to
move the tasks into the run-queue of local CPU for the
load-balancing of scheduling domain.

The kernel moves the selected tasks from the busiest
run-queue to this_rq of another CPU. After turning on
the flag, it wakes up migration/* kernel thread. The
migration thread scans the hierarchical scheduling do-
main from the base domain of the busiest run-queue to
the top in order to find the most idle CPU. If it finds
relatively idle CPU, it moves one of the tasks in the bus-
iest run-queue to the run-queue of relatively idle CPU
(calling move_tasks() function). If a task migration
is completed, kernel releases two previously held spin-
locks, busiest->lock and this_rq->1ock, and fi-
nally it finishes the task migration.

dequeue_task() function removes a particular task in
the run-queue of other CPU. Then, enqueue_task()
function adds a particular task into the run-queue of lo-

cal CPU. At this time, if the priority of the moved task is
higher than the current task, the moved task will preempt
the current task by calling resched_task () function to
gain the ownership of CPU scheduling.

As we described above, the goal of the load-balancing is
to equally utilize each CPU [9], and the load-balancing
is performed after periodically checking whether the
load of CPUs is fair. The load-balancing overhead is
controlled by adjusting frequency of load-balancing op-
eration, load_balance() function, according to the
number of running tasks in the run-queue of CPU. How-
ever, since it always performs load-balancing whenever
a load imbalance is found, there is unnecessary load-
balancing which does not help to improve overall sys-
tem performance.

In multicore embedded systems running many user ap-
plications at the same time, load imbalance will occur
frequently. In general, more CPU load leads to more
frequent task migration, and thus, incurs higher cost.
The cost can be broken down into direct, indirect, and
latency costs as follows:

1. Direct cost: the load-balancing cost by checking
the load imbalance of CPUs for utilization and
scalability in the multicore system

2. Indirect cost: cache invalidation and power con-
sumption

(a) cache invalidation cost by task migration
among the CPUs

(b) power consumption by executing more in-
structions according to aggressive load-
balancing

3. Latency cost: scheduling latency and longer non-
preemptible period

(a) scheduling latency of the low priority task be-
cause the migration thread moves a number of
tasks to another CPU [29]

(b) longer non-preemptible period by holding the
double-locking for task migration

We propose our operation zone based load-balancer in
the next section to solve those problems.
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Figure 2: Flexible task migration for low latency

3 Operation zone based load-balancer

In this section, we propose a novel load-balancing
scheduler called operation zone based load-balancer
which flexibly migrates tasks for load-balancing based
on load-balancing operation zone mechanism which
is designed to avoid too frequent unnecessary load-
balancing. We can minimize the cost of the load-
balancing operation on multicore systems while main-
taining overall CPU utilization balanced.

The existing load-balancer described in the previ-
ous section regularly checks whether load-balancing is
needed or not. On the contrary, our approach checks
only when the status of tasks can be changed. As illus-
trated in Figure 2, operation zone based load-balancer
checks whether the task load-balancing is needed in the
following three cases:

o A task is newly created by the scheduler.
e An idle task wakes up for scheduling.

e A running task belongs to the busiest scheduling
group.

The key idea of our approach is that it defers load-
balancing when the current utilization of each CPU is
not seriously imbalanced. By avoiding frequent unnec-
essary task migration, we can minimize heavy double-
lock overhead and reduce power consumption of a bat-
tery backed embedded device. In addition, it controls
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Figure 3: Load-balancing operation zone

the worst-case scenario: one CPU load exceeds 100%
even though other CPUs are not fully utilized. For ex-
ample, when a task in idle, newidle, or noactive
state is rescheduled, we can make the case that does not
execute 1load_balance() routine.

3.1 Load-balancing operation zone

Our operation zone based load-balancer provides load-
balancing operation zone policy that can be configured
to the needs of the system. As illustrated in Figure 3, it
provides three multicore load-balancing policies based
on the CPU utilization. The cold zone policy loosely
performs load-balancing operation; it is adequate when
the CPU utilization of most tasks is low.

On the contrary, the hot zone policy performs load-
balancing operation very actively, and it is proper under
high CPU utilization. The warm zone policy takes the
middle between cold zone and hot zone.

Load-balancing under the warm zone policy is not triv-
ial because CPU utilization in warm zone tends to fluc-
tuate continuously. To cope with such fluctuations,
warm zone is again classified into three spots—high,
mid, and low—and our approach adjusts scores based
on weighted values to further prevent unnecessary task
migration caused by the fluctuation. We provide /proc
interfaces for a system administrator to configure the
policy either statically or dynamically. From our experi-
ence, we recommend that a system administrator config-
ures the policy statically because of system complexity.



3.1.1 Cold zone

In a multicore system configured with the cold zone pol-
icy, our operation zone based load-balancing scheduler
does not perform any load-balancing if the CPU utiliza-
tion is in cold zone, 0~30%. Since there is no task mi-
gration in cold zone, a task can keep using the currently
assigned CPU. Kernel performs the load-balancing only
when the CPU utilization exceeds cold zone.

This policy is adequate where the CPU utilization of a
device tends to be low except for some special cases. It
also helps to extend battery life in battery backed de-
vices.

3.1.2 Hot zone

Task migration in the hot zone policy is opposite to that
in the cold zone policy. If the CPU utilization is in hot
zone, 80~100%, kernel starts to perform load-balancing.
Otherwise, kernel does not execute the procedure of
load-balancing at all.

Under the hot zone policy, kernel defers load-balancing
until the CPU utilization reaches hot zone, and thus, we
can avoid many task migrations. This approach brings
innovative results in the multicore-based system for the
real-time critical system although the system throughput
is lost.

3.1.3 Warm zone

In case of the warm zone policy, a system administrator
chooses one of the following three spots to minimize the
costs of the load-balancing operation for tasks whose
CPU usage is very active.

e High spot (80%): This spot has the highest CPU
usage in the warm zone policy. The task of high
spot cannot go up any more in the warm zone pol-

icy

e Low spot (30%): This spot has the lowest CPU us-
age in the warm zone policy. The task of low spot
cannot go down any more in the warm zone policy.

e Mid spot (50%): This spot is in between high spot
and low spot. The weight-based dynamic score ad-
justment scheme is used to cope with fluctuations
of CPU utilization.

2012 Linux Symposium e 29

Iproc/sys/kernel/bal_cpus_avg_enable=1

Warm zone (Mid spot) Warm zone (High spot)

I
H

' CPUD Utilization 50% CPUD Utilization 50%

'

'

Lo Torocrecccsccmcsmcsaceasaol | bheceecieeeseesesseseeeasea-
FSSISIIIISIISIIIISIISIIIISIISL | COSCUSoUSoUooIooIooooIoooon,
,

'

v | cPuL Utilization 85% cPU1 Utilization 85%

: Task Migration O Task Migration X
Yorssosossssrrrirrrooooossrss, | Rrmmsscssooosrrrborooooooror
: .

'

1| cpu2 Utilization 25% cPU2 Utilization 25%

:

L R L e
D Y yivivivipiylplplylplylyiplylyiptplylplplptlplplylo)
,

i | cpus Utiization 55% cPU3 Utiization 55%

'

:

Lememcececcccccecscesceeea—a-

...........................

if(CPUs Average Usage 53.75% if (CPUs Average Usage 53.75%
>50%(Normal)) go load-balancing > 80%(High)) go load-balancing
[bal_cpu_avg_enable=1]
[bal_cpu_avg_enable=0]
if(Local CPU1 Usage 85%
> 50%(Normal)) go load-balancing

if (Local CPU1 Usage 85%
> 80%(High)) go load-balancing

Figure 4: Task migration example in warm zone policy

The spot performs the role of controlling the CPU usage
of tasks that can be changed according to weight score.
In the warm zone policy system, weight-based scores
are applied to tasks according to the period of the CPU
usage ratio based on low spot, mid spot and high spot.
The three spots are detailed for controlling active tasks
by users. The CPU usages of tasks have penalty points
or bonus points according to the weight scores.

Although the score of task can increase or decrease,
these tasks cannot exceed the maximum value, high
spot, and go below the minimum value, low spot. If
CPU usage of a task is higher than that of the con-
figured spot in the warm zone policy, kernel performs
load-balancing through task migration. Otherwise, ker-
nel does not execute any load-balancing operation.

For example, we should consider that the CPU utiliza-
tion of quad-core systems is 50%, 85%, 25% and 55%
respectively from CPUO to CPU3 as Figure 4. If the
system is configured in mid spot of the warm zone pol-
icy, the load-balancer starts operations when the aver-
age usage of CPU is over 50%. Kernel moves one of
the running tasks of run-queue in CPU1 with the high-
est utilization to the run-queue of CPU2 with the lowest
utilization.

In case of high spot and the warm zone policy, the load-
balancer starts the operations when the average usage
of CPU is over 80%. Tasks that are lower than the CPU
usage of the warm zone area is not migrated into another
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Figure 5: Weight-based score management

CPU according to migration thread. Figure 4 depicts the
example of load-balancing operations on the warm zone
policy.

Figure 5 shows weight-based load score management
for the warm zone policy system. When the usage period
of CPU is longer than the specified time, five seconds by
default, kernel manages bonus points and penalty points
to give relative scores to the task that utilizes CPU re-
sources continually and actively. Also, kernel operates
the load weight-based warm zone policy to support the
possibility that the task can use the existing CPU con-
tinually.

At this time, tasks that reach the level of the high spot,
stay in the warm zone range although the usage period of
CPU is very high. Through these methods, kernel keeps
the border of the warm zone policy without moving a
task to the hot zone area.

If a task maintains the high value of the usage
of CPU more than five seconds as the default pol-
icy based on /proc/sys/kernel/balance_weight_
{prize|punish}_time, kernel gives the task CPU us-
age score of -5 which means that CPU utilization is
lower. At this point, the CPU usage information of
the five seconds period is calculated by the schedul-
ing element of a task via proc file system. We as-
signed the five seconds by default via our experimen-
tal experience. This value can be changed by us-
ing /proc/sys/kernel/balance_weight_{prize|
punish}_time by the system administrator to support
various embedded devices.

In contrast, if a task consumes the CPU usage of a spot
shorter than five seconds, kernel gives the task CPU us-

age score of +5 which means that CPU utilization is
higher. The task CPU usage score of +5 elevates the
load-balancing possibility of tasks. Conversely, the task
CPU usage score of -5 aims to bring down the load-
balancing possibility of tasks.

The value of the warm zomne policy is static, which
means it is determined by a system administrator with-
out dynamic adjustment. Therefore, we need to identify
active tasks that consume the usage of CPUs dynami-
cally. The load weight-based score management method
calculates a task’s usage in order that kernel can con-
sider the characteristics of these tasks. This mechanism
helps the multicore-based system manage the efficient
load-balancing operation for tasks that have either high
CPU usage or low CPU usage.

3.2 Calculating CPU utilization

In our approach, the CPU utilization plays an im-
portant role in determining to perform load-balancing.
In measuring CPU utilization, our approach provides
two ways: calculating CPU utilization for each CPU
and averaging CPU utilization of all CPUs. A sys-
tem administrator also can change behaviors through
proc interface, /proc/sys/kernel/balance_cpus_
avg_enable. By default, kernel executes task migra-
tion depending on the usage ratio of each CPU.

If a system administrator selects /proc/system/
kernel/balance_cpus_avg_enable=1 parame-
ter for their system, kernel executes task migration
depending on the average usage of CPUs.

The method to compare load-balancing by using the av-
erage usage of CPUs, helps to affinitize the existing
CPU as efficiently as possible for some systems. The
system needs the characteristics of CPU affinity [14]
although the usage of a specific CPU is higher than
the value of the warm zone policy, e.g. CPU-intensive
single-threaded application in the most idle systems.

4 Evaluation

4.1 Evaluation scenario

Figure 6 shows our evaluation scenario to measure the
real-time characteristics of running tasks in multicore
based embedded systems. In this experiment, we mea-
sured how scheduling latency of an urgent task would
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while t(ue o bin/dd fdev/zer oF-biglle by=1024000 count=1024; done & e
while true’ - g0 sl Luckbenl Sleep 5. done 20
ckbencl

while true; do /s
_ (cd 1t1 -full-20120401; while trie; do /runalltests.sh -x 40; done &)

(#Tomaxmuze CPUs Loa
/bm/ ing -1 100000 -q - 510 ~flocalhost & ot -
m/pmg -1 100000 -q -s 10 -flocalhost & g @D
-1 100000 -q -s 10 -flocalhost & G20
/bin/ping -1 100000 -q -s 10 -flocalhost &
/bin/ping -1 100000 -q -s 10 -flocalhost &

Stress condition
for worst-case
(no-affinity)

.

(# To maXinize 'O Load ASAP

far cwrEtestl gz Mm2.6X & ‘g
tar ovzf test2.tez /linux-2.6.X & y
tar ovzt test3 ez /linux-2.6.X & S
\__ far ovzfiestdilez Minux-2.6.X &
[ # Caleulate the usage of disk for CPU & /O load JS @ ]) http://rt.wiki kemel.org

Figure 6: Evaluation scenario to measure scheduling la-
tency

be reduced under very high CPU load, network stress,
and disk I/O.

To measure scheduling latency, we used cyclictest util-
ity of rt-test package [28] which is mainly used to
measure real-time characteristics of Redhat Enterprise
Linux (RHEL) and real-time Linux. All experiments are
performed in Linux2.6.32 on IntelQuadcoreQ9400.

4.2 Experimental result

In Figure 7, we compared the scheduling latency distri-
bution between the existing approach (before) and our
proposed approach (after).

Our approach is configured to use warm zone - high spot
policy. Under heavy background stress reaching to the
worst load to the Quad-core system, we measured the
scheduling latency of our test thread which repeatedly
sleeps and wakes up. Our test thread is pinned to a par-
ticular CPU core by setting CPU affinity [15] and is con-
figured as the FIFO policy with priority 99 to gain the
best priority.

In the figure, X-axis is the time from the test start, and
Y-axis is the scheduling latency in microseconds from
when it tries to wake up for rescheduling after a speci-
fied sleep time. As Figure 7 shows, the scheduling la-
tency of our test thread is reduced more than two times:
from 72 microseconds to 31 microseconds on average.

In order to further understand why our approach reduces
scheduling latency more than two times, we traced the
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Figure 7: Comparison of scheduling latency distribution

caller/callee relationship of all kernel function during
the experiment by using Linux internal function tracer,
ftrace [26].

The analysis of the collected traces confirms three: first,
the scheduling latency of a task can be delayed when mi-
gration of other task happens. Second, when task migra-
tion happens, non-preemptible periods are increased for
acquiring double-locking. Finally, our approach can re-
duce average scheduling latency of tasks by effectively
removing vital costs caused by the load-balancing of the
multicore system.

In summary, since the migration thread is a real-time
task with the highest priority, acquiring double-locking
and performing task migration, the scheduling of the
other tasks can be delayed. Since load imbalance fre-
quently happens under a heavily loaded system with
many concurrent tasks, the existing very fair load bal-
ancer incurs large overhead, and our approach can re-
duce such overhead effectively.

Our operation zone based load-balancer performs load-
balancing based on CPU usage with lower overhead
while avoiding overloading to a particular CPU that can
increase scheduling latency. Moreover, since our ap-
proach is implemented only in the operating system, no
modifications of user applications are required.

5 Further work

In this paper, we proposed an operation zone based
load-balancing mechanism which reduces scheduling
latency. Even though it reduces scheduling latency, it
does not guarantee deadline for real-time systems where
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the worst case is most critical. In order to extend our
approach to the real-time tasks, we are considering a
hybrid approach with the physical CPU shielding tech-
nique [6] which dedicates a CPU core for a real-time
task. We expect that such approach can improve real-
time characteristics of a CPU intensive real-time task.

Another important aspect especially in embedded sys-
tems is power consumption. In order to keep longer bat-
tery life, embedded devices dynamically turn on and off
CPU cores. To further reduce power consumption, we
will extend our load-balancing mechanism considering
CPU on-line and off-line status.

We experimented with scheduling latency to enhance
the user responsiveness on the multicore-based embed-
ded system in this paper. We have to evaluate various
scenarios such as direct cost, indirect cost, and latency
cost to use our load-balancer as a next generation SMP
scheduler.

6 Conclusions

We proposed a novel operation zone based load-
balancing technique for multicore embedded systems. It
minimized task scheduling latency induced by the load-
balancing operation. Our experimental results using the
cyclictest utility [28] showed that it reduced scheduling
latency and accordingly, users’ waiting time.

Since our approach is purely kernel-level, there is no
need to modify user-space libraries and applications.
Although the vanilla Linux kernel makes every effort to
keep the CPU usage among cores equal, our proposed
operation zone based load-balancer schedules tasks by
considering the CPU usage level to settle the load im-
balance.

Our design reduces the non-preemptible intervals that
require double-locking for task migration among the
CPUs, and the minimized non-preemptible intervals
contribute to improving the software real-time charac-
teristics of tasks on the multicore embedded systems.

Our scheduler determines task migration in a flexible
way based on the load-balancing operation zone. It lim-
its the excess of 100% usage of a particular CPU and
suppresses the task migration to reduce high overhead
for task migration, cache invalidation, and high syn-
chronization cost. It reduces power consumption and
scheduling latency in multicore embedded systems, and

thus, we expect that customers can use devices more in-
teractively for longer time.
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Abstract

Medfield is Intel’s first smartphone SOC platform built
on a 32 nm process and the platform implements sev-
eral key innovations in hardware and software to ac-
complish aggressive power management. It has mul-
tiple logical and physical power partitions that enable
software/firmware to selectively control power to func-
tional components, and to the entire platform as well,
with very low latencies.

This paper describes the architecture, implementation
and key experiences from enabling power management
on the Intel Medfield phone platform. We describe how
the standard Linux and Android power management ar-
chitectures integrate with the capabilities provided by
the platform to provide aggressive power management
capabilities. We also present some of the key learning
from our power management experiences that we be-
lieve will be useful to other Linux/Android-based plat-
forms.

1 Introduction

Medfield is Intel’s first smartphone SOC built on a
32 nm process. The platform implements several key
innovations in hardware and software to accomplish ag-
gressive power management. It has multiple logical and
physical power partitions that enable software/firmware
to selectively control power to functional components
and to the entire platform as well, with very low laten-
cies.

Android OS (Gingerbread/Ice Cream Sandwich) sup-
ports Suspend-to-RAM (a.k.a S3) state by building upon
the traditional Linux power management infrastructure
and uses concepts of wake locks (application hints about
platform resource usage) to achieve S3. The power man-
agement infrastructure in Android requires that appli-
cations and services request CPU resources with wake

locks through the Android application framework and
native Linux libraries. If there are no active wake locks,
Android will suspend the system to S3.

While the S3 implementation in Android helps reduce
overall platform power when the device is not actively
in use, S3 state does not satisfy applications that require
always connected behavior (Instant messengers, VoIP,
etc., need to send “keep alive” messages to maintain
their active sessions). Entering S3 will result in freez-
ing these applications and connections timing out so the
sessions will have to be re-established on resume. The
Medfield platform allows such applications to be active
and yet achieve good power numbers through SOix, or
Connected Standby states. The main idea behind SOix
is that during an idle window, the platform is in the low-
est power state as much as possible. In this state, all
platform components are transitioned to an appropriate
lower power state (CPU in Cx state, Memory in Self Re-
fresh, components clock or power gated, etc.). As soon
a timer or wake event occurs, the platform moves into an
“Active state”, only the components that are needed are
turned on, keeping everything else in low power state.
SOix states are completely transparent to user space ap-
plications.

Figure 1 illustrates how SOix states impact platform
power states and how this compares with traditional
ACPI-based power management.

This paper is organized as follows. Section 1 is this
introduction. Section 2 presents a background of the
Linux and Android Power Management architecture.
Section 3 describes the key Intel specific power man-
agement components on Medfield platform to achieve
S3 and SOix. In Section 3, we will describe our experi-
ences with enabling overall Power management, chal-
lenges/issues with handling wake interrupts, handling
suspend/resume/runtime PM in different device drivers,
and some optimizations that we had to implement on
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Figure 1: Platform Power States with SOix and S3

the platform. We believe that some of these learning
will be applicable to other Linux/Android-based SOC
platforms as well.

2 Medfield Platform Power Management Ar-
chitecture

Medfield (or Atom Z2460) is Intel’s first 32 nm smart-
phone SOC; the Atom Saltwell core runs at up to 1.6
GHz with 512KB of L2 cache, a PowerVR SGX 540
GPU at 400 MHz, a dual channel LPDDR2 memory
interface (PoP LPDDR?2 (2 x 32 bit support)), and ISP
from Silicon Hive, additional I/O, and an external Power
Management delivery unit. Figure 2 shows the high
level architecture of the Medfield SOC platform.

The Saltwell CPU is a dual-issue, in-order architecture
with Hyper Threading support. The integer pipeline
is sixteen stages long—the longer pipeline was intro-
duced to help reduce power consumption by lengthen-
ing some of the decode stages and increasing cache la-
tency to avoid burning through the core’s power bud-
get. There are no dedicated integer multiply or divide
units, they are all shared with the floating point hard-
ware. The CPU supports several different operating fre-
quencies and power modes. At the lowest power level is
its C6 state. Here the core and L2 cache are both power
gated with their state saved in a lower power on-die

SRAM. Total power consumption in C6 of the processor
island is effectively zero. In addition to the 512KB L2
cache there is a separate 256KB SRAM which is lower
power and on its own voltage plane. When Saltwell goes
into its deepest sleep state, the CPU state and some L2
cache data gets parked here, allowing the CPU voltage
to be lowered even more than the SRAM voltage. As
expected, with hyperthreading the OS sees two logical
cores to execute tasks on.

2.1 Core Linux Changes for x86 Smartphones

The Medfield platform is not PC-compatible in several
aspects—no BIOS, no ACPI, no legacy devices, no PCI
enumeration in South complex, no real IOAPIC, etc.
Most of these changes are available in the upstream ker-
nel now. Refer to [2], which discusses more details of
the core kernel changes done for x86-based Intel plat-
forms. This section briefly summarizes the key changes.

The following key changes were made to the underlying
kernel in order to minimize changes from existing IA
operating systems, and also provide software program-
ming compatibility for key components of the platform
(such as, PCI enumeration, IOAPIC interrupt controller,
etc.):

1. Simple Firmware Interface (SFI) to replace ACPI
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in order to report standard capabilities like CPU P-
states, GPIOs, etc.

2. PCI Enumeration for South complex devices

3. IOAPIC Emulation

2.1.1 Simple Firmware Interface

Simple Firmware Interface (SFI) is a method for plat-
form firmware to export static tables to the operating
system. Platform firmware prepares SFI tables upon
system initialization for the benefit of the OS (CPU P-
states, GPIOs, for example). The OS consults the SFI ta-
bles to augment platform knowledge that it gets from na-
tive hardware interfaces, such as CPUID and PCI. More
details on SFI can be found in [3].

2.1.2 PCI Enumeration

Penwell north complex devices are true PCI devices
(Graphics, Display, Video encode/decode, ISP), but the
South complex devices are fake PCI devices. All these
south complex devices are enumerated as PCI devices
through a PCI shim (Fake PCI MMCFG space written
by firmware into main memory during platform boot)

in the kernel. The PCI config space contains both true
and fake PCI devices. MMCEFG location is stored in
SFI. Although this mechanism leverages existing device
enumeration mechanism and reuses generic PCI drivers,
this approach has its shortcomings in that it cannot de-
tect device presence automatically. Also, PCI shim is
read only, therefore, cannot handle writes to PCI config
space.

2.1.3 Interrupt Routing and IOAPIC Emulation

Platform specific interrupt routing information is ob-
tained from system firmware via PCI MMCFG space
and SFI tables. Also, the south complex System con-
troller Unit (SCU) maintains IOAPIC redirection tables
that establish mapping between IRQ line and interrupt
vectors.

3 Background: Linux and Android Power
Management

Traditional ACPI-defined low power states for the plat-
form are Hibernate to disk (S4) and Suspend to Ram
(S3). A detailed treatment of the Linux power man-
agement architecture can be found in [5]. The kernel
includes platform drivers responsible for carrying out
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low-level suspend and resume operations required by
particular platforms. The platform drivers are used by
the PM Core, which is itself generic; it runs on a variety
of platforms for which appropriate platform drivers are
available, including ACPI-compatible personal comput-
ers (PCs) and ARM platforms. Additionally, Linux ker-
nel 2.6.33 and beyond mandate that all device drivers
implement Linux Runtime Power Management, which
is a framework through which device drivers can imple-
ment autonomous power management when idle. This
is aggressively used in Medfield platform. On Medfield
Android, we only support S3 and subsequent references
to standby mean only S3.

3.1 Linux Suspend Resume Flow

When the system goes into the S3 state, the phases are:
prepare, suspend, suspend_noirq. This is illus-
trated in Figure 3 and described in detail in the Linux
kernel documentation.

e prepare - This may prepare the device or driver in
some way for the upcoming system power transi-
tion (for example, by allocating additional memory
required for this purpose) but it should not put the
device into a low-power state.

e The suspend methods should quiesce the device,
save the device registers and put it into the ap-
propriate low-power state. It may enable wakeup
events.

e The suspend_noirq phase occurs after IRQ han-
dlers have been disabled, which means that the
driver’s interrupt handler will not be called while
the callback method is running. This method
should save the values of the device’s registers that
weren’t saved previously and will finally put the
device into the appropriate low-power state. Most
device drivers need not implement this callback.
However, bus types allowing devices to share in-
terrupt vectors, like PCI, generally need it.

When resuming from standby or memory sleep, the
phases are: resume_noirq, resume, complete.

e The resume_noirq callback methods should per-
form actions needed before the driver’s interrupt
handler is invoked.

e The resume method should bring the device back
to its operating state so that it can perform normal
I/0.

e The complete method should undo the actions of
the prepare phase.

3.2 Android Power Management Architecture

Android Power Management infrastructure is split
across the User space and Kernel layer. Wake Locks
form a critical part of the framework. A Wake Lock can
be defined as a request by the applications and services
for some of the platform resources (CPU, display, etc.).
The Android Framework exposes power management
to services and applications through the PowerManager
class. All calls from applications to acquire/release
wake locks into Power Management should go through
the Android runtime PowerManager API.

Kernel drivers can register with the Android Power
Manager driver so that they are notified immediately
prior to power down or after power up—drivers must
register early_suspend() and late_resume() han-
dlers, which are called when display power state
changes. Please refer to [1] and [4] for more details.

4 Power Management Architecture in Med-
field

Medfield platform provides fine-tuned knobs for plat-
form level power management and expects the Operat-
ing System Power Manager (OSPM) to direct most of
these power transitions of the subsystem. OS Power
managers like ACPI, APM, etc. traditionally directs
the platform to various power states (S3/S4, for exam-
ple) depending on different power policy set by the user.
In Medfield, the OS Power Manager guides the power
states that the subsystems and CPU need depending on
the Power policy set by the user. The HW then makes
the policy decision. This is done by dedicated Power
Management Units (PMU) that reside on the Platform.
This gives the flexibility of making finer power state
transitions which are normally not possible through tra-
ditional OS power management methods.

4.0.1 Power Management Capabilities

As is well known, the major sources of power dissipa-
tion in CMOS devices, as described in [8] and [9] are:
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Figure 3: Linux Suspend Resume Flow

Switching power or dynamic power and Leakage power.

Switching or dynamic power represents the power re-
quired to charge and discharge circuit nodes. Broadly
speaking, dynamic power depends on supply voltage
(actually the square of supply voltage, V2 f), clock fre-
quency (f), node capacitance C (which in turn, depends
on wire lengths), and switching activity factor (how fre-
quently wires transition from O to 1, or from 1 to 0).
Techniques such as clock gating are used to save en-
ergy by reducing activity factors during a hardware units
idle periods. The clock frequency f, in addition to in-
fluencing power dissipation, also influences the supply
voltage. Typically, higher clock frequencies will mean
maintaining a higher supply voltage. Thus, the com-
bined V2 f portion of the dynamic power equation has
a cubic impact on power dissipation. Strategies such as
dynamic voltage and frequency scaling (DVES) try to
exploit this relationship to reduce (V, f) accordingly.

Leakage power results due to current dissipation even
when devices are not switching. The main reason
behind this leakage is that transistors do not have
ideal switching characteristics, and thereby leak a non-
zero amount of current even for voltages lower than
the threshold voltage. Hence power gating the en-
tire logic (if possible) can ideally reduce the leakage
power; this comes with additional responsibilities of
saving/restoring the state, firewalling, etc.

The power management architecture in Medfield is built
around these ideas aggressively that we can turn off sub-
systems without affecting the end user functionality and

usability of the system. This is enabled by several plat-
form hardware and software changes:

1. On die clock and power gating of subsystems

2. Subsystem active idle states that are OS transparent
as well as driver managed

3. Platform idle states - extending idleness to the en-
tire platform when all devices are idle

Device Power Management Capabilities - D0ix

All components, including the CPU, can be clock or
power gated (individually, or as a combination). The
CPU itself has its usual power states; CO implies full
power, full performance, and C6 is a deep sleep state
where power is shut off to the entire CPU and state is
saved in a small amount of active SRAM. The different
power states supported by the Saltwell CPU are shown
in Table 1.

Traditionally (according to ACPI, for example), sub-
systems/devices can be in active power state (DO)
or in low power state (D1/D2/D3). Most subsys-
tems/platforms implement DO and D3, however, not
many platforms/systems implement really active idle
states, where the platform is active, but subsystems,
even though are idle are in lower power state. In Med-
field, devices can be in one of the following power
states, traditionally called D-states:
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Android
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Figure 4: Android Suspend Resume Flow

Feature COHFM | COLFM | CI1-C2 C4 C6
Core Voltage ON ON ON ON OFF
Core Clock ON ON OFF OFF OFF
L1 Cache ON ON Flushed Flushed OFF
L2 Cache ON ON ON Partial Flushed | OFF
Wakeup time | Active Active Least More Highest

Table 1: Summary of Saltwell CPU Power States

1. DO - Normal operational state

2. DO0il - OS-transparent clock gated state

3. DO0i3 - Driver directed management of the subsys-
tem with no OS control of the subsystem. The de-
vice driver coordinates and manages the subsystem
state (and saves/restores state as needed) for power

transitions.

4. D3 - OS directed management of the subsystem.
The device driver is involved in the management of
the subsystem and it must perform state retention
and restoration in the driver. OSPM will manage
transitioning of power state of the device and the
device driver must be involved in the power state

transition.

All devices will be managed through the runtime
Linux power management infrastructure. Device drivers
must implement DO0i3 (driver managed autonomous
power management) through the Linux Runtime power
management framework, and aggressively (and intelli-
gently) manage the power of their corresponding sub-
Additionally, device drivers must also sup-
port standard Linux suspend/resume callbacks for im-

systems.

plementing D3.



2012 Linux Symposium e 41

4.1 Power Management Architecture

The key components of power management architecture
on Medfield are:

1. Standard cpuidle- and cpufreq-based CPU power
and performance management components (native
drivers and governors).

2. Platform-specific SOix extensions to the cpuidle
driver (intel_idle-based) for Medfield’s Saltwell
CPU

3. Power Manager Unit (PMU) driver - This driver
interfaces with both North and South Complex
Power Management Units (PMUs). It also pro-
vides platform-specific implementation of deep
idle states to the intel_idle-based processor drive
and coordinates with the rest of the platform using
standard kernel Power Management interfaces like
PM_QOS, Linux Runtime PM, etc.

4. PMU Firmware that coordinates power manage-
ment between the Platform PMUs: P-UNIT for
north complex (CPU, Gfx blocks, ISP), and SCU
for south complex (everything else: 10 devices,
storage, comms, etc.)

CPUIDLE driver performs idle state power manage-
ment. It plugs into existing CPU Idle infrastructure and
extends current intel_idle processor driver for the Med-
field CPU (code-named Saltwell). It also exposes new
platform idle states deeper than traditional C6—these
actually correspond to deep idle states for the entire plat-
form, when there is sufficient idleness on the platform.
More details about cpuidle can be found in [6].

CPU frequency is managed by the cpufreq driver. The
Medfield cpufreq-based P-state driver uses the existing
cpufreq infrastructure and exposes the CPU frequency
states to the governors. The most common/generic
cpufreq governor is the ondemand governor. onde-
mand is a dynamic in-kernel cpufreq governor that can
change CPU frequency depending on CPU utilization.
It was first introduced in the linux-2.6.9 kernel. It has
a simplistic policy that provides significant benefits to
the platform by making use of fast frequency-switching
features of the processors to effectively manage their
frequencies depending on the CPU load. For a good
overview of how DVFS support is provided by these
generic Linux modules, please refer to [7].

The PMU driver communicates with the CPU idle
driver, platform device drivers, and the PMU firmware
to coordinate platform power state transitions. Based on
the guidance/hint from idle prediction, the PMU driver
opportunistically extends CPU idleness to rest of the
platform. In order to do this most efficiently, all de-
vice drivers must also be implementing and autonomous
power management through Linux Runtime power man-
agement. The PMU driver provides a platform-specific
callback to the CPU idle framework so that long peri-
ods of idleness can be extended to the entire platform.
Once CPU and devices are all idle, this driver programs
the north and south complex PMUs to implement the re-
quired power transitions. The state we enter is called a
SOix state.

Android S3 states are directly mapped to S0i3, the only
difference being that timers are disabled in S3 state (as
compared to SOix where OS timers can wake up the plat-
form). This is illustrated in Table 2.

PMU driver performs the following actions to emulate
S3 over S0i3 :

1. Program Wake configuration: PMU driver disables
timers as wake source, therefore only events like
USB or Comms events will cause a platform wake

2. Prepare for S3: Here PMU driver triggers CPU
state to be offloaded to a separate SRAM and is-
sues a command to the SCU to enter SOi3.

3. Enter C6 on both CPU threads with MWAIT in-
struction. This will guide the CPU to a package-
level C6, thereby allowing the PMUs to proceed
with SOix entry sequence in firmware.

With the above actions, the platform enters S3 (S0i3
with timers disabled). It is to be noted that the CPU
state that was saved includes everything until the point
of MWAIT instruction execution so that on resume, the
CPU will start executing from the next instruction af-
ter MWAIT. In some cases entering package-level C6
might still fail (break interrupt for example). In that
case, SCU will wait for a timeout period before aborting
the SOix/S3 entry.

On exit from S3 the PMU driver gets an interrupt with
status register specifying the wake source. This is fol-
lowed by the actual device wake interrupt. During the
resume flow, PMU driver thread will resume devices and
trigger thaw_processes() and resume all the devices.
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Islands S0:C0-C6 | Soil | S0i3 | S3
CPU C-state dependent OFF OFF OFF
C6 SRAM, Wake logic ON ON OFF OFF
DDR ON/Self-refresh (SR) SR SR SR
Power Manager ON ON OFF OFF
Graphics ON/power gated (PG) PG OFF OFF
Video Decode ON/power gated (PG) PG OFF OFF
Video Encode ON/power gated (PG) PG OFF OFF
Display Controller ON/power gated (PG) PG OFF OFF
Display ON OFF OFF OFF
Device drivers ON/DOix DO0i3 DO0i3 D3
Applications Active Active | Active | Frozen

Table 2: What is on in SO, SOix, S3?

5 Experiences with Enabling Power Manage-
ment

This section summarizes some of the most important
learning we had enabling power management on the
Medfield platform. Some of this learning are relevant
to other Linux/Android-based SOCs as well.

5.1 Runtime Power Management Implementation
in Device Drivers

All Medfield device drivers implement the Linux Run-
time PM framework, whereby drivers autonomously de-
tect their idleness, and guide their corresponding de-
vices to a low power state. Since runtime PM was rel-
atively a new subject in the Linux, we had to spend a
significant amount of time in making sure that we have
the right implementation in all the drivers. This was one
of the key elements for getting the standby functionality
stable and robust.

1. Idle Detection: Due to the absence of a general
rule to detect idleness, we had to establish a pro-
cess to detect idleness specific to a driver/device.
As an example, 12C driver implemented runtime
PM based on a rule that if the I2C bus is not being
used by devices for a certain idle time, it would put
itself into a low power state. As soon as platform
sensors were enabled (which were hanging off the
I12C bus), none of the sensors allowed to enter a
deep sleep state as they were constantly accessing
the bus. We had to fine tune the idle detection value
to something more optimal that would allow the

5.2

platform to enter extended idle periods.
Recommendation:  Idle
more effective if done through a combination
of hardware capability (OS-visible, device spe-
cific idle/activity counters in HW) and software
(guidance from OS/drivers) that will allow tun-
ing/optimizations.

detection would be

. Runtime PM callbacks: All the PCI drivers had

implemented legacy suspend and resume handlers
and had also implemented runtime PM—these two
cannot co-exist (if not implemented correctly)—
this led to conflict between the device state as
maintained by Runtime PM core and Standard
Linux kernel PM Core (resulting in kernel panics
during suspend/resume phase). This was subse-
quently fixed manually in all such offending device
drivers.

Recommendation: All drivers must implement
power management correctly as mandated by the
Linux kernel recommendations, and must also take
into account the new features being added to the
kernel as the power management support therein
evolves and matures.

Interrupt handling

. Accessing hardware devices after resuming

from DO0ix/S0ix: Device drivers must ensure that
corresponding hardware is powered up before ac-
cessing device registers. For example, when an in-
terrupt lands on the USB driver it would first try
to check if the interrupt was for itself by accessing
registers in the USB host controller. The device
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driver must ensure that the hardware is powered up
before accessing any registers. Specifically, device
drivers were modified to move their hardware ac-
cess code outside the IRQ handler into a kernel bot-
tom half handler and ensuring that the hardware is
powered up by doing a pm_runtime_get_sync()
function.

Recommendation: Wakes and interrupt delivery
logic must be foolproof and the device drivers must
also be intelligent to handle such cases.

. Implementing Correct PM Functions: Some de-
vices can have multiple ways in which interrupts
are triggered—in-band and out-of-band through a
GPIO. One such device was HSI. We observed
that HSI was causing hangs during entry path—
when the driver’s suspend function was invoked,
the driver had suspended its device. But when a
sideband wake occurred just a little later in the
S3 entry phase, it had already suspended and lost
its state, thereby causing a kernel panic. This
was fixed by having the HSI driver implement
suspend_noirq() handler which would ensure
that no interrupts would land unexpectedly.
Recommendation: Device drivers must follow the
Linux kernel power management recommendations
and implement all the relevant callbacks for sus-
pend/resume and runtime PM.

. Enabling Wake Interrupts: We faced issues
with wakes happening from power button, WLAN
wakes, etc, from an OS perspective, the interrupt
seemed to be lost when the driver had resumed
from S3. What was happening was this: when
platform resumes from S3, all resume handlers
get called (in some sequence). If the default ker-
nel IRQ handler does not see any registered IRQ
handler for a specific interrupt (which would have
happened during suspend phase where driver de-
registers its IRQ handler), it handles it by default
and sends an EOI down to the IOAPIC. Thus, such
interrupts were handled by default by the kernel
since the drivers had not resumed yet. The Linux
kernel has support for such conditions—device
drivers can indicate using the TRQF_NO_SUSPEND
flag that its IRQ handler should not be completely
removed in S3. If a driver sets this flag, the ker-
nel will invoke the corresponding IRQ handler on
high priority, even before the resume handlers are
called.

Recommendation: Drivers with wake capability
must use TRQF_NO_SUSPEND flag and implement
suspend_noirq() handlers if there can be mul-
tiple (in-band, out-of-band) wake sources.

5.3 Optimizing for power and performance

A lot of work went into optimizing the platform for
Power and Performance (PnP) for all the important use
cases on the phone. This section summarizes some of
the key experiences and learning.

1. Optimizing platform wakes: A bulk of optimiza-
tions around platform power and performance
came from optimizing the number of wakes that
bring the platform out of standby states. These op-
timizations spanned firmware, device driver, mid-
dleware and applications.

2. S0Oix Latency Optimizations: Optimizing standby
(SOix as well as S3) latencies is a critical com-
ponent of ensuring that the penalty for enter-
ing/exiting standby is amortized by the benefits of
the low power achieved in those states.

3. Performance optimizations: A lot of optimizations
were done across applications and middleware for
fine tuning different aspects of performance. For
example, we fine tuned the ondemand frequency
governor, to get the most optimum thresholds for
the platform. The threshold ratios (80/20, for ex-
ample) correspond to how fast the platform can go
to higher frequencies and the increments of coming
down. We fine tuned the thresholds for the platform
based on different characteristics. While we even-
tually achieved an optimal setting for the platform,
clearly this seems to be in the domain of heuris-
tics and is more empirical rather than really know-
ing what thresholds are best. Currently there are
a lot of ongoing discussions to optimize and over-
haul the cpufreq and ondemand governor infras-
tructure. For future platforms, we believe this is a
good area to invest and optimize.

5.4 Tools

All of the above fixes and optimizations would not have
been possible without proper hardware and software
tools.
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1. Voltage rail level analysis: A setup with a detailed
data acquisition system (DAQ) to acquire rail level
power consumption is a MUST when we are deal-
ing with power optimization of handheld devices.
Many of the above analysis and optimization was
done with such a setup.

2. Tools like ftrace and powertop: Ftrace and
Powertop are tools which are already in use within
the Linux community. The former helps us with
profiling the code which causes CPU activity and
the latter helps us in analyzing the wake sources
(both software and hardware).

There were also internal tools that helped for de-
bugging, analyzing device DOix residencies, mem-
ory bandwidth/utilization, etc.

6 Summary

This paper described the architecture, implementation
and key learning from enabling aggressive power man-
agement on Medfield. The paper explained the standard
Linux and Android Power Management architecture and
the key architectural enablers for aggressive power man-
agement on Medfield—standard Android PM (S3) as
well as SOix, Intel’s innovation in HW/SW that enables
aggressive low power idle states. Finally we presented
some of the key learning from platform-wide power
management enabling and optimizations that we believe
are important to other SOCs.

7 Acknowledgments

Many teams in Intel have been instrumental in en-
abling Power Management on Medfield in various
phases of architecture, design, pre- and post-silicon
validation, software integration and optimization, etc.
The authors would like to acknowledge the follow-
ing individuals/teams (in no particular order): Bruce
Fleming, Belli Kuttanna, Ajaya Durg, Ticky Thakkar,
Randy Hall, Kalyan Muthukumar, Padma Apparao,
Richard Quinzio, the entire Power management and
power/performance team, Robert Karas, Jon Brauer,
Sreedhara DS, Abhijit Kulkarni, Srividya Karumuri,
Pramod HG, Rupal Parikh, Ryan Pinto, Mark Gross,
Yanmin Zhang, Nicolas Roux, Pierre Tardy, Christophe
Fiat and many others who have helped out in different
phases/aspects of Power Management debug/enabling.

References

[1] Android Developer Reference,
http://developer.android.com

[2] Jacob Pan, Porting the Linux kernel to x86 MID
Platforms, Embedded Linux Conference 2010.

[3] Simple Firmware Interface,
http://www.simplefirmware.org

[4] R. Wysocki, Technical background of the
Android Suspend Blockers Controversy,

http://www.lwn.net/images/pdf/suspend_blockers.pdf.

[5] L. Brown, R. Wysocki, Suspend to RAM in
Linux, In Proceedings of the Ottawa Linux
Symposium 2008.

[6] V. Pallipadi, A. Belay, S, cpuidle: do nothing,
efficiently, In Proceedings of the Ottawa Linux
Symposium 2007.

[7] V. Pallipadi, A. Starikovskiy, The ondemand
governor: past, present and future, In
Proceedings of Linux Symposium, 2006.

[8] A. Chandrakasan, S. Sheng, and R. Brodersen,
Low-power CMOS digital design, 1992.

[9] A. Ghosh, S. Devadas, K. Keutzer, and J.
White, Estimation of average switching activity
in combinational and sequential circuits. In
Proceedings of the 29th ACM/IEEE conference
on Design automation, Pages 2534A8259.
IEEE Computer Society Press, 1992.

[10] Android PowerManagement, http:
//developer.android.com/reference/
android/os/PowerManager.html


http://developer.android.com/reference/android/os/PowerManager.html
http://developer.android.com/reference/android/os/PowerManager.html
http://developer.android.com/reference/android/os/PowerManager.html

46 e Experiences with Power Management Enabling on the Intel Medfield Phone




File Systems: More Cooperations - Less Integration.

Alex Depoutovitch
VMWare, Inc.

aldep@vmware.com

Abstract

Conventionally, file systems manage storage space
available to user programs and provide it through the
file interface. Information about the physical location of
used and unused space is hidden from users. This makes
the file system free space unavailable to other storage
stack kernel components due to performance or layering
violation reasons. This forces file systems architects to
integrate additional functionality, like snapshotting and
volume management, inside file systems increasing their
complexity.

We propose a simple and easy-to-implement file system
interface that allows different software components to
efficiently share free storage space with a file system at
a block level. We demonstrate the benefits of the new
interface by optimizing an existing volume manager to
store snapshot data in the file system free space, instead
of requiring the space to be reserved in advance, which
would make it unavailable for other uses.

1 Introduction

A typical operating system storage stack consists of
functional elements that provide many important fea-
tures: volume management, snapshots, high availabil-
ity, data redundancy, file management and more. The
traditional UNIX approach is to separate each piece of
functionality into its own kernel component and to stack
these components on top of one another (Fig. 1). Com-
munication typically occurs only between the adjacent
components using a linear block device abstraction.

This design creates several problems. First, users have
to know at installation time how much space must be
reserved for the file system and for each of the kernel
components. This reservation cannot be easily changed
after the initial configuration. For example, when de-
ploying a file system on top of an LVM volume man-
ager, users have to know in advance if they intend to

Andrei Warkentin
VMWare, Inc.

andreiw@vmware.com

application

file system

.

volume manager

.

software RAID

v

disk

Figure 1: Storage stack

use snapshots, and they must choose the size of the file
system so as to leave enough storage space to hold the
snapshots [2]. This reserved space is not available to
user programs and snapshots cannot grow larger than the
reserved space. The end result is wasted storage capac-
ity and unnecessary over-provisioning. Second, kernel
components underneath the file system have to resort to
storing their data within blocks at fixed locations. For
example, Linux MD software RAID expects its internal
metadata in the last blocks of the block device [4]. Be-
cause of this, MD cannot be installed without relocating
an existing file system !.

To solve the above problems, many modern file sys-
tems, like ZFS, BTRFS, and WAFL, tend to incorpo-
rate a wide range of additional functionality, such as
software RAID arrays, a volume manager, and/or snap-
shots [1, 6, 11]. Integrating all these features in a sin-
gle software component brings a lot of advantages, such
as flexibility and ease of storage configuration, shared
free space pool, and potentially more robust storage al-

IThere is an option to store the metadata on a separate file sys-
tem, but this requires a separate file system to be available.

e 47 o



48 e File Systems: More Cooperations - Less Integration.

location strategies. However, additional functionality
of such “monolithic” file systems results in a complex
and large source code. For example, BTRFS contains
twice as many lines of code as EXT4, and four times
more than EXT3. ZFS source code is even larger. A
large code-base is more error-prone and more difficult
to modify. BTRFS development started in 2008, and the
stable version is yet to be released. In addition, these
file systems put users into an “all or nothing” position:
if one needs BTRFS volume management or snapshot-
ting features, one has to embrace its slower performance
in many benchmarks [13].

We believe that a file system can and should provide
centralized storage space management for stateful com-
ponents of the storage stack without integrating them in-
side the file system code. File systems are ideally suited
for this role as they already implement disk space man-
agement. We propose a new interface, called Block Reg-
ister (BR), to a file system that allows both user-mode
applications and kernel components to dynamically re-
serve storage from a single shared common pool of free
blocks. With BR interface, stateful storage stack com-
ponents do not need to reserve storage space outside the
file system, but can ask the file system to reserve the
necessary space for them.

With the help of the new interface, file systems (such as
EXT4) can benefit from more effective storage resource
utilization, reduced wasted space, and flexible system
configuration, without integrating additional functional-
ity inside the file system. The BR interface also solves
the problem of fixed metadata location, allowing ker-
nel components to dynamically query for the location
of necessary blocks. We demonstrate the benefits of the
BR interface by integrating it with LVM snapshot mech-
anism and allowing snapshots to use file system free
blocks instead of pre-allocated storage space. It is im-
portant that our interface can be exposed by existing file
systems with no changes to their disk layout and mini-
mal or no changes to their code.

2 Block Register Interface

The main purpose of the Block Register interface is to
allow kernel components to ask the file system to reserve
blocks of storage, increase and decrease number of re-
served blocks, query for blocks that have been reserved
before, and release blocks back for future reuse. While

brreserve(name, block_num)

brquery(name, offset, block_num) returns set of
blocks

brexpand(name, block_num)
brtruncate(name, block_num)
brfree(name)

Table 1: Block Register interface functions.

we want this interface to provide both fine-grained con-
trol and extensive functionality, we also make sure that
it can be implemented by any general-purpose file sys-
tem without core changes to its design or its on-disk
layout, and with no or minimal code changes. The in-
terface needs to be generic and easy to use with simple
abstractions. Although we think that kernel components
will be the primary users of the Block Register interface,
user mode applications might benefit from it as well, for
example, to get access to data saved by kernel compo-
nents. Therefore, the Block Register interface has to be
accessible from both user and kernel modes.

The main abstraction we provide is a reservation. A
reservation is a set of blocks on a block device, identi-
fied by their block numbers. These blocks belong to the
caller and can be accessed directly by calling a block
device driver for the device on which the file system is
located. The file system will neither try to use these
blocks itself nor include them in other reservation re-
quests. Each reservation can be uniquely identified by
its name. In the Table 1, we list functions of the Block
Register API. Currently, we define 5 functions. When
a caller needs to reserve a set of blocks, it calls the
brreserve() function, specifying a unique name for
this reservation and the number of blocks requested. In
response, the file system reserves the required the num-
ber of blocks from its pool of free blocks.

When a caller needs to get the list of blocks of an exist-
ing reservation, it calls the brquery () function, passing
it the name of the existing reservation and the range of
blocks required. The range is specified by the offset of
the first block in the query and the number of blocks to
return. An existing reservation can grow and shrink dy-
namically by calls to brexpand () and brtruncate().
brexpand () takes the reservation name and the number
of blocks to expand by, while brtruncate() takes the
physical block to return back to the file system.
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Finally, an existing reservation can be removed by call-
ing the brfree() function. After a reservation is re-
moved, all blocks belonging to the reservation are re-
turned to the file system’s pool of free blocks.

3 Linux Implementation

In this section, we will explore how the Block Register
interface could be implemented in the EXT4 file sys-
tem. Although we use some EXT4- and Linux-specific
features, they are used only as a shortcut in the prototype
implementation of the BR interface.

Although this is not necessary, we decided to repre-
sent Block Register reservations as regular files, using
a common name space for files and reservations. Thus,
brreserve() and brfree() can be mapped to file cre-
ation and deletion. Leveraging the existing file name
space has other advantages with respect to access and
management. Since reservations are basically normal
files, they can be easily accessed with existing file sys-
tem utilities and interfaces. Because the BR interface
is oriented towards block I/O, application data access
through the file system cache results in a data coherence
problem and, therefore, should be prohibited. While
open, reservation files must be also protected from mod-
ifications of file block layout, such as truncation. On
Linux, this can be solved by marking the file as im-
mutable with the S_TMMUTABLE flag.

Having the block reservations being treated as files has
an additional implication. Invoking brquery () for ev-
ery access would have a significant performance impact.
Because of this, the caller of the BR interface may want
to cache the results of previous brquery () calls. Thus,
the file system cannot perform any optimization on the
file, such as defragmentation, copy-on-write, and dedu-
plication. To enforce this requirement, we relied on the
Linux S_SWAPFILE inode flag, used to mark a file as
unmovable.

We implemented brexpand() and brtruncate() us-
ing the fallocate() function implemented in Linux
and EXT4 which allows changing the file size without
performing actual writes to the file. There are, how-
ever, a few specifics of fallocate() behaviour that
have to be taken into consideration. First, fallocate()
makes no guarantees on the physical contiguity of allo-
cated space. This may affect I/O performance. Second,

fallocate() call results in write operations to the un-
derlying block device, thus special care has to be taken
by the caller in order to avoid deadlocks.

brquery() was implemented using the bmap () func-
tion, which returns the physical device block for the
given logical file block. bmap () may also trigger some
read requests to the underlying storage.

4 Snapshots with Block Register Interface

In order to evaluate the Block Register interface, we
modified Linux Logical Volume Manager (LVM) to use
our new interface to allocate storage necessary to cre-
ate and maintain snapshots of block devices [2]. In this
section, we briefly describe the changes we made to the
snapshotting code so that it can make use of the Block
Register interface.

Snapshots preserve the state of a block device at a par-
ticular point in time. They are widely used for many
different purposes, such as backups, data-recovery, or
sandboxing. LVM snapshots are implemented using de-
vice mapper. Snapshots require additional storage to
hold the original version of the modified data. The size
of the additional storage depends on the amount of data
modified during the lifetime of the snapshot. Currently,
users planning to use snapshots create a file system only
on a part of available storage, reserving the rest of it for
snapshot data. The space reserved for snapshots cannot
be used to store files, and its size is fixed after the file
system creation.

We modified dm-snap, the device mapper target respon-
sible for creating snapshots, to use the Block Register
interface to allocate space to store the snapshot data as
needed instead of using space reserved in advance. dm-
snap uses this space to maintain the set of records, called
an exception store, that describe chunks of the origi-
nal device that have been been modified and copied to
the snapshot device as well as the old contents of these
chunks. We created a new exception store persistence
mechanism which uses block reservations instead of a
block device for storing data. We based our code on the
existing exception store code, dm-snap-persistent, and
reused its metadata layout.

In order to create a snapshot of a file system that sup-
ports the Block Register interface, the user specifies the
device with the file system and the name to be used for
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a block reservation on that file system. This reserva-
tion will contain the snapshot data. The new dm-snap
code calls brreserve() for the initial block reserva-
tion. Responding to this request, the file system creates
a new reservation. dm-snap queries blocks allocated to
this reservation and creates a new snapshot using the re-
served blocks.

After a certain amount of changes to the file system, dm-
snap will need additional blocks to maintain the orig-
inal version of the file system’s data. In order to get
these blocks, dm-snap calls brexpand () to request the
new set of blocks. Because expanding the reservation
might cause additional changes to the file system meta-
data, this call cannot be made in the context of a file
system operation, otherwise, deadlock might occur. In
order to avoid the deadlock, the new dm-snap maintains
a pool of available free blocks. If the pool falls below
a “low watermark”, a separate thread wakes up and re-
quests additional blocks through the Block Register in-
terface. The value of the low watermark depends on the
write throughput of the file system.

To improve performance and prevent callbacks to the
file system in the context of an I/O operation, dm-snap
caches the data returned by brquery () in memory and
queries this data with a binary search combined with a
most-recently-used lookup. The implementation of the
cache mechanism has been largely based on the obsolete
dm-loop prototype [3].

During the operating system boot process, before the
file system can be mounted in read-write mode, it has to
be mounted in read-only mode, so LVM can query the
file system for blocks reserved for snapshot data. Af-
ter that, LVM enables the copy-on-write mechanism for
the block device containing the file system and exposes
the snapshots to the user. Once the COW mechanism is
enabled, the file system can be remounted in read-write
mode.

5 Evaluation

In order to evaluate our changes, we incorporated them
into the Linux 3.2.1 kernel and measured their impact on
performance of the file system in the presence of a snap-
shot. We compared our snapshot implementation us-
ing the Block Register interface and the standard LVM
snapshot implementation. The results are presented in
Figure 2. Each measurement shows the performance of

the file system in the corresponding benchmark with an
active snapshot implemented using the Block Register
interface relative to performance of the same benchmark
with a snapshot taken using the standard Linux LVM
implementation. Each result is the average of 3 runs.
Values greater than 100% mean that the Block Register
implementation outperforms the standard Linux imple-
mentation.

In the first set of experiments, we created a S0GB test
file on the file system, took a snapshot of the file system,
and started issuing I/O requests to the file on the original
file system. During each experiment we maintained the
number of outstanding I/O operations (OIO) to be con-
stant (either 1 or 8) and measured the number of com-
pleted I/O operations per second. Each I/O operation
had a size of 4096 bytes. We used direct synchronous
I/O to avoid caching effects. Since read operations do
not involve snapshotting, we did not notice any differ-
ence between our and the standard Linux snapshot im-
plementations. However, our snapshot implementation
behaved better while serving write operations. In ran-
dom write operations, performance improvement varies
from 1% for OIO=1 to 8% for OIO=8. Performance
gain for sequential write operations is more significant:
9% for OIO=1 and 26% for OIO=8.

In the second set of experiments, we created a snapshot
of an empty file system and measured the time necessary
to unpack 5 copies of the Linux 3.2.1 kernel source tree
from an archive to the file system and then delete all
created files. The last column on Figure 2 shows the
result of this experiment. Our implementation performs
on a par with the standard Linux implementation in this
benchmark.

We believe that the performance improvement comes
from a shorter disk head seek span during write oper-
ations with our snapshot implementation. As shown on
Figure 3, copy-on-write operation for a block requires
two additional seek operations. The first is to seek to
the location of the block B2 in the snapshot to write
the original data of the block B1, and the second is to
seek back to the original block B1 to write the new data.
In the standard Linux snapshot implementation, storage
blocks containing snapshot data are located in the re-
served area outside the file system. This forces the disk
to perform seek operations on average over the span of
the whole file system. In our implementation, a file sys-
tem has a chance of placing these two blocks closer to
each other, thus reducing the seek time. Initially, when
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Figure 3: Disk head seek span during copy-on-write op-
eration

we designed the Block Register interface, we did not tar-
get performance improvements. This result comes as a
pleasant side effect and leaves room for future work on
snapshot placement optimizations.

6 Open Issues

The implementation of the Block Register interface
raises several important problems. The best way to solve
them is yet to be identified. In this section, we describe
some of these problems.

So far, we considered only file systems located on a
single partition, disk, or a hardware RAID array. Cur-
rently, BR interface will not work in case of an addi-
tional component, which performs non-linear mapping
of disk blocks, placed between the file system and the
user of the BR interface. An example of such a compo-
nent is a software implementation of RAID 0.

Block reservation and query may result in additional I/O
operations. Therefore, special care has to be taken, e.g.
calling them asynchronously, to avoid deadlock when
calling these functions while serving other I/O requests.
Another solution is to mark I/O caused by reservation
requests with special hints, so that kernel components
can give them priority and guarantee that they will not
be blocked.

Blocks that belong to reservations must be protected
from some file system operations, such as defragmen-
tation or accidental modifications by user-mode appli-
cations.

The block allocation algorithm depends on the file sys-
tem and, therefore, may be sub-optimal in some cases
because file systems are tuned for the most common
case.

Finally, there are some implementation limitations, such
as caching reservation block numbers in memory, which
may become a problem for very large and fragmented
reservations.

7 Future Work

We are going to investigate additions to the BR inter-
face that will allow other components of the storage
stack to interact with a file system without being incor-
porated into it. The goal of this interaction is to achieve
flexibility and functionality similar to those provided by
“monolithic” file systems, like BTRFS or ZFS.

Other kernel block layer components may benefit from
the Block Register interface. We are planning to modify
MD software RAID and DRBD, the Distributed Reli-
able Block Device [8], to use the Block Register inter-
face for storing their metadata within the file system.

Another interesting opportunity comes from our imple-
mentation of reservations as regular files in a file system.
Because of that, they could be accessed (with necessary
precautions, such as taking measures to avoid the cache
coherence problem) by user mode-programs. This al-
lows, for example, to copy or archive contents of the file
system along with snapshots using familiar utilities, like
cp or tar.

We are also going to investigate changes to block alloca-
tion algorithms that allow kernel components to request
reservations in the proximity of a specific location. This
can improve performance of some operations, like copy-
on-write or update of dirty block bitmap, by enabling
proximal I/O [14].

8 Related Work

Some file systems, such as BTRFS, ZFS or WAFL,
implement snapshots internally and also store original
version of the modified data in their own free space
[1, 6, 11]. Our approach uses a similar technique, how-
ever, it does not depend on a particular file system im-
plementation.
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Thin provisioning tries to achieve similar goals, how-
ever, once a block has been written to, a thinly pro-
visioned block device does not have knowledge if this
block contains useful data or not. In order to solve this
problem, a file system has to support additional inter-
faces to the block layer, telling the block layer when
blocks become free. Another problem with thin provi-
sioning is in the duplication of file system functionality
for accounting and allocating storage blocks. This re-
sults in additional levels of indirection and additional
I/O for storing persistent allocation information. Con-
flicting allocation policies may result in less than op-
timal performance, e.g. blocks that file system alloca-
tor tries to allocate continuously might be allocated far
from each other by a thin provisioning code. Examples
of thinly provisioned block device implementations in-
clude Virtual Allocation and dm-thin [5, 12].

Linux provides fibmap and fiemap ioctl calls, which re-
turn information about the physical location of files on
the block device to applications [9]. Wires et al. argue
that growing number of applications can benefit from
the knowledge of the physical location of file data [15].
They present a MapFS interface that allows applications
to examine and modify file system mappings between
individual files and underlying block devices. Block
Register, on the other hand, provides applications and
kernel components access to the free space of the file
system. Block I/O to files using bmap () has been used
in Linux to implement a file-backed swap device [7].

Parallel NFS (pNFS) is an enhancement of the NFS file
system that exposes file layout to the clients in order
to improve scalability [10]. While pNFS work is con-
centrated on large-scale networks, we argue that similar
ideas can be successfully applied in a single-machine
environment.

9 Conclusion

In this paper, we proposed a novel interface that extends
usefulness of the file systems. Our interface is generic
and does not rely on a specific file system implementa-
tion. It allows kernel storage stack components to share
storage space with user files and use the file system to
reserve storage space and locate data. On the example of
storage snapshotting, we showed how our interface can
be used for more flexible and efficient storage utilization
without integrating snapshots inside file system’s code.
In addition, we demonstrate that the new interface may
also help optimize storage I/O performance.
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Abstract

Unix environments have traditionally consisted of
multi-user and diverse multi-computer configurations,
backed by expensive network-attached storage. The re-
cent growth and proliferation of desktop- and single
machine- centric GUI environments, however, has made
it very difficult to share a network-mounted home di-
rectory across multiple machines. This is particularly
noticeable in the context of concurrent graphical logins
or logins into systems with a different installed soft-
ware base.The typical offenders are the “modern” bits of
software such as desktop environments (e.g. GNOME),
services (dbus, PulseAudio), and applications (Firefox),
which all abuse dotfiles.

Frequent changes to configuration format prevents the
same set of configuration files from being easily used
across even close versions of the same software. And
whereas dotfiles historically contained read-once con-
figuration, they are now misused for runtime lock files
and writeable configuration databases, with no effort
to guarantee correctness across concurrent accesses and
differently-versioned components. Running such soft-
ware concurrently, across different machines with a net-
work mounted home directory, results in corruption,
data loss, misbehavior and deadlock, as the majority of
configuration is system-, machine- and installation- spe-
cific, rather than user-specific.

This paper explores a simpler alternative to rewriting all
existing broken software, namely, implementing sepa-
rate host-specific profiles via filesystem redirection of
dotfile accesses. Several approaches are discussed and
the presented solution, the Host Profile File System, al-
though Linux-centric, can be easily adapted to other
similar environments such as OS X, Solaris and the
BSDs.

1 Introduction

The title of this paper has been kindly borrowed from
a BYU UUG email [11], that originally inspired me to
find a solution.

While some systems prefer a centralized approach to
storing user-specific program configuration settings,
Unix-like systems typically keep user preferences un-
der a number of hidden files and directories kept in the
root of the home directory. These hidden files and direc-
tories are distinguished by a leading dot in their name,
and are thus generally called dotfiles. The historical be-
havior is to store read-once configuration to avoid hard-
coded choices, for example .profile stores instruc-
tions for customizing the shell session, .emacs stores
EMACS editor settings, and so on. Perhaps due to Unix-
like systems being used in extensively networked, re-
mote access and shared storage environments, dotfiles
were never meant to be used as a persistent database for
runtime-modified preferences, or as a locking mecha-
nism, since that would have compromised the ability to
log in concurrently into several machines with the same
account stored on the network. There was always some
degree of inflexibility, where the same configuration file
would not work exactly as expected across different ver-
sions of software!, yet the read-only nature of these files
and conservative changes to setting schema meant you
could come up with a valid subset of settings for all ma-
chines and operating systems in use.

The recent rise of ‘“user-friendly”, graphical user
interface-driven and largely PC-centric applications,
however, has resulted in a number of popular software
packages which are incompatible with the typical uni-
versity or corporate heterogeneous environment based
around network-mounted home directories and network
logins. For recent software, such as the GNOME

IE.g., .emacs or .vimrc for the famous editors.

e 55 e
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Desktop Environment, there are no simple solutions
to making them work in an environment where net-
work mounted home directories are a possibility, largely
due to ever evolving and fluid configuration formats.
Software distribution-specific minutiae and breaking
changes across seemingly compatible major revisions of
software, results in an inability to share the same con-
figuration files. In environments where the user can
make some guarantees as to software versioning and
configuration compatibility, concurrent network logins
are largely impossible due to the storage of writeable
preferences and runtime data within dotfiles. Given
that programs such as web browsers, WYSIWYG edi-
tors and desktop environments also manipulate configu-
ration from within the applications, treating their dot-
files as writable databases, you immediately run into
write collisions and configuration corruption when run-
ning concurrent sessions on several machines. Fre-
quently, such software attempts to protect itself by cre-
ating lock files (see Figure 1), which results in denial
of service condition during concurrent logins. Finally,
the trend towards providing services via remote pro-
cedure call mechanisms, seen in software such as IPC
buses and audio daemons like Enlightened Sound Dae-
mon or Pulse Audio, has resulted in storing named pipes,
sockets, authentication cookies, and other unspeakable
things within their dotfiles, with largely predictable re-
sults.

As an example of all of these, logging in to a Red Hat
Linux RHEL 5 and SUSE Linux SLES11 system, con-
currently or not, will result in a corrupted desktop on
both hosts. Both of these systems use some variation of
GNOME 2. A typical file system layout for GNOME 2
configuration can be seen in Figure 2. These issues are
not new nor are they the only ones. Configuration file
collisions across different versions of software, com-
pounded by fragility and expressive verbosity for de-
fault auto-generated settings” has also been a bane for
upgrading such software and its configuration success-
fully.

2 Related Work

The problem space itself is not particularly novel.
Roaming User Profiles and Folder Redirection are two
similar technologies available to Microsoft Windows
users, which specifically deal with networked logins,

2 As seen with GNOME 2, moving into GNOME 3.

$HOME
LA,.mozilla
Lg,firefox
L4,201n26r9.default
lock
.parentlock

Figure 1: Partial structure of Mozilla Firefox configura-
tion.

$HOME
| .esd_auth
| .gconf
| _apps
evolution
gnome-terminal
| desktop
.gnome

| system
http-proxy
proxy

| .gconfd
L saved-state
| __ .gnome

| .gnome2

Figure 2: Typical structure of GNOME 2 configuration.

remote home directories and operating system-specific
profiles [8].

Roaming User Profiles (RUP) synchronize the local
copy of the user profile, consisting of user directories
and a user-specific registry hive holding configuration
entries, with the remote server upon login and logout.
Conflicts are resolved based on modification time, and
the registry hive is treated as an opaque binary ob-
ject, with no fine grained synchronization. The weak-
est spot of the entire mechanism is specifically rely-
ing on a synchronization mechanism and being largely
unaware of what is being synchronized. Copying data
back and forth imposes a noticeable penalty, on the or-
der of minutes, for anything but the most trivial profile,
forcing users to store their data locally. By not relying
on network file access and locking semantics for con-
current access, there is always the potential for silent
data loss caused by the “last modified wins” policy or



by failures during synchronization. Additionally, RUP
is not capable of distinguishing between synchroniz-
ing settings and synchronizing application data. A lack
of fine-grained synchronization of registry keys, and a
lack of state separation between user settings and host-
specific user settings, results in inconsistent profile be-
havior across systems configured with a different set of
applications or with different versions and revisions of
Windows. These limitations are somewhat addressed by
using completely separate profiles for Vista and newer
versions, and by using the Folder Redirection mecha-
nism to alias certain predefined user profile directories®
to network locations, bridging the separate profiles to
the degree that is possible and reducing the usability
“threat” posed by synchronization.

A Roaming User Profile-like approach is not particu-
larly feasible on Linux. Implementing such Windows
semantics would mean using a local cache as the real
home directory, which would then be synchronized un-
der the user’s credentials with the network copy on log-
ging in and logging out. This relies on having a mech-
anism capable of resolving conflicts, and thus aware of
all the possible applications, and having a complex con-
flict resolution policy. Getting this to work smoothly
implies, at the very least, root access to all the machines
affected, and some pretty serious source-level hacks* to
get it all to work in a transparent and fail safe manner.

3 Solutions

Due to the limitations of a synchronization-based de-
sign, the proposed solution for the problems described
above is dotfile access redirection. By redirecting dot-
file accesses to local, host- or operating system- specific
copies, we create separate configuration namespaces,
thus resolving conflicts arising from concurrent accesses
or versioning mismatches. A few approaches involv-
ing access redirection were investigated. The benefits of
separate configuration namespaces are clear. Whatever
the implementation details, a few design goals were kept
in mind. In particular:

e All dotfile accesses are redirected.

e Accesses to dotfiles from each host are redirected
to a special directory, specific for that environment.

3My Documents, etc.
41, of course, mean changes to the authorization and authentica-
tion system, PAM.
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$HOME

| _profiles

| andreiw-1lnx ... Dotfiles
specific to host

andreiw-1nx.
.gnome2

.Xyzzy

Dotfiles
specific to host
andreiw-vmw.

|  andreiw-vmw ...

| __ .gnome2

|  andreiw-vml ...

Dotfiles
specific to host
andreiw-vml.

| .gnome2
| .gnome2
| _.xyzzy ... Visible here because

we are on host
andreiw-1nx.

. ==

Figure 3: View of a home directory on host andreiw-Inx,
with dotfile redirection enabled.

e Mechanism and policy are separate.

e System configuration changes are minimal, ideally
not requiring root access.

With this design there are, by default, no configura-
tion collisions, conflicts and deadlocks. If a few of the
dotfiles can indeed be safely shared, then a few strate-
gic symbolic links can be employed. Learning from
RUP, which suffers both from a poor mechanism and
from mixing both mechanism and policy, the user has
full control over how the redirection target directory is
picked, whether it is by host name, IP or Ethernet ad-
dress, or something completely different. The resulting
mechanism is very flexible. See Figure 3 for a typical
home directory layout with this design. Note that the
visible dotfiles in the home directory root are really lo-
cated inside the environment-specific directory.

One investigated approach was to override standard
C library calls by loading a custom library with the
LD_PRELOAD environment variable, similar to how the
fakeroot package works [3]. The LD_PRELOAD en-
vironment variable signals the dynamic linker to load
a specified library and attempt resolving symbols be-
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sys_open(.vimrc)

4/\«\0 application ‘

open(.vimrc)

‘ [ libc.so

hp_open(redir/.vimrc)

/Lo libprofile.so A\

/ process
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6s_open(redir/.vimrc)
]\A libc.so L4 ‘ ‘
/

( process

application . ‘

kernel

Figure 4: Regular open() path for an application.

fore loading all the libraries required by the loaded ex-
ecutable. Conceptually, calls like open(), chmod(),
unlink() and the rest could be intercepted and mod-
ified to redirect accesses to dotfiles elsewhere (see Fig-
ures 4 and 5). In practice, however, this suffers from a
few problems. The most significant issue is that it works
only for executables dynamically linked to the C library.
Statically linked software would bypass the redirection
completely. Additionally, the method is very fragile and
operating system dependent. The preloaded redirector
would need to be tailored for the specific version of the
C library in the system, as certain functionality is ex-
posed and implemented differently, like the stat () and
mknod family of routines’. The redirector would also
need to properly handle both absolute and relative ac-
cesses to ensure isolation against malicious activity, and
finally, would need to deal with the the *at O° variants,
which operate relative to an opened file descriptor, by
maintaining state about every opened file descriptor.

Another alternative  implementation relied on
ptrace(), coupled with process memory patch-
ing to intercept and redirect actual system calls, as
fakeroot-ng does [3]. This solves the C library
dependence issues along with being able to redirect
calls made by statically-linked executables, yet at a cost
of architecture dependence and severe performance
penalties [5].

The long-term solution would be the FreeDesktop.org
XDG Base Directory Specification [2], which separates

SGNU libe, for example, wraps mknod () with a versioned call to
xmknod(), and stat() as versioned calls to xstat(), fxstat(),
and 1xstat(). See /usr/include/stat.h.

6openat(), faccessat() and similar calls were added in
Linux 2.6.18, and are meant to address race conditions resulting
from opening files in directories other than the current one [7].

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, \

NFS
/home/andreiw

kernel

Figure 5: Modified open() path for an application with
a file system redirector loaded using LD_PRELOAD.

application user data, caching-related, configuration and
runtime-specific application data across four base direc-
tories, specified by environment variables as illustrated
in Figure 6. In an environment where concurrent logins
are expected, some or all of the base directories can be
redirected to locations specific to the OS or host used,
thus avoiding conflicts. However, all affected software
needs to be rewritten to take this specification into ac-
count - a long and dire process with a nebulous future.
In defense, many of the heavyweights such as GNOME,
LibreOffice and the K Desktop Environment are fully
behind the specification. Unfortunately, this does not
help at all with older software and existing systems that
do not follow the specification.

The solution presented in the remainder of this paper,
the Host Profile File System, is built with the Filesys-
tems in Userspace (FUSE) [1] framework and is consid-
ered superior to other possible solutions, both described
above and not’, because:

e It is transparent to the system.

e [t does not rely on kernel changes.

o It does not require any changes to system services
or programs.

TLike a redirfs [4]-based solution, with which a dotfile redirector
could be implemented, yet would require additional kernel drivers
and root access.
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$HOME
|  $XDG_DATA_HOME ... Application data
files.
| appl
Ldatafile
| $XDG_CONFIG_HOME ... Application
settings.
| appl
Lconfigfile

|  $XDG_CACHE_HOME ... Non-essential
data, cache.
| appl

Lcachefile

| $XDG_RUNTIME_DIR ...

Named pipes,
sockets, auth
cookies, locks.
| appl

| lockfile

. s a s

Figure 6: Simplified view of application data and set-
tings under the XDG Base Directory Specification.

e It does not even require root access on the machine
to enable.

e It is not based on fragile interfaces, or have ma-
chine dependence.

e The performance penalty is minimal.

e [t is reasonably portable.

4 FUSE

FUSE is a Linux kernel driver that provides the nec-
essary glue to have a fully user space implementation
of a file system. This takes much of the complexity
out of implementing a file system, due to not having to
worry about complex locking and memory management
interactions. FUSE also has a stable and OS-agnostic
interface with consideration for backwards compatibil-
ity, meaning that maintainability is not an issue. FUSE
has been ported to other Unix systems such as Solaris
and OS X, which makes a FUSE-based solution vi-
able in heterogeneous environments. Because a FUSE-
based file system looks just like any other kind of VFS-
provided file system, applications access it transpar-
ently. And most importantly, FUSE allows a user to

mount their own private file system, meaning that nei-
ther system changes nor root access is necessary.

There is some overhead associated with the lack of di-
rect mmap () semantics and with copying data between
the FUSE driver and FUSE daemons. Tests with a
pass-through FUSE file system have shown a 2% over-
head [6]. A likely more realistic local test run, involv-
ing copying 22GiB of various software repositories, has
shown a difference of under 9%% in total time spent,
which is reasonable, given the end goal of accessing an
NFS-mounted home directory, which wouldn’t be used
for I/0O intensive workloads or large files anyway. FUSE
overhead and performance has been critically analyzed
elsewhere [9] with similar results.

5 The Host Profile File System

The Host Profile File System (HPFS) implements the
previously described dotfile redirection design as a fil-
ter file system, mounted over the user’s home directory.
HPFS is implemented as a FUSE file system, and runs
as a daemon with user privileges. The daemon forwards
all file and directory accesses to the overlaid file sys-
tem, and is able to do so by capturing the file descriptor
of the user’s home directory prior to the actual mount
operation and by leveraging the *at () series of system
calls to perform file I/O relative to an open file descrip-
tor (See Figure 7). Without the *at () series of system
calls this would not have been possible.

Incidentally, in a FUSE-based design we lose most of
the complexity arising in a LD_PRELOAD-based solution,
as all paths passed by FUSE are absolute (see Figure 8).
Handling readdir () is slightly tricky, due to the need
to hide existing dotfiles in the home directory root, and
the need to account for dotfiles inside the redirection
target directory. The current implementation does not
virtualize the structdirent offset field, so applica-
tions relying on caching directory entries returned by the
readdir() system call may see unexpected behavior.
This limitation is not FUSE-specific, and would need
to be addressed even if HPFS functionality were to be
implemented as a VES extension similar to GoboLinux
GoboHide [10], which allows hiding files and directo-
ries from readdir().

The redirection directory is passed to the HPFS dae-
mon as a command line parameter, and is meant to

831m51s versus 34m56s.



60 e “Now if we could get a solution to the home directory dotfile hell!”[11]

sys_open(~/.vimrc) sys_open(~/redir/.vimrc)

‘ e application ‘ ‘ 4 hpfs * ‘

/ process process \

FUSE NFs [/
/home/andreiw /home/andreiw

kernel

Figure 7: HPFS in action. HPFS is mounted over the al-
ready NFS-mounted /home/andreiw, hiding the original
files from the user.

static int hp_open(const char *path,
struct fuse_file_info *fi)
{
/:’.'
* priv.fd contains the real $HOME
* priv.redir_fd points to where
* dotfiles are redirected to.
*/
int fd = priv.fd;

if (*path == ’/’)
path++;

if (!*path)
path = ".";

else if(*path == ’'.")
fd = priv.redir_£d;

fd = openat(fd, path, fi->flags);
if (£d == -1)

return -errno;

fi->fh = £d;
return 0;

Figure 8: open() handler for HPFS.

be derived by the support scripts. Two support scripts
have been developed, one for the Bourne-Again Shell
(.bash_profile), and one for the X11 Window Sys-
tem (.xprofile), to support redirection on both con-
sole and GUI logins. The scripts figure out the redirec-
tion path based on the host name, and enable the HPFS
daemon if need be, while avoiding race conditions. The
current version expects the system and CPU architec-
ture to be the same everywhere, and a more complete
version could thus be more intelligent in the choice of
HPEFS binary to run.

6 Conclusion

HPES is fully functional and transparently usable in a
real environment, and has been in active use for the
past seven months across several machines. Further
improvements would be improving readdir() virtu-
alization, extended attributes support, filtering redirec-
tion by effective user ID (EUID), porting to other Unices
and improving the surrounding ecosystem of scripts and
helpers. Additionally, further performance impact mea-
surements need to be done with HPFS and NFS. HPFS
is open source, and the sources are freely available [12].

7 Acknowledgments

Many thanks to Alexandre Depoutovitch for his feed-
back on the paper, as well as Edward Goggin and Aju
John for their support.

References

[1] Filesystem in userspace, 2011.
sourceforge.net/.

http://fuse.

[2] W. Bastian, R. Lortie, and L. Poetter-
ing. XDG Base Directory Specification.
http://standards. freedesktop.org/
basedir-spec/basedir-spec-latest.html.

[3] Fakeroot-NG. Ptrace 1d_preload compari-
son, 2009. http://fakeroot-ng.lingnu.
com/index.php/PTRACE_LD_PRELOAD_
comparison.

[4] F. Hrbata. RedirFS. 2007. http:
//www.redirfs.org/docs/linuxalt_2007/
paper.pdf.


http://fuse.sourceforge.net/
http://fuse.sourceforge.net/
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
http://fakeroot-ng.lingnu.com/index.php/PTRACE_LD_PRELOAD_comparison
http://fakeroot-ng.lingnu.com/index.php/PTRACE_LD_PRELOAD_comparison
http://fakeroot-ng.lingnu.com/index.php/PTRACE_LD_PRELOAD_comparison
http://www.redirfs.org/docs/linuxalt_2007/paper.pdf
http://www.redirfs.org/docs/linuxalt_2007/paper.pdf
http://www.redirfs.org/docs/linuxalt_2007/paper.pdf

(5]

(8]

[9]

[10]

[11]

[12]

Jorg Zinke. System call tracing overhead, 2009.
http://www.linux-kongress.org/2009/
slides/system_call_tracing_overhead_
joerg_zinke.pdf

S. A. Kiswany, M. Ripeanu, S. S. Vazhkudai, and
A. Gharaibeh. stdchk: A Checkpoint Storage Sys-
tem for Desktop Grid Computing. 2008. http:
//arxiv.org/pdf/0706.3546.pdf.

Linux Programmer’s Manual. openat(2), 2009.
http://man7.org/linux/man-pages/man2/
openat.2.html.

Microsoft Corporation. Managing roam-
ing user data deployment guide. August
2006. http://technet2.microsoft.

com/WindowsVista/en/library/

fb3681b2-da39-4944-93ad-dd3b6e8ca4dcl033.

mspx?mfr=true.

A. Rajgarhia and A. Gehani. Performance and
extension of user space file systems.  2010.
http://www.csl.sri.com/users/gehani/
papers/SAC-2010.FUSE.pdf.

L. C. V. Real. Gobohide: surviving aside the
legacy tree, 2006. http://www.gobolinux.
org/?page=doc/articles/gobohide.

M. Torrie. [uug] Gnome vs KDE, 20009.
http://uug.byu.edu/pipermail /uug-1list/
2009-March/002134 . html.

A. Warkentin. Host Profile File System
source repository, 2012. https://github.com/
andreiw/HPFS.

2012 Linux Symposium e 61


http://www.linux-kongress.org/2009/slides/system_call_tracing_overhead_joerg_zinke.pdf
http://www.linux-kongress.org/2009/slides/system_call_tracing_overhead_joerg_zinke.pdf
http://www.linux-kongress.org/2009/slides/system_call_tracing_overhead_joerg_zinke.pdf
http://arxiv.org/pdf/0706.3546.pdf
http://arxiv.org/pdf/0706.3546.pdf
http://man7.org/linux/man-pages/man2/openat.2.html
http://man7.org/linux/man-pages/man2/openat.2.html
http://technet2.microsoft.com/WindowsVista/en/library/fb3681b2-da39-4944-93ad-dd3b6e8ca4dc1033.mspx?mfr=true
http://technet2.microsoft.com/WindowsVista/en/library/fb3681b2-da39-4944-93ad-dd3b6e8ca4dc1033.mspx?mfr=true
http://technet2.microsoft.com/WindowsVista/en/library/fb3681b2-da39-4944-93ad-dd3b6e8ca4dc1033.mspx?mfr=true
http://technet2.microsoft.com/WindowsVista/en/library/fb3681b2-da39-4944-93ad-dd3b6e8ca4dc1033.mspx?mfr=true
http://www.csl.sri.com/users/gehani/papers/SAC-2010.FUSE.pdf
http://www.csl.sri.com/users/gehani/papers/SAC-2010.FUSE.pdf
http://www.gobolinux.org/?page=doc/articles/gobohide
http://www.gobolinux.org/?page=doc/articles/gobohide
http://uug.byu.edu/pipermail/uug-list/2009-March/002134.html
http://uug.byu.edu/pipermail/uug-list/2009-March/002134.html
https://github.com/andreiw/HPFS
https://github.com/andreiw/HPFS

62 e “Now if we could get a solution to the home directory dotfile hell!”’[11]




Improving RAID1 Synchronization Performance Using File System
Metadata

Reducing MD RAID1 volume rebuild time.
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Abstract

Linux MD software RAID1 is used ubiquitously by end
users, corporations and as a core technology compo-
nent of other software products and solutions, such as
the VMware vSphere®Storage Appliance  (vSA). MD
RAID1 mode provides data persistence and availability
in face of hard drive failures by maintaining two or more
copies (mirrors) of the same data. vSA makes data avail-
able even in the event of a failure of other hardware and
software components, e.g. storage adapter, network, or
the entire vSphere®server. For recovery from a failure,
MD has a mechanism for change tracking and mirror
synchronization.

However, data synchronization can consume a signifi-
cant amount of time and resources. In the worst case
scenario, when one of the mirrors has to be replaced
with a new one, it may take up to a few days to syn-
chronize the data on a large multi-terabyte disk volume.
During this time, the MD RAID1 volume and contained
user data are vulnerable to failures and MD operates be-
low optimal performance. Because disk sizes continue
to grow at a much faster pace compared to disk speeds,
this problem is only going to become worse in the near
future.

This paper presents a solution for improving the syn-
chronization of MD RAID1 volumes by leveraging in-
formation already tracked by file systems about disk uti-
lization. We describe and compare three different im-
plementations that tap into the file system and assist the
MD RAID1 synchronization algorithm to avoid copying
unused data. With real-life average disk utilization of
43% [3], we expect that our method will halve the full
synchronization time of a typical MD RAIDI1 volume
compared to the existing synchronization mechanism.

Andrei Warkentin
VMware, Inc.
andreiw@vmware.com

Alexandre Depoutovitch
VMware, Inc.
aldep@vmware.com

1 Introduction

RAID arrays have gained a wide popularity over the last
decade. By maintaining data redundancy, they provide a
cheap solution for data availability, fault tolerance, and
scalability in the event of hardware and software fail-
ures [2]. Some of the popular RAID implementations
include RAID1, which maintains two or more identical
copies of the data over physically separate storage de-
vices, and RAID10 which augments RAID1 with data
striping. RAID arrays can be implemented at hard-
ware level, e.g., RAID hardware adapters, as a software
product, e.g., Linux MD RAID driver, or as a part of
more robust and complex applications, e.g., VMware
vSphere®Storage ApplianceTM (vSA).

In RAIDI, the loss of one copy of the data due to a
component failure (e.g., hard drive) is typically followed
by an administrative operation, that replaces the failed
component with a new one. As part of this, all data
needs to be copied (synchronized) to the newly added
component. This restores the data redundancy and fault
tolerance characteristics. However, storage size has
grown exponentially over the recent years, while data
access latency and bandwidth improvement rate is sig-
nificantly smaller. For large arrays, this results in hours
during which the array functions below its optimal per-
formance and reliability. Before the synchronization
is complete, additional failures may result in data loss
and/or unavailability. Therefore, it is very important to
minimize synchronization time. In our work, we advo-
cate a new, easy to implement method that reduces the
amount of data that needs to be synchronized and con-
sequently decreases the synchronization time.

We implemented our method in the Linux MD soft-
ware RAID1 driver and integrated it with the VMware
vSA product. The key observation behind our method
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Figure 1: vSA architecture overview.

is that, since the synchronization is in the block device
layer, the MD RAID1 mirroring driver needlessly syn-
chronizes unallocated file system blocks, in addition to
blocks containing useful data. We investigated three
different approaches of transferring the unused block
list from the file system to the synchronization algo-
rithm. All three approaches populate the unused block
list and change synchronization logic to take a list of
unallocated blocks into account. They require minimal
changes to the existing MD RAIDI1 control flow.

The approaches differ in how the unused data blocks are
obtained. The first approach leverages user space file
system utilities (specifically, e2fsprogs in an EXT4
file system) to obtain a list of unused file system blocks.
A user space helper application uses the list to construct
a bitmap representing the blocks that are currently in use
by the file system. It then passes the bitmap to the MD
RAIDI1 kernel driver, where it is used to skip copying
the disk blocks that are not in use by the file system.
The second approach continuously tracks the blocks not
in use by the file system by intercepting discard requests
to the block device (called REQ_DISCARD in the Linux
kernel). The final, hybrid approach, avoids the overhead
of maintaining in-memory unused block state of the pre-
vious approach, while also taking advantage of a user
space helper, albeit in a way which is much simpler and
independent of file-system implementation. It utilizes

the Linux kernel FITRIM ioctl to force the file system
to send REQ_DISCARD requests for unused blocks.

2 vSphereStorage Appliance

Linux MD RAID is not only widely used by the end
users, it is also an important building block for larger
and more complex software products. One such ex-
ample is the vSphere®Storage Appliance’" (vSA) devel-
oped by VMware and released as a commercial product
last year [1]. This software provides shared storage ben-
efits such as reliability, availability, and shared access
without needing to buy complex and expensive special-
ized shared storage hardware. The high level architec-
ture of the vSA storage stack is presented at Figure 1.
vSA consists of two or more hardware nodes with ESX
server installed, running a virtual machine with Linux
and vSA software.

The vSA software exports data to clients through the
NFSv3 protocol. EXT4 file system is used to store the
user data. In order to provide reliability and availabil-
ity, the Linux MD RAID driver is utilized to duplicate
data between the hardware nodes. Access to the remote
node storage is done through the iSCSI protocol over the
network. Data synchronization speed between nodes is
often limited by the 1Gbit network link. Because vSA



targets the small and medium business (SMB) market,
cost savings is an important criteria. Therefore, an up-
grade to a 10Gbit network is often undesirable due to the
high cost involved in replacing not only network cards
but routers, switches, and other infrastructure compo-
nents.

In this environment, optimization of data transfers is
very important. Without our mechanism, it takes ap-
proximately 5 hours to synchronize a typical 2TiB vSA
data volume after one of the nodes was replaced. During
this time, the vSA functions in degraded mode with de-
creased performance and without fault tolerance. With
our mechanism in place and an average storage utiliza-
tion of 43% [3], this critical time is reduced to slightly
more than 2 hours. We believe that not only vSA, but
other projects and products involving storage replication
would benefit from our mechanism.

3 Control flow

Our method introduces changes to the MD RAID1 ar-
ray algorithm only during array synchronization. There-
fore, there is no additional run-time overhead for any ar-
ray functions in regular or degraded modes compared to
vanilla Linux MD driver. Our mechanism comes into
play whenever RAID synchronization is triggered auto-
matically or upon user request.

Upon receiving such request, depending on whether
a full or incremental synchronization is required, the
vanilla Linux MD driver copies either all blocks to the
new block device, or only those blocks marked in the in-
ternal write-intent MD bitmap as changed since the time
the array was healthy and fully synchronized. If a write
request arrives while synchronization is in progress, the
MD RAID driver pauses the synchronization process
until the write operation is complete on all disks. This
prevents race conditions between synchronization and
regular writes.

In all of our approaches, any IO error encountered by the
RAID block devices used by MD is reported to a user
mode helper program. In case of the vSA, this is a Java-
based application referred to as the vSA business logic
software. This helper application is responsible for han-
dling detected IO errors, detecting that a previous hard-
ware failure has been rectified and re-introducing pre-
viously failed block devices back into a degraded MD
RAID volume. Thereby, this helper program controls
the point at which MD synchronization process starts.
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In our mechanism, upon receiving a synchronization re-
quest, the MD driver starts synchronizing blocks marked
in the write-intent bitmap to all degraded devices just
as described above, but it queries an additional in-
use/unused block list. Depending on the actual imple-
mentation, this list might come from a user-space helper
program or from handling an FITRIM ioctl issued to
the file system layered on top of the RAID volume. With
the list of unused blocks, the MD driver can proceed to
synchronize only blocks that are both marked as in-use
and marked in the write-intent bitmap.

While synchronization is in progress, previously unused
blocks may become allocated again, but this is equiva-
lent to the concurrent writes and synchronization case
above. In this case, before any attempt to read such
a block, a write must be issued to initialize the block
data. This write will always be propagated to all devices
during synchronization, as previously described. If no
write was issued to a previously unused block before
reading, an application cannot depend on the read con-
tents of such a block, thus there should be no need to
synchronize it.

There is one important difference in the behavior of the
vanilla Linux MD driver and our modified MD driver.
If a block has been reported as unused to our synchro-
nization mechanism, is subsequently allocated and read
from several times without being written to, the vanilla
Linux MD driver would return the same data on every
read. With our mechanism in place, different reads to
uninitialized data might return different data depend-
ing on the device the read operation was dispatched to.
However, all POSIX-compliant file system returns ze-
roes for reads to unwritten parts of a file. We can not
think of any correctly written code that depends on such
behavior, but if such software exist, it should not be used
with our mechanism.

4 Metadata snapshot

The first approach introduces no run-time overhead to
the I/O and data synchronization paths of the RAID
driver, and is only involved after a hardware failure is
detected and rectified. The approach involves the fol-
lowing steps,

e Obtaining list of unused blocks from the file sys-
tem.
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e Representing the data in an in-use bitmap.

e Injecting the in-use bitmap to MD using a new
ioctl call.

The list of unused blocks is obtained out-of-band by ex-
amining on-disk file system structures. For vSA, this
involves examining the EXT4 file system on the MD
RAID device. dumpe2£fs, a common system utility from
the e2fsprogs package, is used to query file system
metadata and statistics for the EXT2, EXT3 and EXT4
file systems. The vSA business logic software, which
controls disk creation, failure detection and other man-
agement operations, parses dumpe2fs output to gener-
ate a list of unused blocks from the vSA file system.
The list contains ranges of blocks in units of file system
block size. The information is presented for each file
system block group as a comma separated list of unused
block ranges.

The control flow for performing MD re-synchronization
is presented at Figure 2.

The data obtained is used to populate a bitmap repre-
senting blocks that are currently used by the file system.
Instead of extending the existing in-memory write in-
tent state, a separate bitmap was used. The write-intent
bitmap divides the disk into chunks, and keeps track of
which disk chunks have modifications that need to be
synchronized to disks that are currently unavailable. A
separate bitmap enables us to pick a different granularity
for tracking used blocks, with the intent of investigating
optimum granularity for tracking such information. This
flexibility is potentially worth the additional complexity
and memory overhead of maintaining a new bitmap.

The in-use bitmap divides the MD device into equal
sized chunks. A chunk is always larger than the size
of a file system block, and would ideally match the
granularity of an individual synchronization I/O. The
bitmap comprises a series of pages, each covering 32768
chunks. With the additional in-use bitmap, the modified
MD RAID1 synchronization algorithm determines if the
synchronization I/O being performed can be skipped.
The actual changes to the main routine involved are min-
imal.

The in-use bitmap is injected into the MD RAID1 driver
using a new ioctl mechanism. The MD RAID1 driver
is modified to accept a bitmap solely while synchroniza-
tion operation is ongoing. Once the synchronization op-
eration is complete, the bitmap is automatically cleared.

1. Start MD sync

2. Get fs used block list

3. Set MD in-use -
bitmap

‘ Control Application ‘

kernel
‘ File system Ff
| MD RAID1 <
———
. Disk1  Disk2 |

Figure 2: Control flow for MD resync with the metadata
snapshot approach.

This avoids any data consistency issues resulting from
possible malicious use of the interface, and follows good
security practices. Since the VSA business logic soft-
ware completely controls when an MD synchronization
operation occurs, it would not be possible for an out-of-
date bitmap to be applied, avoiding possible data cor-
ruption issues.

S5 Discard request tracking

The second approach of exposing file system unused
block information to the MD driver relies on an already
existing set of functionality present in the Linux kernel.
The Linux block I/O subsystem provides a way to no-
tify hardware that a range of blocks is not in use any-
more by upper layers. A file system might thus send
REQ_DISCARD requests when a file is deleted. The orig-
inal aim of this functionality was to enable more in-
telligent wear-leveling mechanisms for solid-state stor-
age, yet it is used in implementing thin-provisioned
SCSI LUNs and provides the data we need to avoid
synchronizing unused blocks. The method by which
unused block ranges are sent into the block layer is a
REQ_DISCARD I/O request. Just like any other I/O op-
eration, it consists of a start block and the number of
blocks affected, and arrives at the same MD I/O dis-
patch routine handling regular accesses. This implies
that the MD driver has to keep track of blocks being
marked as used and unused. A block is marked as be-
ing unused when a REQ_DISCARD request for it arrives,
and is marked as being in use on a write request. In



practice, there are real-life restrictions that limit the use-
fulness of an approach based purely on live tracking of
REQ_DISCARD requests, as we shall see.

The first idea that comes to mind is to track the in-
use/unused state in the same memory and disk struc-
tures already used to keep track of write intent state.
Using the same memory structures has the implication
of no extra memory overhead!, and the bit twiddling
is done at the same code location and under the same
locks, meaning that the run-time overhead is the least
of other possible approaches. The new state is per-
sisted across reboots by extending the on-disk write in-
tent bitmap with an in-use/unused bit. Of course, the
RAID1 I/O dispatch routine also needs to be changed to
handle REQ_DISCARD block I/O by marking the affected
blocks as unused and finishing the 1/0O.

Unfortunately, in a real life setting, where each bitmap
chunk is significantly larger than the typical 1/O size?,
this approach gives poor results. A typical discard I/O
request acts on a range of kibibytes, usually with a gran-
ularity of 4KiB or so, and such requests are basically
lost without keeping track of discard requests at a finer
granularity than the bitmap chunk. We could maintain a
separate bitmap, say at 4KiB granularity, but the mem-
ory overhead of such a bitmap are enormous at typi-
cal capacities>. The disk persistence is an additional
problem. Extending the write-intent bitmap carries the
same granularity issues present with reusing the in-
memory state, while maintaining a separate more gran-
ular bitmap would result in additional disk 1/Os, lower-
ing the write performance. Additionally, the change in
internal RAID metadata brings upgradeability implica-
tions where the existing structures need to be replaced
by larger ones.

Support of upgrade from an earlier version of MD meta-
data to a newer one aware of the in-use/unused blocks,
means we need to have some method of registering
blocks not in use by the file system with MD. Fortu-
nately, there is no need for a new interface to achieve
this. The FITRIM file system ioctl causes the file
system to send REQ_DISCARD I/O requests for all un-
used blocks. At the current moment, file systems do not

IWe end up stealing a bit from the per bitmap-chunk field to
describe the new in-use/unused state, which has has the largely ir-
relevant implication of reducing the number of concurrent I/O per
block chunk from 16383 to 8191.

2For a 100MiB disk, the default bitmap chunk is 4KiB, while for
a 10TiB disk, the bitmap chunk size is usually 64MiB.

3 A 10TiB disk would need a 320MiB bitmap.
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persist in-use/unused knowledge across remounts, thus
FITRINM is a sufficient method to initialize our MD in-
use/unused state. Given the issues with on-disk persis-
tence, we might as well rely on FITRIN to initialize our
in-memory state after mounting the file system.

To address the issues surrounding tracking REQ_
DISCARD requests, we can switch from a bitmap to a
data structure that makes it more convenient to store un-
used block ranges. Such a structure is a special interval
tree that coalesces overlapping and sequential ranges,
implemented using a red-black tree. The time complex-
ity is O(logn), especially if you assume the total num-
ber of intervals to be pretty low. The changes to MD to
enable the use of discard ranges as an optimization are
minimal, and the synchronization overhead can be mit-
igated by employing a relativistic red-black tree algo-
rithm [4] instead of the default Linux rb-tree implemen-
tation. The Achilles heel of this approach, however, is
the worst-case memory overhead. An access pattern of
small discards, such as interleaved 4KiB accesses, will
result in an overhead 32 times worse than the equiva-
lent overhead of using a bitmap with 4KiB granularity.
Some of this can be mitigated by enforcing a minimum
granularity and pruning the range tree based on mem-
ory pressure, but all of this added complexity basically
nullifies the original advantages of storing ranges.

6 Hybrid Approach

The previous approach to tracking REQ_DISCARD re-
quests relies on the assumption that it is typical to expect
discard requests over the normal lifetime of an on-line
RAID array with a mounted file system. However, that
is not the case. While a file system like EXT4 certainly
could be mounted in a way that will generate discard
requests for every file erase, that was generally avoided
in older kernels due to discard requests being processed
synchronously and acting as barriers, impacting I/O per-
formance. If we consider that we always issue FITRIM
during RAID synchronization, then we just have to han-
dle REQ_DISCARD requests during synchronization time.
At synchronization time we can employ simple logic to
track consecutive discards, marking the affected chunks
in the separate bitmap as not in use. This is effectively
the combination of the first approach with first idea con-
sidered in the previous section, without the on-disk per-
sistence changes and with a more intelligent and restric-
tive algorithm for marking chunks as being not in use.
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Figure 3: Control flow for MD resync with the hybrid
approach.

It is better than the previous approach to tracking dis-
cards because it covers the case of out-of-order small
discards that ultimately add up to a larger unused
block—we let the file system handle coalescing and or-
dering these at FITRIM time. Using a separate bitmap,
with a granularity smaller than the write intent bitmap,
improves the case where the write intent chunk size is
too large to effectively use this algorithm.

The control flow for performing MD re-synchronization
is presented at Figure 3.

7 Discussion

Each of the above approaches to obtain the list of unused
blocks has its own advantages and disadvantages. The
main advantage of using a file system metadata is its in-
dependence on the Linux kernel version deployed on the
system. Certain distributions, such as all versions of Red
Hat Enterprise Linux or SUSE Enterprise Linux, except
the latest SLES11SP2, do not support REQ_DISCARD or
FITRIM functionality. This makes usage of a user space
helper the only way to get the list of unused blocks,
given that back porting changes to the kernel block I/O
subsystem and file systems is no trivial matter. This ap-
proach does not depend on kernel version, which makes
it applicable to most of currently deployed systems. An-
other advantage is that more functionality remains in
user space, which makes the code more reliable and eas-
ier to debug. The disadvantage of this approach is its
dependence on user mode utilities which are not stan-
dardized, which are file system-dependent, and which
may change their output format in future versions.

The advantage of discard request tracking is in the trans-
parency of the approach. There is no need for any-
thing special to occur to make use of this functionality
to improve synchronization, other than ensuring that the
file system generates discard requests for erased files.
The disadvantage of live tracking is in its memory con-
sumption. The bitmap based approach, with a suffi-
ciently small granularity to achieve effectiveness, would
consume an additional 300MiB of kernel memory. A
range-based approach would scale the memory usage,
but become effectively unbounded with severe file sys-
tem fragmentation. Therefore, we would prefer the hy-
brid approach.

The advantage of obtaining the list of unused blocks
through FITRIM ioctl command is in the use of a stan-
dard interface, recommended for use by all general pur-
pose file systems. In current kernels, the FITRIM in-
terface supported by EXT3, EXT4, btrfs, xfs, ocfs, and
others. We would, however, like to see better defined
documentation on FITRIM behavior. For example, to
the best of our knowledge, the ordering of blocks to
be discarded is not described, nor are any guarantees
regarding the blocks reported for file systems that per-
sist discarded block information. This allows some file
system implementations to report unused blocks out-of-
order, or to only report changes since the last FITRIM
even across remounts, both of which will negatively af-
fect the hybrid approach.

8 Conclusion

In this paper, we proposed a new method for RAID array
synchronization. This method requires minimal changes
to the existing Linux kernel code. It reduces synchro-
nization time by a factor of two in the common case,
thus improving reliability and performance of the RAID
array.

We investigated and compared different implementation
methods and highlighted their strong and weak points.
The optimal granularity of the unused block bitmap
needs to be further investigated, and we are planning
to extend the synchronization improvements to other
RAID levels provided by the MD driver. Furthermore,
the FITRIM kernel interface needs to be better defined
to address the ordering and persistence concerns noted
in the discussion section above.
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Abstract

Out of band systems management provides an inno-
vative mechanism to keep the digital ecosystem inside
data centers in shape even when the parent system goes
down. This is an upcoming trend where monitoring and
safeguarding of servers is offloaded to another embed-
ded system which is most likely an embedded Linux
implementation.

In today’s context, where virtualized servers/workloads
are the most prevalent compute nodes inside a data cen-
ter, it is important to evaluate systems management and
associated challenges in that perspective. This paper ex-
plains how to leverage Out Of Band systems manage-
ment infrastructure in virtualized environment.

1 Introduction

Out Of Band systems management is the de-facto capa-
bility in enterprise computing world to manage physical
servers inside a data center. It provides remote adminis-
trators the ability to connect, gather server information
and at the same time control the servers even in non-OS
environment.

Today’s enterprise computing environment is dominated
by virtualization technology which allows one single
server to be used by many virtual machines. In this pa-
per we look at how we can make Out Of Band System
management utility scale up to this new challenge of vir-
tualization. We talk about the ways in which an existing
systems management utility can be used to handle vir-
tual machines. Later on we also discuss some of the
security challenges that may be posed while trying to
implement this method.

1.1 Acronyms and Abbreviations

OOB - Out Of Band Management

VMS - Virtual Management Software

VM - Virtual Machine

VMM-I - Virtual Machine Management Interface
BMC - Base Board Management Controller

IPMI - Intelligent Management Platform Controller
LAN - Local Area Network

OOB-I - Out Of Band Management Interface
RMCP+ - Remote Management Control Protocol.
TOPT - Time-Based One-Time Password Algorithm

DES - Data Encryptions Standard

2 Evolution and Design of Managing Virtual
Machines using Out Of Band Channel

In a typical virtualization setup, Virtual Machines and
Physical servers are managed and controlled using man-
agement software. In this paper we refer to this manage-
ment software as Virtual Management Software (VMS).
This VMS provides advanced features such as High
Availability and Live Migration. All the physical servers
in data center are connected to VMS over Ethernet. In
summary, VMS at an application level manages Virtual
Machines (VMs) using a hypervisor that is deployed on
each of the physical systems. VMS usually dedicates a
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Server Server

Hypervisor Hypervisor

VMM-I VMM-I

Server
Hypervisor

VMM-I

Figure 1: Current Architecture

system interface on each of the physical servers to com-
municate with the hypervisor. This interface is called as
the VM Management Interface (VMM-I) and is shown
in Figure 1.

The physical servers used in data centers today are
mostly Enterprise grade equipped with Out Of Band
Systems Management capability. One of the widely
used OOB Management implementations has a Base-
board Management Controller (BMC) embedded inside
the physical server. BMC supports the industry-standard
Intelligent Platform Management Interface (IPMI) spec-
ification, which enables users to configure, monitor,
and recover systems remotely. Each of these physi-
cal servers hosts a base hypervisor and VMs on top of
it. Each of these hypervisors are connected to VMS
through VMM-I.

2.1 Proposed Solution

Figure 2 depicts the proposed model, wherein we are us-
ing the Out Of Band Management Interface (OOB-I) as
a secondary interface to manage the VMs using the hy-
pervisors. Similar to VMM-I, each OOB-I is also con-
nected to VMS. VMS uses OOB-I channel to commu-
nicate with BMC by using IPMI over LAN. IPMI Over-
LAN is a functionality that provides remote machines
the ability to send IPMI messages over Network to BMC
using UDP protocol (IPv4). The UDP packets are for-
matted to contain IPMI request/response messages with
IPMI session headers and Remote Management con-
trol Protocol (RMCP+) headers (IPMI v2.0 Spec). For
IPMI OverLAN to work, BMC needs to have a dedi-
cated Management Network interface associated to it.

Server Server

Hypervisor Hypervisor

VMM-I VMM-1

Server

Hypervisor

Figure 2: Proposed Architecture

2.2 Architecture of Proposed Data Path to establish
OOB communication channel between VMS
and hypervisor

When VMS intends to send a message to hypervisor, it
will encode the message in an IPMI message format and
send this message using RPMCP+ protocol over OOB-I
channel. Once sent to BMC, these messages are picked
up by the hypervisor and decoded back to the original
format (VMS message). Similarly when the hypervisor
needs to send data to VMS, it will send it to BMC and
VMS reads these messages over OOB-1L.

In this solution we implemented two Buffer queues in
BMC, one to hold the data that VMS sends to hypervisor
and the other to temporarily store data sent from hyper-
visor to VMS. To access these buffers we need four new
sets of IPMI commands to read and write the respective
queues. Figure 3 gives an overview of the stack

Figure 3 shows the different modules that are involved in
enabling the OOB-I channel between VMS and hypervi-
sor. When VMS needs to communicate with the hyper-
visor over OOB-I, VMS would encode the message into
an IPMI packet as payload and send it over the OOB-
I. In this solution the four IPMI commands associated
with the BMC Buffer Queues are implemented as OEM
Commands. The idea is to carry these VMS/hypervisor
messages as payload using IPMI Commands, so the en-
coding and decoding logic would be confined to the pay-
load and would keep the IPMI/BMC changes at min-
imal. This design avoids decoding of every message
VMS/hypervisor sends as a separate IPMI message.
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IPMI DRIVER

Figure 3: Proposed stacks overview

2.3 Low-level Details of the Implementation

Consider a scenario when VMS decides to communicate
with a hypervisor. VMS would encode the message that
needs to be sent to the hypervisor in IPMI format and
use the new IPMI commands to send this message to the
appropriate BMC. For VMS to communicate with hy-
pervisor it needs to know the IP address of OOB-I apart
from VMM-I IP. VMS message structure that needs to
be sent to hypervisor.

struct vms_message {

cmd_id cmd, //actual command id

vm_id vm_name, //name of virtual machine

ip_addr oob_i, //IP address of OOB-I

ip_addr vmm_i, //IP address of VMM-I
//meta data

1
API to convert vms_message into raw IPMI format

char *ipmi_payload convert_to_raw_ipmi\
_data(struct vms_message *vms_data) {
// returns *ipmi_payload - VMS message
// converted into IPMI format

3

API to send the vms_message to BMC over OOB-I using
RMCP+ protocol. IPMI over LAN requires user authen-
tication.

char ipmi_send_message (char *ipmi_\

payload, structipmi_system_interfac\
e_addr bmc_addr )\
{

char *user_name,
char *passwd,

Request message

[NetFn]

[CMD ] - [COPY_VMS_TO_BMC_BUFF_1]
[Payload ] - [ipmi_payload]

char *ipmi_payload

};

BMC on receiving the IPMI message from VMS, saves
the payload in Buffer Queuel (Figure 3). hypervi-
sor periodically check for any VMS requests in Buffer
Queuel. Any messages in this Queue are picked up by
hypervisor using the new IPMI command. The next task
is to decode the payload message from BMC, which is
exactly the reverse of the encoding mechanism that was
carried out in VMS.

IPMI command to read message from Buffer Queuel

Request

[NetFn] [Cmd] [OEM_ID] [READ_BMC_BUFF\
_QUEUE1]

Response
[Completion Code ] [ Payload ]

API to read the vins_message to BMC (Queuel) over
local IPMI interface.

char *ipmi_payload ipmi_get_message (\
struct ipmi_system_interface_addr bmc_\
addr ) {

Read Payload from BMC-Queuel
[NetFn]

[CMD 1] - [READ_BMC_BUFF_ QUEUE1]

Response message
[Completion Code ]
[ IPMI_Payload ]



74 e Out of band Systems Management in enterprise Computing Environment

return ipmi_payload

};

API to decode the ipmi_payload into original VMS mes-
sage format

struct vms_message *vms_data \
convert_to_vms_format (ch\
ar *ipmi_payload )

3 Out of Band Systems Management with Vir-
tualization - Challenges

Out of band management of VMs brings additional chal-
lenges to the table, some of which are discussed below.
In section 3.1 we discuss how to secure the OOB-I chan-
nel end to end, i.e. starting from VMS to hypervisor.
Then in section 3.2 we discuss how to ensure that only
a rightful authority can initiate state changes to the vir-
tual machines. Both scenarios will be explored using a
Linux/hypervisor case study.

3.1 Securing the OOB-I communication Channel

The complete communication channel for the proposed
solution comprises of multitude of components, as illus-
trated in Figure 4.

e OOB-I

e BMC layer

Linux Kernel Layer

Exposed Userspace IPMI device

Userspace hypervisor software

In the above mentioned components, OOB-I is generally
secured using RMCP+ protocol. BMC access is typ-
ically controlled by a password authentication. Linux
kernel space is off-limits to user space processes and
hence is considered secure. In this implementation
the modified hypervisor software uses the IPMI Device
interface (/dev/ipmi) to obtain the information from
BMC. So any stray read/write to BMC through this de-
vice can reveal the payload.

TOTP/Cipher based
Encryption

Engine Hypervisor

T

IPMI DRIVER KERNEL

Figure 4: TOTP-Cipher Encryption

We used “time-based one-time password Algorithm”
(TOPT, RFC6238) signature engine to generate a se-
cret key within VMS. This secret key is used as aux-
iliary input to a symmetric key algorithm based cipher
(DES/AES) to encrypt the outgoing payload. This en-
crypted payload is then transferred through OOBI. A
stray read/write to BMC cannot decode the payload
since it does not have the TOPT signature.

The hypervisor layer also has the TOPT signature en-
gine with same algorithm, which it uses internally to
decrypt and verify the payload it received from BMC.
Once the hypervisor has decrypted the payload, it sepa-
rates the user credential, associated VM-ID and control
message.

3.2 Protection against accidental state change

In a traditional virtualization setup, the hypervisor has
all the authority to carry out management tasks on all
virtual machines. This allows the hypervisor to shut
down, close or change the state of VMs without any re-
striction. However, with the growing level of (mission-
critical) work load running on VMs, it is important that
there should be additional security layer to help avoid
any accidental state change in VMs. We investigated
this problem and proposed a request-challenge-verify
interface between hypervisor and VMs.

In the solution, whenever a state change request is given
to VM, the request is verified against an authorization
list. Here it checks that if state change request coming
from an authorized process or not. If the request is valid,
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Figure 5: Request-challenge-authenticate

then it is accepted and state change activity is carried
out, otherwise the hypervisor rejects the state change
request and sends an alert to a registered user to inform
about unauthorized attempt to change the state of a VM.
This is illustrated in Figure 5.

4 Known Constraints

This implementation needs changes in VMS, hypervisor
and BMC. In the absence of VMM-I, the scope of net-
work critical tasks such as Live migration over OOB-I
is limited.

5 Conclusion

We explored a method in which Systems management
capability can be used to handle virtual machines on
the servers and perform various tasks in the same way
it would be done on a physical server. We also explored
use cases in terms of handling security situations which
are evolving in a virtualized data center environment.
The finding here is that in a virtualized environment
were each VM can be running different tasks, it is un-
safe to have unquestioned authority resting with VMS,
since any error can prove very costly. The other aspect
is the protection of data that travels from VMS to hy-
pervisor. These challenges are unique and they need
special attention in the virtualized data centers. One
important finding is that, we need further explore what
are the repercussions of creating a request-challenge-
authenticate framework since VMS does not enjoy super
user status any more.
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Abstract

Cluster-wide administrative tasks and other distributed
jobs are often executed by administrators using locally
developed tools and do not rely on a solid, common and
efficient execution framework. This document covers
this subject by giving an overview of ClusterShell, an
open source Python middleware framework developed
to improve the administration of HPC Linux clusters or
server farms.

ClusterShell provides an event-driven library interface
that eases the management of parallel system tasks, such
as copying files, executing shell commands and gather-
ing results. By default, remote shell commands rely on
SSH, a standard and secure network protocol. Based
on a scalable, distributed execution model using asyn-
chronous and non-blocking 1/0O, the library has shown
very good performance on petaflop systems. Further-
more, by providing efficient support for node sets and
more particularly node groups bindings, the library and
its associated tools can ease cluster installations and
daily tasks performed by administrators.

In addition to the library interface, this document ad-
dresses resiliency and topology changes in homoge-
neous or heterogeneous environments. It also focuses
on scalability challenges encountered during software
development and on the lessons learned to achieve max-
imum performance from a Python software engineering
point of view.

1 Introduction

From a logical perspective, cluster system software is
what differentiates a cluster from a collection of individ-
ual nodes. Having a scalable and resilient cluster system
management toolkit is essential to the successful opera-
tion of clusters. According to the TOP500 [1] list, more
than 80% of installed HPC systems are running Linux,

and open source software is now used as the foundation
of most general-purpose! supercomputers. But even the
simplest cluster-wide administrative task can become a
nightmare when executed on a petaflop supercomputer
of thousands of nodes. Often, tools or services are tuned
to scale on a case-by-case basis. As a result, clusters of-
ten rely on a fragile administration software layer, suf-
fering from the lack of robustness, usability and from
management complexity. ClusterShell answers this by
providing an open source, robust and scalable frame-
work for cluster management and administration, that
can be used by both system administrators and software
developers. Indeed, benefiting from full-featured and
scalable tools can save a lot of time for administrators,
resulting in more efficient daily operations and reduced
downtime during scheduled maintenance.

ClusterShell is available as a Free Software product un-
der the terms of the CeCILL-C license [5], a French
transposition of the GNU LGPL, and is fully LGPL-
compatible. It consists in a Python (v2.4 to 2.7) li-
brary and a small set of command-line tools. It takes
care of common administration issues encountered on
clusters, such as operating on groups of nodes, run-
ning distributed commands using optimized execution
algorithms, as well as helping result analysis by gather-
ing and merging identical command outputs, or retriev-
ing return codes. It takes advantage of existing remote
shell facilities already installed on most systems, such
as SSH. The command-line tools, clush, clubak and
nodeset are efficient building blocks for administrators
that also allow traditional shell scripts to benefit from
some of the library features. Figure 1 shows an overview
of the ClusterShell framework.

Primarily, the ClusterShell Python library implements
an efficient event-based mechanism for parallel ad-
ministrative tasks, whether they be local or distant.
The ClusterShell Python API? provides an event-driven

General purpose as defined in [7]
2http ://packages.python.org/ClusterShell/
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Figure 1: ClusterShell overview

and object-oriented interface that allows application to
schedule actions, like running shell commands or copy-
ing a file, and to register for specific events from these
local or remote tasks. Several helper methods are then
available to analyze results during the execution or af-
terwards.

2 Cluster naming scheme

Computer clusters often use a systematic naming
scheme, such as a common node prefix conform-
ing to RFC 1178 “Choosing a name for your com-
puter” [14] plus a numbering scheme. For exam-
ple, high-availability clusters [10], database clusters
and Hadoop clusters (for HDFS DataNodes [19]) fre-
quently use simple serial naming procedures for indi-
vidual servers. The naming policy of high-performance
computing cluster nodes is often as simple, but can also
be more complex by adopting a multi-dimensional num-
bering scheme. A numbering system that matches phys-
ical locations in a server room is sometimes adopted (eg.
nodes are named according to the rack and slot number
in [20, 6, 18] like r®1n@®3). Another example could be
to use logical positions in a multi-dimensional intercon-
nection network (eg. torus-1-2-3). In this section, we
define the nodeset and node group notations and present
associated features available in ClusterShell to easily
and efficiently manage these cluster naming schemes.

curie®

curie®,hwm®

stor[02-08]
curie[50,100-120,1500-6000]
curie[200-249]-ipmi
curie[200-249],gaia[20-59]
da[10-19]c[1-2]

Figure 2: Common nodeset examples

curie[2-8/2] <= curie[2,4,6,8]
stor[01-10/3] < stor[01,04,07,10]
curie[50,1500-2000/2,3000-6000/4]-ipmi

Figure 3: Stepped nodeset examples

2.1 The nodeset notation

The nodeset notation presented here is a syntax for
specifying a set of cluster nodes or host names. The
comma (,) is used to separate different naming pat-
terns (eg., to address multiple clusters). This notation
is an extension of the one already used in cluster tools,
such as SLURM resource manager [11], pdsh [16] or
kanif [9]. Indeed with clusters growing, a commonly
adopted notation has emerged mainly to allow the use of
ranges whenever possible. A continuous range is spec-
ified by starting and an ending number, separated by a
dash (e.g. 0-9). Numbers may be expressed with a fixed
length padding of leading zeros (8). Each discontinuous
range, or single number, is separated by a comma (, ).
This makes a set or ranges, or rangeset. Within a node-
set, square brackets are used to signal a rangeset. Fig-
ure 2 shows this naturally compact cluster nodes naming
scheme.

As an extension to the traditional rangeset notation,
the stepping syntax already seen for Lustre’ " network-
ing [2] appends to a continuous range a slash character
(/) and a step size. For example, the 2-8/2 format in-
dicates a range of 2-8 stepped by 2; that is 2,4,6, 8.
Figure 3 shows some examples of this nodeset nota-
tion extension.

Moreover, our practical experience in cluster adminis-
tration has shown that being able to embody some basic
set operations in nodeset can be very convenient, and
thus even more when working with node groups (dis-
cussed below). We define as a valid nodeset notation
the following special operators:

e , as the union operator,



e | as the difference operator,
e & as the intersection operator,

e A as the symmetric difference operator.

nodeset patterns are read from left to right, and character
operators are processed as they are met. Figure 4 shows
a simple example.

curie[0-50]!curie5 <= curie[0-4,6-50]

curie[0-10]&curie[8-20] <= curie[8-10]

Figure 4: nodeset character operator examples

2.2 Node groups

A node group represents a collection of nodes. Work-
ing with node groups is much more convenient and
much safer when administrating large compute clusters
or server farms. For example, a node group can cor-
respond to nodes using the same set of resources or a
specific type of hardware. Node groups can be used
for a variety of reasons. In most cases, cluster soft-
ware already provides several sources of static or dy-
namic node groups (eg., from a cluster database, gen-
ders [15], SLURM nodes, partitions or jobs [11], etc.).
ClusterShell is able to bind to these node group sources
and to provide unified information to the cluster man-
agement software. Node group provisioning is done
through user-defined shell commands or through library
extensions in Python. That is, ClusterShell itself doesn’t
manage node group definitions. Still, binding to a node
group source based on flat files is straightforward?.

The unified node group string notation introduced with
ClusterShell is invariably prefixed by the arobase char-
acter (@) and constructed from the node group source
followed by a separator character (:) and a node group
name, the latter being freely expressed by the source.
The notation can be further simplified using relative
naming by omitting the node group source. In this case,
the node group source configured by default is used to
resolve the group. Figure 5 illustrates this syntax.

Moreover, when node group names are themselves
adopting a systematic naming scheme as seen in sec-
tion 2 for node names, we are able to represent a set

3 A node group source example, based on a flat file, is provided
by default.
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@ compute

group name
in default
group source

@ slurm: bigmem
—— N——

explicit group name

group
source
name

Figure 5: Overview of nodeset syntax for node groups

of node groups in a similar fashion. The following ex-
ample illustrates how to represent twenty Scalable Stor-
age Units in a storage cluster: @ssu[00-19], that is
@ssuf0, @ssudl, etc., up to node group @ssul9, each
one corresponding to a set a nodes.

Evaluating node groups in a nodeset notation is quite
straightforward, they are simply substituted by their cor-
responding nodes when needed. As for a regular set of
nodes, the special operator characters seen in section 2.1
are supported with node groups. Figure 6 shows an ex-
ample.

@slurm: standard&@ethswnode:sw[0-6/2]

stands for nodes from the SLURM partition named
standard which are also connected to even-numbered
switches (sw0, sw2, sw4 and sw6)

Figure 6: Example of nodeset notation using node
groups and the intersection operator

Using a node group explicitly indicates a grouping in-
tention so operations are computed on the whole group,
but also on the whole set of groups when brackets
are used to designate a set of ranges. Otherwise, the
operator-separated list of elements is evaluated from left
to right. Intentionally, there is no support for parenthe-
ses or other ways to explicitly indicate precedence by
grouping specific parts. Indeed, we tried to keep the
syntax simple enough, focusing on the wide variety of
tasks that cluster administrators perform.

2.3 Working with nodesets

nodeset objects are omnipresent in the ClusterShell
framework within the NodeSet Python class. Two user-
interfaces are available to manipulate nodeset strings
whose syntax is described in section 2.1: one is
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$ nodeset -f dalcl dalc2 da3cl da3c2
da[1,3]c[1-2]

Figure 7: Example of multi-dimensional nodeset fold-
ing using the nodeset command-line tool

the NodeSet Python class and the second one is the
nodeset command-line tool.

For instance, nodeset provides optional switches to
count the number of nodes within a nodeset (-c), to ex-
pand it (- e), to fold nodes into a nodeset (- £), to access
node groups information, etc. It has become for us an
essential command for daily cluster administration and
an integral part of our shell scripts. All of its features are
described in the documentation and on the ClusterShell
Wiki*,

The rest of this section describes some implementation
aspects of different nodeset features.

2.3.1 nodeset folding

To fold a nodeset, we need a way to fold a set of ranges
(a rangeset), as seen on section 2.1. RangeSet is the
Python class that manages a rangeset. The latest im-
plementation uses a standard Python set object to store
the set of indices. We discuss in section 3.2 performance
issues encountered on this topic. The folding implemen-
tation uses an iterator> on slice found objects, each one
representing a set of indices specified by a range, plus a
possible step. This is called, for example, when display-
ing a nodeset as a string.

Uni-dimensional nodeset is thus mainly solved by hav-
ing a way to fold a rangeset. Multi-dimensional node-
set folding is more complicated. While expanding a
multi-dimensional nodeset is easily achieved through a
Cartesian product of all dimensions (we use Python’s
itertools.product()), folding is achieved by com-
paring rangeset vectors two by two, and to merge these
vectors if they differ only by one item. Figure 7 shows
an example of this multi-dimensional folding feature,
available starting with ClusterShell version 1.7.

4https ://9github.com/cea-hpc/clustershell /wiki
SRangeSet._folded_slices()

2.3.2 Node groups regrouping

Another interesting ClusterShell feature is the ability to
find fully matching node groups for a specified node-
set. This is called the regroup functionality. A simple
heuristic implementation determines whether to use the
list (list all groups) plus map (group to nodes) external
commands, or to use reverse (node to groups). It then
resolves node groups, returning largest groups first.

3 Scalability challenges with CPython

As a system software, ClusterShell is relying on
CPython, the most-widely used implementation of the
Python programming language. It is also the default of
all Linux distributions used for clustering that we know
of. This sections addresses performance challenges we
faced in order to use CPython at scale.

3.1 Parallel programming

Because of its Global Interpreter Lock (or GIL), the
standard CPython interpreter is unable to achieve ac-
tual concurrency with multithreaded programming [3].
Nevertheless, modules from the Python standard library
can be leveraged to bypass this limitation and write high
performance parallel code.

ClusterShell uses a combination of non-blocking I/O
management and multiprocessing. The event-based 1/O
notification infrastructure is described in section 4.1.
For CPU-intensive operations such as SSH connec-
tions, ClusterShell spawns external processes via the
fastsuprocess module (see section 3.3). It therefore
delegates scheduling operations to the OS, removing
GIL-based contention constraints.

3.2 RangeSet performance

RangeSet is the Python class that manages a set of
ranges as seen in section 2.1. In its first implementa-
tion® used in-memory slice objects representing the set
of indices specified by a range, plus an optional step
value (> 1). We first thought that direct access to ranges
and operations done on these objects for 10k nodes (eg.,
on arange like 1-10000) would be optimal with limited

Sup to ClusterShell 1.5
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memory footprint. But performance issues were quickly
encountered when running on thousand node HPC clus-
ters. The complexity of most related algorithms being
in O(R) with a number of discontinuous ranges of R,
the bottleneck was then the high number of discontinu-
ous ranges seen on these clusters. These sparse nodesets
are commonly seen on large clusters (the way nodes are
replying, in a random fashion, can create such "holes").

We then developed an intermediate implementation in
Python using a bintrees-based AVL tree [13] to op-
erate on ranges in O(log(n)). While it significantly
outperformed the first implementation, we still did not
achieve the performance we aimed for in all cases, prob-
ably because of the CPython overhead when creating a
large number of objects. As a comparison, bintrees
benchmarks using the pypy interpreter’ show a 10 to 40
times speedup over CPython?.

In the current implementation, the RangeSet class fi-
nally uses a Python set. Ranges are expanded as nu-
meric indices in the set and a folding algorithm is used
in case it needs to display a rangeset. It probably looks
less elegant than using a balanced tree of ranges, but it
is significantly faster than the AVL-tree implementation,
mainly because sorting and set-like operations are very
efficient in CPython.

3.3 fastsubprocess

Early versions of ClusterShell used the subprocess
Python module to spawn new processes and connect to
their input, output or error pipes. When using a large
fanout value (> 128), that is, the number of child pro-
cesses allowed to run at a time, we noticed a signif-
icant overhead localized in subprocess.Popen, even
on medium size clusters. We found out that the parent
Python process spends its time in a blocking read(2)
operation, waiting for its children, leading to a serializa-
tion of all forked processes. Indeed, a pipe allows ex-
ceptions raised in the child process before the new pro-
gram has started to execute, to be re-raised in the parent
for convenience. This problem has been discussed on
Python issue #11314° and the choice of feature vs. per-
formance has been kept for now.

"http://pypy.org/
8http ://pypi.python.org/pypi/bintrees/
9http ://bugs.python.org/issuell314
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Figure 8: Performance comparison between

ClusterShell engines based on subprocess and
fastsubprocess and with C-based pdsh using a
Sfanout value of 128

To work around this issue, we decided to adapt the
subprocess module to make a faster, performance ori-
ented version of the module for ClusterShell, that we
named fastsubprocess. We removed the pipe used
to transfer potential execution failures from the child to
its parent, thus avoiding the blocking read(2) call. A
child process returns a status code of 255 on execv(3)
failure, which is handled by Popen.wait() in the
ClusterShell library on proper event. We now also return
file descriptors instead of file objects to avoid calling
fdopen(). The only drawback of fastsubprocess is
that it is not able to distinguish between an explicit re-
turn code of 255 from the child and an execv(3) fail-
ure, which we considered being an acceptable shortcom-
ing considering the performance gain presented below.

Experiment: We evaluated the performance of the
fastsubprocess module on Tera-100, CEA largest
HPC Linux cluster, composed of a four-socket eight-
core Intel® Xeon Nehalem EX (X7560) head node'®
running at 2.27 GHz with 64 GB of RAM, and
more than 3000 compute nodes'' each also four-
socket X7560 nodes with 64 GB of RAM. Cluster-
Shell version 1.4 was implemented using the regular
Python subprocess module. Figure 8 clearly illus-
trates the scalability problem of this module when used
intensively. As of version 1.5, we switched to our
own fastsubprocess optimized module. Pdsh and
ClusterShell 1.5 produced very similar results. How-

1056030 bullx node
1186010 bullx nodes
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ever, ClusterShell execution times were slightly lower.

4 Scalable execution framework

In order to make ClusterShell production-ready on 10k-
nodes clusters, we focused on both vertical and horizon-
tal scalability aspects.

Numerous optimizations spread over the whole code-
base brought scale-up improvements. Low memory and
CPU footprint, as well as high performance I/O man-
agement have been achieved by leveraging efficient I/O
notification facilities provided by the operating system.

Starting with ClusterShell version 1.6, the library is
shipped with a major horizontal scalability improve-
ment, allowing commands to be propagated to the tar-
gets through a tree of gateways (or proxies).

4.1 Vertical scalability

Dealing with the I/O streams from the multiple SSH
instances that ClusterShell spawns can be a perfor-
mance bottleneck. ClusterShell addresses this issue
with a specific I/O management layer. Basically, mas-
sively parallel applications such as ClusterShell face the
same problems as heavily loaded servers handling thou-
sands of clients. In this regard, ClusterShell uses non-
blocking I/Os and the most efficient [/O management
paradigms [12].

Within a library instance, I/O management is done by
a backend module, referred to as the engine. Sev-
eral Engines are implemented. Each one relies on an
non-blocking I/O demultiplexing system call (such as
select(2) or epoll(7)) and exports a well defined
interface to the upper layers of the library. This is en-
tirely transparent and the other layers are fully engine-
agnostic.

An engine provides primitives for registering and unreg-
istering read, write or exception events on file descrip-
tors, as well as an event loop entry point.

Each SSH process gets its standard input, output and
error pipes registered to the library engine when starting.
The engine processes the events from each I/O stream,
and the potential timers, in a single-threaded loop.

The best available backend is selected at runtime, given
that some OS-specific system calls might be unavailable

on the running platform. This strategy allows Cluster-
Shell to leverage the most efficient I/O notification sub-
system [8] amongst the ones available.

Three backends are currently implemented:

e High performance,
based engine.

Linux-specific epoll(7)-

e Intermediate poll (2)-based engine

e Fallback select (2)-based engine

The most efficient backends being system-specific, this
redundancy allows ClusterShell to achieve high perfor-
mance while staying significantly portable. ClusterShell
is available on a large number of systems, and pack-
aged into several GNU/Linux distributions, including
Red Hat® Enterprise Linux (RHEL) through the Fedora
Extra Packages for Enterprise Linux (EPEL) repository,
Fedora!2, Debian!3 and Arch linux'4.

Because of the system load generated by starting numer-
ous concurrent SSH processes, the performance differ-
ences between the epoll(7) and poll(2)-based en-
gines is hardly measurable. Therefore, further perfor-
mance and scalability improvements have been done on
the horizontal aspects.

4.2 Horizontal scalability

Even though the most efficient engines can handle thou-
sands of I/O streams, the number of concurrent SSH
processes is a blocking limitation [9] due to the CPU and
memory load generated on the root node (from which
commands are issued).

That is why we designed and implemented a new dis-
tributed propagation mode within the project. Com-
mands are delivered through a network of gateways and
results are sent back to the root node upward the created
propagation tree.

The load gets shared between gateways, and the O(AN)
propagation time we observe with a flat-tree mode (A
being the unit execution time) becomes O(AKlogy(N)),
with an arity of K [17] (K being the number of branches
a gateway connects to). Figure 9 shows a schematic il-
lustrating this principle.

12https://admin.fedoraproject.org/pkgdb/acls/name/
clustershell

13http://packages.debian.org/fr/sid/clustershell
14http://aur.archlinux.org/packages.php?ID:S3476
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Figure 9: Hierarchical command propagation scheme

We also implemented a grooming mode that allows gate-
ways to aggregate responses received within a certain
timeframe before transmitting them back to the root
node in a batch fashion. This contributes to reducing
the load on the root node by delegating the first steps of
this CPU intensive task to the gateways.

ClusterShell uses the same command sending tech-
niques it uses in “normal” mode to control the gateways.
As a result, the only requirement to setup a propagation
tree is to have ClusterShell installed on the nodes that
are susceptible to act as gateways, along with running a
SSH server. SSH was chosen as a transport channel as
it allows the propagation tree subsystem to use already
in-place ClusterShell mechanisms, and also because of
its reliability and security mechanisms. Nevertheless,
the ClusterShell connector manager was designed with
modularity in mind to ease support of additional pro-
tocols (such as RSH, PDSH or a ClusterShell-specific
communication protocol).

A lightweight communication protocol ensures proper
exchanges within the tree, using serialized Python ob-
jects embedded in a XML stream. As Python has a built-
in incremental SAX parser (which is event-based), XML
was a natural choice to represent the data and to guide
the execution flow of the parser when they are received.

4.2.1 Communication within the tree

Gateways are implemented as ClusterShell-based state
machines. Once instantiated from the remote Cluster-
Shell process, gateways receive the topology to use, the
targets to reach and the command to execute. Gateways
recursively contact the next hop machines, deploying
the propagation tree until final targets are reached.

# Allow connections from admin nodes
# to gateways
admin[0-2]: gateways[0-20]

# Allow connections from gateways to
# compute nodes
gateways[0-20]: compute[0-5000]

Figure 10: Topology syntax

The communication channel between the root node and
a gateway (as well as between two gateways) is a single
SSH connection that remains open until all results have
been collected and sent back to the root node, which is
also responsible for closing the channel at the transport
layer.

4.2.2 Adaptive propagation

Topology is expressed through a configuration file on
the root node as a list of possible connections between
source and destination nodesets.

Mechanisms are implemented within ClusterShell to
mark a gateway as unreachable and exclude it from
the topology. Additionally, a work-stealing mechanism
could be interesting, to let gateways adjust the load
in real time between each other. The work made by
C. Martin in that domain for the TakTuk project [17]
stresses how valuable those mechanisms are when deal-
ing with heterogeneous clusters and grids.

4.3 Experiments

In this section, we evaluate the performance of the scal-
able ClusterShell execution model, as introduced on
section 4.2. To perform this experiment, we used Curie,
a 2 Petaflop HPC Linux cluster operated by CEA. More
precisely, we used the Thin Nodes partition of Curie,
which consists of 5040 dual-socket nodes'> each con-
taining two eight-core Intel® Sandy Bridge EP (E5-
2680) processors running at 2.7 GHz and 64 GB of
RAM. Curie’s operating system is Bullx Linux Ad-
vanced Edition, based on Red Hat® Enterprise Linux
6.1. The experiments have been done during a sched-
uled maintenance so no job was running. We avoided
any external perturbation (such as the one that could be

158510 bullx nodes
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Figure 11: Performance comparison between clush
v1.6 in basic mode (sliding window), in distributed
mode (1 level of n gateways) and pdsh v2.18 on Curie
(using ssh, fanout=128, command="echo ok")

induced by NFS, LDAP, etc.) by using a properly con-
figured root superuser.

To measure the command propagation time, we re-
motely execute a command with the help of the clush
command-line tool which is part of the ClusterShell
framework. A command option allows an easy setup of
the topology configuration file as seen in section 4.2.2.

For the experiment, we chose the command echo ok
which has a negligible execution time and still enables
some parsing code to be covered with a lightweight pay-
load. Figure 11 presents the execution time of this com-
mand on up to 4828 remote nodes, with different exe-
cution models: basic model with a fixed fanout value
(sliding window), tree-based propagation model with a
varying number of gateways. pdsh v2.18 was used as a
reference (using a fanout of 128, which we found to be
the optimal value).

In basic execution mode (gw=0), clush’s curve looks
smoother than pdsh’s one. Also, execution time is
slightly lower, which is probably due to the event-based
epoll (7)-based engine.

In distributed mode, with a single level of gateways,
clush induces a constant overhead of about 300 ms,
which is slightly noticeable on this figure at the left-
most part of the graph. This overhead is rapidly hid-
den by the gain of using a distributed command propa-
gation (at about 250 nodes). The performance gain of
the tree-based propagation is significant when increas-
ing the number of gateways.

5 Related works

Several solutions exist to distribute administration tasks
on parallel systems.

In terms of integration, these approaches can be clas-
sified in two categories: those providing a library API,
like func'® or fabric!’, and standalone applications
like pdsh [16] or gexec'®. ClusterShell combines both
approaches by providing a library and tools built on top
of it. Also, unlike other tools like gexec, ClusterShell
does not require installation of an additional daemon on
remote nodes.

In terms of scalability, existing solutions can also be
classified in two categories, those that streamline direct
commands, like capistrano!®, and the ones that prop-
agate commands through a scalable (eg. hierarchical)
scheme like taktuk [17].

Developed to facilitate production on large-scale sys-
tems, ClusterShell leverages the best of both ap-
proaches. Indeed, ClusterShell provides a convenient
and scalable Python library along with efficient admin-
istration tools, especially designed for HPC clusters.

6 Conclusion

In this paper, we have presented ClusterShell, a
lightweight Python framework used daily in produc-
tion on the largest CEA HPC Linux clusters. Sys-
tem administrators and developers at CEA are work-
ing very closely, and this cooperation allowed us to im-
prove the ClusterShell library to address the wide area
of needs that administrators express for compute clus-
ters as well as storage, post-processing clusters and even
server farms.

From a Python performance perspective, limitations we
faced were not the ones we initially expected. Also, by
using original and creative techniques, we managed to
circumvent common pitfalls.

Today, ClusterShell is used as a building block for
other HPC software projects, such as Shine [4], an
open source solution designed to setup and manage the

16https://fedorahosted.org/func/
Thttp://fabfile.org/
18http://www.theether.org/gexec/
19https://github.com/capistrano/capistrano
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Lustre’" file system on a cluster, or Sequencer [21], an
open source tool to efficiently control hardware and soft-
ware components in HPC clusters.

We also presented the scalable execution engine of
ClusterShell and the performance experiments we con-
ducted, reflecting the success of our approach on large
homogeneous clusters.
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Abstract

Deduplication is basically an intelligent storage and
compression technique that avoids saving redundant
data onto the disk. Solid State Disk (SSD) media have
gained popularity these days owing to their low power
demands, resistance to natural shocks and vibrations and
a high quality random access performance. However,
these media come with limitations such as high cost,
small capacity and a limited erase-write cycle lifespan.
Inline deduplication helps alleviate these problems by
avoiding redundant writes to the disk and making effi-
cient use of disk space. In this paper, a block level in-
line deduplication layer for EXT?3 file system named the
DEXT?3 layer is proposed. This layer identifies the pos-
sibility of writing redundant data to the disk by main-
taining an in-core metadata structure of the previously
written data. The metadata structure is made persistent
to the disk, ensuring that the deduplication process does
not crumble owing to a system shutdown or reboot. The
DEXT3 layer also takes care of the modification and the
deletion a file whose blocks have been referred by other
files, which otherwise would have created data loss is-
sues for the referred files.

1 Introduction

While data redundancy was once an acceptable part of
the operational backup process, the rapid growth of dig-
ital content storage has made organizations approach
this issue with a new thought process and look for other
ways to optimize storage utilization. Data deduplication
would make disk more affordable by avoiding backing
up redundant data.

Data deduplication is basically a single-instance storage
method which helps in reducing the storage needs by
eliminating redundant data. Only one instance of the
data is actually stored and the redundant data, which
will not exist physically, is just a pointer to the unique
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data. For example consider an example of an email sys-
tem which may contain 100 instances of a 10 MB at-
tachment. If the entire system was to be backed up, all
100 instances would be saved requiring 1000 MB of disk
space. With deduplication in place, only 10 MB of one
instance would actually exist and the other redundant
instances would just be a pointer to this unique instance
saving precious disk space.

Data deduplication generally works at the file or block
level. The latter outperforms the former because file
level deduplication would work for files that are same as
a whole; whereas block level deduplication would work
for blocks (a constituting part of the file) as a whole.
Each chunk or block of data, that is about to be writ-
ten to the disk, is subjected to hash algorithm such as
MDS5. This process generates a unique hash value for
each block, which is stored in a database for further
referral. If a file is updated, then only the added or
changed data is stored, and disk storage is allocated only
for these parts. In our work, we present an implemen-
tation of an inline block level deduplication layer added
to the EXT3 file system, named as the DEXT3 layer.

2 Related Work

2.1 Types of Deduplication

Deduplication has various implementation approaches
which can be significantly classified by their resiliency
level (file vs. block) or by when they perform dedu-
plication (inline vs. post-process) or by their method
of duplicate data detection (hash vs. byte wise com-
parison). As stated earlier, inline deduplication is a
strategy in which the duplicate data is identified be-
fore it hits the disk. Post-process deduplication is a
strategy in which the data is first written to the disk
and then de-duplication processing occurs in the back-
ground. In hash-based strategies, the process uses cryp-
tographic hashes to identify duplicate data whereas byte
wise strategies compare the data itself directly.
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2.2 Deduplication Targets

Venti [1] and Foundation [2] both perform deduplication
with respect to a fixed block size. Venti is basically an
archival system. Foundation is a system that stores snap-
shots of various virtual machines and also uses Bloom
filters to detect potential duplicates on the system.

The NetApp deduplication function [3] for file servers
is used in integration with WAFL and FlexVol [4] and
makes use of hashes to find duplicate data blocks. In
this system, hash collisions are resolved through byte by
byte comparison. This process runs in the background,
therefore making it a post-process deduplication system.

The LBFS [5], Data Domain [6], HYDRAstor [7],
REBL [8] and TAPER [9] identify and detect potential
duplicates using content-defined chunks.

2.3 Deduplication Performance and Resources

The Data Domain [6] is a deduplication system that
makes use of the spatial locality of data in a given
backup stream to improve the performance of searching
for hash metadata of the same data stream.

Sparse indexing [10] is a technique of deduplication
that reduces the size of the data information kept in the
RAM. It achieves this by sampling data hashes of data
chunks.

These processes work fine with large data sets in a pro-
vided locality; however, we have to assume that the ac-
cess patterns have small or no locality in a primary stor-
age system.

2.4 Performance With Solid State Disks (SSD)

Itis generally efficient to use fast devices like Solid State
Disks for frequently used data. Chunkstash [12] and
dedupvl [11] make use of solid state disks for metadata.
SSD and metadata is a good combination, mainly be-
cause I/O operations for metadata are always small and
random.

3 DEXTS3 design

The proposed design works on the following two prin-
ciples:

1. Provide a working file system which tries to save
space and avoid redundant disk writes.

2. Organize the in-core data structure efficiently and
make it persistent to the disk.

In order to find the potential duplicates, the write sys-
tem call invoked by the kernel is intercepted in the VEFS
itself. The data that is about to be written to the disk
is available in a buffer in the write system call. This
buffer is then broken into chunks of 4 kB each, owing
to the 4 kB block size design of the kernel. These 4 kB
blocks are compared with the data that has been previ-
ously written. If the new data block matches any previ-
ously written block, then instead of writing out the new
block, the file’s metadata is updated to point to the ex-
isting block on disk.

In order to identify potential duplicate blocks efficiently,
an in-memory mapping of data hashes and the corre-
sponding block numbers of the data is maintained. This
mapping is created whenever there is a successful write
to the disk. When control stays within the VFS, the hash
value of block data is inserted into the data structure,
and when the file system allocates a block to this data,
its block number is stored in the data structure. In or-
der maintain correct file system behaviour, another field
is added in the data structure which maintains the ref-
erence count of the block, which indicates how many
times a particular block has been used. This count is
used whenever the kernel is about to release a block.

Deduplication could be implemented in a block layer
device driver, which sits in between the file system layer
and the actual underlying block device. This approach
has the advantage that it is general and can be used for
any file system. However, this extra layer of indirection
incurs a performance penalty. The proposed implemen-
tation simply uses the existing block pointers in file sys-
tem metadata, regardless of whether the pointer points
to a regular block or a deduplicated block.

The system may be shut down or rebooted at any time.
Being held in memory, the entire data structure would be
lost, and after the system restarts again, the kernel would
be unaware of the deduplicated blocks. Deleting a file
whose blocks have been deduplicated would cause data
loss issues to the referring files. The user might modify
the file whose blocks have been referred by other files.
This will still cause issues to the files which point to the
blocks contained by the file being modified. All these
issues would be handled in the proposed design.
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Figure 1: Node Structure of Dedupe Database

4 Implementation Details

DEXT3, a version of the EXT3 filesystem is imple-
mented for Linux to provide on-the-fly inline block-
level deduplication. DEXT3 is written for the Linux ker-
nel version 2.6.35. The occurrence of duplicate data is
detected in the write system call itself and then controls
block allocation when the control of the kernel flows
to the file system. The block de-allocation process of
the file system is also modified in order to avoid freeing
deduplicated blocks. The coming sections explain the
design in detail.

4.1 Dedupe Database and Working of Deduplica-
tion Mechanism

The dedupe database is basically a data structure that
maintains metadata with respect to the chunk of data
that was previously written to the disk. The data struc-
ture that has been implemented is hash table with linear
chaining. The size of the table is static, but the size of
the chain is dynamic and grows as entries are added to
the structure.

Figure 1 shows the structure of a node in this chain. The
node occupies a total 30 bytes in size. The size of this
node is fixed. The fields of this node describe the data
chunk written to the disk in detail, that is, its hash value,
the block number allocated by the kernel and the usage
count which shows how many times the block with this
block number has been referred by files. This field is
useful in handling block de-allocation.

Following two hash functions are used by DEXT3:

MDS Message Digest 5
FNV Fowler Nollvo hash

MDS5 is used to generate hash value of the 4 kB data
chunk which is intercepted in the write system call. This

Calculate Hash
Fingerprint

Incoming Data

Is Hash
Present?

Create New
Inode

Dedupe
Data
Structure

Create New Inode
But Point To Already
Existing Data Blocks

Write Hash Value
To Data Structure

Write Data To
New Disk Blocks

Figure 2: Working of the DEXT3 layer

hash value is then used for checking redundant and du-
plicate data in the write system call.

The FNV hash is used to build the data structure itself.
This function returns an integer hash value of 32-bits.
This value is further truncated to 21-bits to keep the
memory requirements optimal. So with a 21-bit FNV
hash, a total 2097152 indices could be used to build the
table. At every index one linear chain is maintained.
The structure of a node in this chain is as stated in Fig-
ure 1.

First the 16-byte hash value of the 4 kB data chunk is ob-
tained. Then the same chunk is subjected to FNV hash
to obtain an index in the linear chain. The MDS5 hash
is inserted in this chain, and at a later stage when the
kernel allocates a block to this data chunk, the newly al-
located block number is stored in the same node and the
usage count of this node is initialized to 1.

Before inserting the hash value in the chain, the chain
lookup is performed. If the lookup fails, then the data
is new and therefore not redundant, and the kernel is al-
lowed to follow its normal allocation routines. However
if the lookup succeeds, then the data is redundant. The
usage count of the matching node is incremented, and
the kernel does not allocate a new block for this data.
This entire process is carried out before the data chunk
is actually allocated a block on to the disk. Figure 2
explains the above stated design.

4.2 Main File Deletion and Modification
The deletion of a file whose blocks are referred by other

files would cause data loss issues. To prevent this un-
likely event, another data structure called the character
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bitmap is introduced. This bitmap is a character array
that maintains the deduplicated status of all the blocks
available in the file system. The bitmap status of a block
is set to deduplicated (i.e. 1), whenever we end up per-
forming a successful lookup in the linear chain for that
block number. It would imply that the block has now
been referred by more than one files. The status of a
block remains 0 in the bitmap if it has never been dedu-
plicated. The bitmap is efficient in terms of both mem-
ory and lookup. Each byte in the array can hold the
status of eight blocks at once. Looking up the status of
a block involves a single logical AND operation.

Before the kernel goes deeper into file deletion, the
DEXT3 layer first decrements the usage count of all the
blocks held by the target file. If the usage count of a
block reaches zero, it means that the file about to be
deleted is the last file to ever refer this block. So the
layer:

1. Deletes its node from the chain

2. Updates its bitmap status to zero

If the usage count does not reach to zero, the DEXT3
layer simply allows the kernel to proceed to the next
step.

The next step in file deletion is releasing the blocks held
by the file. When the kernel is about to de-allocate and
release a specific block, the DEXT3 layer first checks
the deduplicated status of that block in the bitmap. If
the status returned is 1, it means that there are files in
the file system those still refer to this data block and re-
leasing this block would be problematic. In this case the
DEXT?3 layer does not allow the kernel to release this
block. Owing to this strategy, even if the main file in-
ode has been deleted, if it holds any deduplicated block,
then those blocks would still be available for use by the
deduplicated files. Figure 3 and 4 explain this design.

The next challenge is to handle the modification of a file
whose blocks have been deduplicated. Once again, this
would cause data loss issues to the deduplicated blocks.
Whenever a file is modified, such as via an editor, the
kernel is asked to do the following things:

1. De-allocate the current inode

2. Allocate a new inode

File Deletion
Initiated

Decrement Usage
Count of All Blocks
Belonging to File

Delete Entry From
DS, Update
Bitmap and Return

Is Usage
Count = 0?

Return

Figure 3: File Deletion Phase - I

Blocks About to
be Released

Check Dedupe State
of Each Block in
Bitmap

Do Not Release Yes Is Status No Release the

the Block =1? Block

Figure 4: File Deletion Phase - 11

When the kernel deletes the current inode, it de-allocates
the blocks that are currently held by the file. When a
block is about to be allocated, the control is as shown in
Figures 3 and 4.

When the kernel allocates a new inode to the file, the
control flows through the write system call again. As the
DEXTS3 layer exists in the write system call, the control
flow is as shown in Figure 2.

4.3 Permanent Data Structure

The entire DEXT3 database resides in the memory and
is therefore volatile. Whenever the system is shutdown
or rebooted, this highly precious information is lost.
After the system boots again, the kernel is unaware of
which block has been deduplicated. If it were about to
release a block, then it would have directly released that
block, even it was deduplicated earlier. To prevent this
catastrophic event, the data structure is made persistent
to the disk. When the system boots and the deduplica-
tion process starts again, data structure is rebuilt from
this saved information. The bitmap is not flushed to the
disk. Instead when the data structure is rebuilt, at the
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% of Partition Saved Disk
Deduplication | Capacity (GB) | Space (GB)
0 136 0
10 150 14
20 164 28
30 177 41
40 190 54
50 204 68
100 272 136

Table 1: Statistics with respect to the data structure

same time the bitmap is updated. This strategy keeps the
kernel informed about the deduplicated status of each
block even if the system is booted any number of times.
This also helps to maintain and start the deduplication
process from the point where it had stopped due to sys-
tem shutdown.

5 Statistics for Disk Space Saving using
DEXT3

5.1 Statistics With Respect to the Data Structure

Considering the number of nodes in a linear chain to be
17, we calculate the following statistics: With 17 nodes
present at each of the 2097152 indices in the table, the
size of the data structure goes up to nearly 1 GB. With
this 1 GB of metadata, the layer manages 136 GB of data
stored on to the disk, without any possibility of dedupli-
cation.

In the entire structure, if 10% of blocks have been dedu-
plicated, then the partition capacity rises virtually to
150 GB saving nearly 14 GB of disk space. With 100%
deduplication, partition capacity doubles to 272 GB,
saving complete 136 GB disk space.

5.2 Statistics With Respect to File Size

Considering the size of a file to be 4 GB, the total num-
ber of blocks that would be allocated to this file would
be 1049612.

6 Conclusion

The statistics and results were encouraging and indicate
how DEXT3 is able to save significant amount of disk

% of Dedup- | Total Blocks | Saved Disk
licated Blocks | Saved (GB) | Space (MB)

10 104961 410

20 209922 820

30 314884 1230

40 419845 1640

50 524806 2050

100 104961 4100

Table 2: Statistics with respect to the File Size

space and reduce the number of disk writes. The mem-
ory requirements remain optimal. Including deduplica-
tion in the kernel introduces a little overhead in the sys-
tem performance. Though on one hand we introduce
this overhead, on the other hand DEXT3 provides sig-
nificant cost, space and energy savings. We view this
as acceptable since performance gain is not the primary
goal, rather our goal is to avoid writes and achieve space
savings. The DEXT3 layer does not modify any other
filesystem metadata other than the inode. The inode is
updated at run time itself, so there is no need to update
the file system metadata explicitly. The persistent data
structure strategy makes it possible to rebuild the data
structure after system boot. Almost all the applications
that use solid state disks for primary storage make use
of the existing and standard file systems. Providing a
simple DEXT?3 layer is crucial in order to promote real
world use. The original FFS in UNIX added disk aware-
ness to an otherwise hardware oblivious filesystem. We
find block level inline deduplication i.e. DEXT3 as a
crucial and important layer of SSD limitations. More
importantly, as the industry transitions away from the
spinning disks towards solid state devices, this kind of
approach, as we see, will become increasingly critical.
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Abstract

In recent years, system virtualization technology has
gradually shifted its focus from data centers to embed-
ded systems for enhancing security, simplifying the pro-
cess of application porting as well as increasing sys-
tem robustness and reliability. In traditional servers,
which are mostly based on x86 or PowerPC processors,
Kernel-based Virtual Machine (KVM) is a commonly
adopted virtual machine monitor. However, there are no
such KVM implementations available for the ARM ar-
chitecture which dominates modern embedded systems.
In order to understand the challenges of system virtual-
ization for embedded systems, we have implemented a
hypervisor, called ARMvisor, which is based on KVM
for the ARM architecture.

In a typical hypervisor, there are three major compo-
nents: CPU virtualization, memory virtualization, and
I/0 virtualization. For CPU virtualization, ARMyvisor
uses traditional “trap and emulate” to deal with sensi-
tive instructions. Since there is no hardware support
for virtualization in ARM architecture V6 and earlier,
we have to patch the guest OS to force critical instruc-
tions to trap. For memory virtualization, the functional-
ity of the MMU, which translates a guest virtual address
to host physical address, is emulated. In ARMvisor, a
shadow page table is dynamically allocated to avoid the
inefficiency and inflexibility of static allocation for the
guest OSes. In addition, ARMvisor uses R-Map to take
care of protecting the memory space of the guest OS.
For 1I/O virtualization, ARMvisor relies on QEMU to
emulate I/O devices. We have implemented KVM on
ARM-based Linux kernel for all three components in
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ARMoyvisor. At this time, we can successfully run a guest
Ubuntu system on an Ubuntu host OS with ARMvisor
on the ARM-based T1 BeagleBoard.

1 Introduction

Virtualization has been a hot topic and is widely em-
ployed in data centers and server farms for enterprise
usage. Today’s mobile devices are equipped with GHz
CPU, gigabytes of memory and high-speed network.
With the advancement of computing power and Internet
connection in embedded devices, system virtualization
also assists to address security challenges, and reduces
software development cost for the mobile and embedded
space. For instance, the technique of consolidation is
capable of running multiple operating systems concur-
rently on a single computer and the technique of sand-
boxing enhances security to prevent a secure system
from destruction by an un-trusted system. The benefits
and the new opportunities have prompted several com-
panies to put virtualization into mobile and embedded
devices. Open Kernel Labs announced that the OKL4
embedded hypervisor has been deployed on more than
1.1 billion mobile phones worldwide to date. Hence,
research into the internal design and implementation of
embedded hypervisors also attact more attention in aca-
demic communities. In this paper, we have worked on
the construction of ARM based hypervisor without any
hardware virtualization support.

Essentially, the ARM architecture was not initially de-
signed with system virtualization support. In the lat-
est variant, the ARMv7-A extension which was an-
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nounced in the middle of 2010, ARM will start to sup-
port hardware virtualization and allow up to 40-bit phys-
ical address space. However, the widely used vari-
ants of ARM processors, such as ARMvS5, ARMv6
and ARMv7, lack any hardware extension for virtual-
ization, making it difficult to design an efficient hy-
pervisor when well-known full virtualization method
is being applied. In fact, according to the virtualiza-
tion requirements proposed by Popek and Goldberg in
1974 [2], ARM is not considered as a virtualizable ar-
chitecture [1]. There exist numerous non-privileged
sensitive instructions which behave unpredictably when
guest operating system is running in a de-privileged
mode. These critical instructions increase the com-
plexity of full virtualization implementation, and some
of them, such as LDRT/STRT/LDRBT/STRBT instruc-
tions, will cause huge performance degradations. Tra-
ditionally, techniques like trap-and-emulation and dy-
namic binary translation (DBT) are adopted to handle
the sensitive instructions as well as critical instructions
for CPU virtualization. In ARMvisor, a lightweight par-
avirtualization method takes the place of DBT. Merely
hundreds of codes are necessarily patched into guest op-
erating system source codes.

For memory virtualization, the shadow paging mecha-
nism is also hard to be manipulated. First, the address
translations, access permissions and access attributes
described in guest page tables and other system registers
must be correctly emulated by the underlying hypervi-
sor. Second, the hypervisor must maintain coherences
between guest page tables and the shadow ones. Third,
the hypervisor needs to protect itself from destruction
by guest, as well as to forbid user mode guest to access
kernel memory pages. According to the above three
requirements, the ARM hypervisor still suffers perfor-
mance degradation, especially during the sequence of
process creation. To reduce the overhead, a lightweight
memory trace mechanism for keeping shadow page ta-
bles synchronized with the page tables of the guest OS
is proposed by ARMyvisor.

The experimental results of ARMvisor have shown leap-
ing performance improvement with up to 6.63 times
speedup in average on LMBench. Additionally, in em-
bedded benchmark suite such as MiBench, the virtual-
ization overhead is minimal, meaning that performance
is fairly close to native execution.

The rest of the paper will be organized as follows. Re-
lated works will be discussed in Section 2. Software

architecture of our embedded hypervisor is presented in
Section 3. A cost model for hypervisor are formed in
Section 4. Section 5 describes the optimization method-
ologies for CPU and memory virtualization. Experi-
mental results and analysis are covered in Section 6. At
last, we conclude the paper in Section 7.

2 Related work

A variety of virtualization platforms for ARM have been
developed in the past few years as a result of the long
leap in computing power of ARM processor. Past work
[3] mentioned several benefits of virtualizing ARM ar-
chitecture in embedded systems. It was noted that the
hypervisor provides the solution to embedded system in-
cluding security issues in online embedded devices due
to the downloading of third party applications by iso-
lating hardware resource by virtual machines. An em-
bedded hypervisor also enables heterogeneous operat-
ing system platform to deal with conflicting of API in
different operating systems.

Others [1] have analyzed the requirement for designing
a hypervisor for embedded system. For instance, the hy-
pervisor must be equipped with scheduling mechanisms
for latency critical drivers to meet the real-time require-
ments, and must also support various peripheral assign-
ment policies such as directly assigned, shared assigned
devices or run-time peripheral assignment. Other im-
portant factors include accelerating the boot time of the
guest OS, utilizing the utmost performance of embedded
hardware as well as reducing the code size of hypervisor
to prevent from potential threat.

Numerous hypervisors have been designed for newer ca-
pabilities for embedded ARM platforms. OKLab has
developed OKL4 Microvisor [4] based on L4 microker-
nel for ARM, catering to the merits of embedded vir-
tualization. They claim that the hypervisor has been
ported to millions of mobile handsets and supports sys-
tem such as Windows and Android to run atop of OKL4
Microvisor. They claim that the OKL4 Microvisor sup-
ports a secure embedded platform. Other commercial
VMMs include VMware’s MVP [5], Trango [6] and
VirtuaLogix [7]. Nevertheless, none of these solutions,
including the OKL4 Microvisor, are open-sourced and
thus the insights of their design are not available.

On the other hand, Xen [8] is a well-known hypervi-
sor for system virtualization, and has been successfully



ported to ARM architecture in Xen version 3.02 [9].
“Xen for ARM” required the guest code to be para-
virtualized by adding hyper-calls for system events such
as page table modification. However, code that needs
to be para-virtualized is not revealed in the paper. The
cost of maintenance with generations of different guest
operating system soars higher as heavier as the guest’s
code being modified for virtualization.

“KVM for ARM” [1] also implemented an embed-
ded VMM under KVM in ARMvS5. They proposed
a lightweight script-based approach to para-virtualize
the kernel source code of the guest OS automatically,
by switching various kinds of non-privileged sensitive
instructions with pre-encoded hyper-calls that trap to
hypervisor for later emulation. Nonetheless, they ap-
plied a costly memory virtualization model when de-
privileging guest system in the user mode of ARM ar-
chitecture. First, they did not apply the “reverse map”
mechanism in memory virtualization for keeping the
coherency of guest’s and shadow page table. In their
model, each modification results in a page table flush
since the hypervisor is unaware of the correspondence
of guest’s page table and shadow page table. Further-
more, the benchmarking or profiling results are not yet
revealed, so it is hard to evaluate the performance results
of running virtual machines on their work.

In contrast, ARMvisor introduces a lightweight mem-
ory virtualization model mechanism to synchronize the
guest page table, which is more suitable for use in em-
bedded system due to the performance and power con-
sumption concern. Detailed measurement and analysis
of system and application level benchmarks will be re-
ported in the following section. We proposed a cost
model to measure overhead due to virtualization in gen-
eral use cases. According to the profiling results, we can
design several optimization methodologies.

3 Overview of ARMyvisor

The proposed hypervisor is developed based on the open
source project KVM (Kernel-based Virtual Machine)
which was originally designed for hardware virtual-
ization extension of x86 architecture (Intel VT, AMD
SVM) to support full-virtualization on Linux kernel. It
has been included in the mainline Linux since kernel
version 2.6.20. KVM is composed numerous loadable
kernel modules which provide the core functions of the
virtualization. A modified QEMU is used to create the
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Figure 1: KVM execution path

guest virtual machine and to emulate the I/O devices.
Figure 1 illustrates the execution flow when providing
a virtualization environment for the guest using KVM.
A virtual machine (VM) is initiated in QEMU by us-
ing the system call interface (ioctl) provided by the
modules of KVM. After the VM has finished its initial-
ization procedures, KVM changes the execution context
to emulated state of the guest OS and starts to execute
natively. Guest exits its execution context whenever an
exception occurs. There are two kinds of traps in KVM:
lightweight and heavyweight traps. In lightweight traps,
the emulation is handled in internal functions of KVM,
implemented in the kernel space of Linux. In contrast,
heavyweight traps that include I/O accesses and certain
CPU functions will be handled by QEMU in user space,
so context switches are required. Hence, the cost of a
single heavyweight trap is higher than a lightweight one.

Numerous hardware virtualization extension primitives
of the x86 architecture are leveraged by KVM to pro-
vide fast and stable workloads for virtual machines. A
new execution guest mode is designed to allow direct ex-
ecution of non-privileged yet sensitive x86 instructions.
Instead of unconditionally trapping on every privilege or
sensitive guest instruction, a subset of those instructions
can execute natively in the virtual ring O provided by
the guest mode. They modify the shadowed CPU states
indicated on VMCB (Virtual Machine Control Block)
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to emulate the desired effect as is natively executed.
VMCB is an in-memory hardware structure which con-
tains privileged registers of the guest OS context and the
control state for VMM. VMM can fetch guest’s running
status directly as well as setup the behavior of excep-
tions from the VMCB. Furthermore, functions are de-
fined for the switch between guest and host mode. For
instance, after VMM finishes its emulation tasks like
page table filling or emulating I/O instruction, vmrun
is called to reload the state of virtual machine from the
modified VMCB to physical registers and resume its ex-
ecution in guest mode. Aside from the hardware assis-
tance for CPU virtualization, specific features were pro-
posed to aid MMU virtualization on x86. Intel’s EPT
and AMD’s nested paging were designed to tackle the
issue of “shadow paging” mechanism traditionally ap-
plied in MMU virtualization.

However, due to the lack of hardware assistance in our
experimental ARM architecture, KVM’s performance
suffers in various aspects on ARM. In CPU virtualiza-
tion, software techniques are adopted due to the lack of
hardware support, such as the x86 guest mode for vir-
tualization. Lightweight traps are generated by adding
hyper-calls for non-privileged sensitive instruction em-
ulation. To apply the trap and emulation model for em-
ulating instruction, guest system is de-privileged to exe-
cute in user mode. Besides, without the help of VMCB,
a context switch interface is needed for KVM/guest
switch. The state save/recovery for both lightweight
and heavyweight traps results in extra overhead and thus
largely degrades the system performance. Details of
the methodologies we took and the optimization applied
will be illustrated in the following sections.

3.1 CPU Virtualization

Guest Operating Systems finish critical tasks that access
systems resources by executing sensitive instructions.
According to the definition [2], there are two categories
of sensitive instructions: Control Sensitive and Behavior
Sensitive instructions. Control Sensitive instructions are
those that attempt to change the amount of resource and
the configuration available, while Behavior Sensitive in-
structions are those that behave depending on the con-
figuration of resources. For example, “CPS” in ARM
modifies CPU’s status register, a.k.a. CPSR, to change
the execution mode or to enable/disable interrupt and
has control sensitivity. Moreover, executing CPS in user

mode results to NOP effect thus it is also behavior sensi-
tive. Such instructions must be handled properly to keep
the guest being correctly executed.

Actually, in order to prevent guest from ruining the
system by controlling hardware resource with privilege
and allow hypervisor to manage the resource of system,
guest operating system is de-privileged to execute in
non-privilege mode while hypervisor is located in privi-
lege level for resource management. Pure virtualization
that executes guest OS directly in user mode is proposed
under the premise that the architecture is virtualizable,
i.e. all the sensitive instructions trap when executing in
non-privilege mode. Hypervisor intercepts such traps
and emulates the instruction in various fashion. The
approach requires no modification of guest OS to run
in a virtual machine, so the engineering cost for port-
ing and maintaining multiple versions of guest OS is
minimal. However, pure virtualization is not feasible in
contemporary architectures since most of them includ-
ing x86 and ARM are not virtualizable and there exist
some non-privilege sensitive instructions, called critical
instructions, which behave abnormally when being de-
privileged in user mode.

Solutions have been proposed to ensure the exactness of
system execution in non-virtualizable architecture like
x86 without hardware extension. Past work [13] im-
ports dynamic binary translation (DBT) techniques to
overcome the obstacles in virtualizing x86 architecture
to support full virtualization. Guest binary is trans-
formed into numerous compiled code fragments (CCF)
and chained together by the VMM. In essence, most
of the guest code is identical except those sensitive in-
structions. Sensitive instructions are either translated
into non-sensitive ones, or into jumps to a callout func-
tion for correct handling. Nonetheless, DBT seems pro-
hibitive in embedded system since the translated code
accounts for large portion of memory and RAM size is
comparatively smaller than in large server or work sta-
tion.

Besides, paravirtualization [8] methodology that re-
places the non-privilege sensitive instructions with sets
of pre-defined hyper-calls for x86 is also introduced.
During execution, the hyper-call traps to the hypervi-
sor for corresponding handling for events such as page
table pointer modification. In spite that the performance
presents promising run-time results, engineering cost
is expensive for porting a guest OS to the virtual ma-
chine in Xen and thus adds difficulties for maintain-



ing new versions of guest OS distribution for perfor-
mance issues. To solve such limitations of paravirtual-
ization, new technique called pre-virtualiztion [14] has
been proposed. They presented a semi-automatic sensi-
tive instruction re-writing mechanism in the assembler
stage, and assert that compared with paravirtualization,
the approach does not only require orders of magnitude
fewer modification of guest OS, but also achieves almost
the same performance result as paravirtualization.

Given that ARM’s ISA is non-virtualizable, ARMvisor
chooses paravirtualization techniques to handle guest’s
non-privilege sensitive instruction. Guest kernel and ap-
plications are de-privileged to execute in ARM’s user
mode, while ARMvisor executes in ARM’s supervi-
sor mode to avoid guest from crashing the host sys-
tem. ARM’s SWI, accompanied with a dedicated num-
ber, is inserted manually before each sensitive instruc-
tion as hyper-calls for instruction emulation. Traps will
be triggered and sent to the Dispatcher in the hyper-
visor. ARMyvisor acknowledges the software interrupt
triggered with a specific number and then decodes and
emulates the sensitive instructions by effectively mod-
ifying the “Virtual Register File”, which represents the
virtual CPU context of guest system.

In practice, trapping on each sensitive results in huge
degradation in performance, due to the high cost of traps
in modern computer design. As stated earlier, hardware
extension of x86 architecture provides extra mode for
virtualization to address such issue. Many sensitive in-
structions can directly execute in guest mode rather than
trapping to hypervisor for later handling thus improving
performance. Vowing to lower the considerable over-
head results from “trap and emulation” without hard-
ware extension in contemporary ARM architecture, we
further proposed two optimizing technique to accelerate
the performance. Insights of each optimizing heuristic
will be discussed in later section.

3.1.1 Instruction emulation

ARMVG6 defines 31 sensitive instructions, of which 7
are privileged instructions and will trap when guest sys-
tem is being de-privileged. The rest of them are crit-
ical instructions, which required code patching to pre-
vent non-deterministic behaviour in user mode. Table 1
lists the counts of various types of critical instructions
that need to be modified in Linux kernel 2.6.32 to boot
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Instruction_type Count
Data Processing (movs) 4
Status Register Access (msr/mrs, cps) 34
Load/Store multiple (1dm(2,3), stm(2,3)) | 8

Table 1: Sensitive instruction count

Cache/TLB’s invalidation and clean
BTB Flush
TTBR Modification
Domain configuration
Context ID
Processor status (ex: CPU ID, Page Fault Info)

Table 2: ARM co-processor operations

on ARMvisor. We figured that the critical instructions
exist in files for three separate purposes in Linux ker-
nel: kernel boot-up, exception handling and interrupt
enable/disable. Macros composed of instructions that
setup ARM Status Register for interrupt controlling are
defined in header files, and are widely deployed in large
portion of kernel code. Moreover, numerous critical in-
structions actually account for large portion of the code
in ARM Linux’s exception handling entry and return. In
our measurement, we found that merely forcing those
non-privilege sensitive instructions to trap for instruc-
tion emulation in ARMvisor brings about intolerable
performance loss in guest system. In fact, these instruc-
tions only involve virtual state change and no hardware
modification is needed. Consequently, we eliminate the
traps by replacing the instructions with Shadow Register
File Access (SRFA) in guest’s address space.

In contrast to the critical instructions, a few sensi-
tive instructions like ARM co-processor’s operation
(MCR/MRC) are privileged, and numerous essential
operations are accomplished through the execution of
those privilege instructions. Table 2 lists several func-
tions achieved by co-processor operations. Traps will
be invoked when executing these instructions in ARM’s
user space and certain hardware alteration is performed
by ARMyvisor to correctly emulate guest’s desired be-
havior.

To relieve the overhead suffered in emulating those in-
structions, we concisely analyze all of the operations
and propos several refinement methodologies to achieve
performance improvement. First, guest’s TLB opera-
tions and BTB flush is dynamically replaced with NOP’s
by ARMyvisor during execution, since TLB and BTB
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will be thoroughly flushed during every context switche
between guest and the hypervisor. Secondly, operations
that read information in co-processors, such as mem-
ory abort status and cache type, can also be replaced
with SRFA since only virtual state is fetched. Finally,
cache operations involving certain hardware configura-
tion must be trapped and finished in privilege level. To
minimize the overhead of emulation, technique called
Fast Instruction Trap (FIT) is applied to reduce costs of
context switching and handle those operations in guest
address space. Implementation details of SRFA and FIT
will be narrated in later section. TTBR and Domain
Register modification is comparatively complicated so
they are emulated in ARMyvisor through lightweight
traps.

We conclude that many software optimizations can be
applied with paravirtualization techniques to effectively
mitigate the run-time overhead for virtualization at the
expense of higher engineering cost. It depends on the
VM distributor to decide the pros and cons of perfor-
mance elevation with the trade-off of the cost to main-
tain versions of guest OS.

3.1.2 CPU virtualization model

The hypervisor gathers system exceptions such as inter-
rupts, page faults and system calls, and properly han-
dles them for each virtual machine. Hardware exten-
sions in the x86 architecture enable guest OS exceptions
to be handled by its operating system natively without
the interference of hypervisor by setting typical bits in
VMCB.

In the ARM architecture, which lacks such hardware as-
sistance, the hypervisor is responsible for distinguishing
and virtualizing exceptions of the guest OS by deliver-
ing traps to each virtual machine. Synchronous excep-
tions such as memory access abort, system calls as well
as undefined access have higher priority and should be
injected to guest virtual machine immediately. Asyn-
chronous exceptions such as interrupt could be delivered
later when the pending queue for synchronous excep-
tions of that virtual machine is empty.

Additionally, exceptions may be invoked for virtual-
ization events such as hyper-calls for instruction em-
ulation and extra shadow page table miss, which are
non-existent when executing the OS on bare hardware.

UND ABORT Swi IRQ/FIQ

g 4 4

KVM Trap Interface

v y
Host Trap KVM/Guest < QEMU /O
Handler Context Switch Interface Emulation

v i

KVM Trap Dispatcher

v v v
Guest Guest Guest
Instruction MMU Exception / Interrupt
Emulation Emulation Emulation

Figure 2: VCPU virtualization flow

These traps are handled internally by the hypervisor and
the guest is actually unaware of such events.

As depicted in Figure 2, exceptions are routed to ARM-
visor for unified administration by replacing host ker-
nel’s exception vector with KVM Vector when KVM
module is loaded. Therefore, system’s exceptions are
re-directed to the Trap Interface inside ARMuvisor for
later handling. The interface verifies the host and
guest exceptions and branch for separate handling path.
Whenever guest exceptions are discovered, KVM/Guest
Switch Interface saves the guest interrupt state and
switches to KVM’s context for later handling. In fact,
since KVM executes in a different address space from
the guest, page tables must be changed for consequent
trap handling. However, unlike the hardware extension
of x86 architecture that restores the page table pointer
register automatically in VMCB for exception exits,
KVM/Guest Switch Interface must be contained in a
shared page which is accessible in both guest and KVM
address space, otherwise the behavior would be unde-
fined after the modification of TTBR (Translation Table
Base Register) in ARM. As shown in Figure 3, the in-
terface is contained in a page between the address of
0xf££1O000 to Oxff££1000 (if high vectors are used).
This page is write-protected to prevent from malicious
attacks crashing the system.

The trap dispatcher in ARMvisor forwards lightweight
and heavyweight traps to different emulation blocks.
Several traps, such as hyper-calls, memory access abort
and interrupt, are handled by emulation blocks in ARM-
visor respectively as illustrated in Figure 2. After all
KVM’s internal emulation blocks finish their emula-
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O0xFFFF1000
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Figure 3: KVM vector implementation in ARMvisor

tion, KVM/Guest Switch Interface verifies if the trap is
lightweight, and if so, restores the guest interrupted con-
text to continue its previous execution. Otherwise, the
trap is heavyweight, so a context switch is required since
subsequent emulation tasks are to be finished in QEMU.
After a heavyweight trap finishes its emulation, such as
I/O access and CPU related operations through the in-
terfaces provided by QEMU, another context switch is
taken to resume the guest’s previous execution.

3.2 Memory virtualization

Generally, the VMM provides a virtualized memory
system for a guest virtual machine. When the user-
level applications and operating system run in a VM,
their memory access will be precisely controlled and
remapped to host physical memory. For security, the
VMM necessarily protects itself from illegal access by
any guest and isolates one VM from another one. In
practice, implementing memory virtualization is rela-
tively more complex than CPU virtualization. The ef-
forts involve working on guest physical memory allo-
cation, shadow paging mechanism, and virtual Memory
Management Unit (vMMU) emulation. Our implemen-
tation and the considerations for ARM memory archi-
tecture will be discussed later.

3.2.1 Guest physical memory allocation

The guest physical memory can be allocated in two
ways: static or dynamic allocation. A static alloca-
tion will reserve continuous memory pages from host
physical memory. The allocated memory pages are oc-
cupied and unlikely to be shared with VMM or other
VMs, thus the host memory resources are not being
well utilized. In contrast, the dynamic allocation method

PABT / DABT
Trap

Guest Guest MMIO Shadow Shadow
Page Table | Permission —# Access —# Page Table —# Page Table
Walker Checker Checker Mapping Update

i True permission fault Hidden translation fault

MMIO emulation
True translation fault

Figure 4: The emulation flow of shadow paging

maps a region of host virtual memory as guest physical
memory. The host physical memory pages are allocated
dynamically, as the technique of demand paging. In
[10], VMware ESX server further provides a ballooning
driver for guest to reclaim unused memory pages. Cur-
rent KVM manages guest memory resources using the
existing functionalities within the Linux kernel includ-
ing buddy allocator, slab/slub allocator, virtual memory
subsystem. Once a VM is created, KVM considers the
guest physical memory as part of the user space memory
allocated in the VM process.

While executing guest binary code, all the memory ac-
cesses will be remapped to host memory by a series of
address translation processes. First, a guest virtual ad-
dress (GVA) can be translated to a guest physical ad-
dress (GPA) by walking through guest page tables. Then
the host virtual address (HVA) is generated by the infor-
mation stored in the GPA-HVA mapping table. Even-
tually the HVA will be translated to the host physical
address (HPA) by host page tables. It has no efficiency
if every guest memory access is forced to the surplus
translation. The general solution of memory virtualiza-
tion is to use a mechanism called shadow paging, which
maintains a shadow of the VM’s memory-management
data structure to directly translate GVA to HPA.

3.2.2 Shadow paging

The overall design of shadow paging shown in Figure 4.
When the hardware Prefetch Abort (PABT) trap or Data
Abort (DABT) trap is caught by the ARMyvisor, the trap
will be handled following the shadow paging mecha-
nism. The first step is to obtain the mapping informa-
tion of the trapped GVA by walking through the guest
page table. If the mapping does not exist, ARMvisor
will deliver a true translation fault to guest. Otherwise,
ARMyvisor will translate the GVA to GPA and will check
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whether the access permission is allowed by interpret-
ing the guest page table entries. If the memory access
is illegal, ARMvisor will inject a true permission fault.
When first two steps are finished and no true guest fault
is generated, the trap would be handled as a certain hid-
den faults such as MMIO emulation fault, hidden trans-
lation fault or hidden protection fault in the following
steps. MMIO access checker will examine whether the
accessed memory region is located in the guest I/O ad-
dress space. If it is a MMIO access, the trap will be han-
dled by the I/O emulation model in QEMU. Otherwise,
the trap is forwarded to the last two steps with respect to
shadow page table (SPT) mapping and update.

Modern ARM processors use hardware-defined page ta-
bles to map virtual address space to physical address
space. The translation table held in main memory has
two levels: the first-level table holds section, super sec-
tion translations and pointers to second-level tables. The
second-level table holds large and small page transla-
tions. Four types of mapping size are defined as super-
section (16MB), section (4MB), large page (64KB) and
small page (4KB). For each guest page table (GPT) of
guest process, ARMvisor will allocate one SPT to map
it. All of the SPTs are cached and are searched while
switching guest processes. Initially, the SPT loaded
into host translation table base register (TTBR) is empty
when running guest. As a result, any memory access
will trigger a hidden translation fault. The fault GVA
is used by ARMvisor to walk through the current first-
level SPT and second-level SPT to fill new entries for
the translation miss. The filled entries contain the map-
ping to host physical memory and the permission setting
in guest’s page table. ARMvisor will restore the execu-
tion context of the trapped instruction afterwards, then
the memory access will natively be handled by the host
MMU. Generally, the maintenance of SPTs has two con-
siderations: One is how to emulate guest’s permission
under de-privileged mode; the other is how to keep the
coherence between GPTs and SPTs. They will be ex-
plained in the next two subsections.

3.2.3 Permission model & Synchronization model

In the ARMV6 architecture, access to a memory region
is controlled by the current processor mode, access do-
main and access permission bits. The current processor
mode will be either non-privileged mode (User mode)

APX:AP[1:0] | Privileged mode | User mode
0:00 NA NA
0:01 RW NA
0:10 RW RO
0:11 RW RW
1:01 RO NA
1:10 RO RO

Table 3: The encoding of permission bits

or privileged modes (FIQ, IRQ, Supervisor, Abort, Un-
defined and System modes). The type of access domain
is specified by means of a domain field of the page table
entry and a Domain Access Control Register (DACR).
Three kinds of domain access are supported: The type
of NA (No access) will generate a domain fault for any
memory access. The type of Client will check access
permission bits to guard any memory access. The type
of Manager will not check any permission, so no per-
mission fault can be generated. The access permission
bits are encoded in the page table entries with several
fields, APX, AP, and XN. Table 3 shows the encoding of
the access permissions by APX and AP. The XN bit acts
as an additional permission check. If set to 1, the mem-
ory region is not executable. Otherwise, if XN clear to
0, code can execute from the memory region.

Guest OS will use the permission model to separate
kernel space from user spaces. Any user process can
only access its user space. Access to kernel space or
other user spaces is not allowed. Additionally, guest
OS may use Copy-On-Write mechanism to speed up
the process creation. Hence, hypervisor is obliged to
maintain the equivalent memory access permission to
reflect the desired guest behavior correctly. However,
fully virtualizing guest’s access permission is difficult
since guest is executed in de-privileged mode for secu-
rity issues. For example, once the permission of a mem-
ory region is set as (RW, NA) by guest OS, it means
the memory region can be arbitrarily accessed in the
guest kernel mode, while the access is forbidden in the
guest user mode. In such case, since guest is physically
executed in ARM’s non-privilege mode (user mode),
the access permission is remapped to RW/RW to em-
ulate the exact memory access behavior in virtual privi-
lege mode. Therefore, a thorough flush of SPTs is re-
quired for any mode switch between virtual privilege
and non-privilege level because the access permission
set in SPT differs based on the virtual privilege level
of guest. Moreover, LDRBT/LDRT/STRBT/STRT in-
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GPT GPT SPT SPT
Privilege | User | Privilege | User
mode mode mode mode

NA NA NA NA
RW NA RW RW
RW RO RW RW
RW RW RW RW
PO NA RO RO
RO RO RO RO

Table 4: Access Permission bits remapping in Shadow
Page Table for kernel space region

structions must be treated as sensitive instructions since
they access memory with user permission while the pro-
cessor is in the privileged mode. Trapping each of these
instructions results to huge slowdown in program execu-
tion, since they are frequent used by operating system to
copy data from/to user space. Previous work [1] actually
proposed a memory access permission model using per-
mission remapping mechanism in SPT mentioned above
and suffered great performance loss due to large amount
of SPT flush and sensitive instruction traps.

In view of cutting down the overhead results from per-
mission transformation, we proposed a methodology
called double shadow paging in ARMvisor. We allo-
cate two SPTs for one corresponding GPT: kernel SPT
(K-SPT) and user SPT (U-SPT). Whenever translation
misses occur, each newly allocated entry which maps
the kernel space region in K-SPT is translated from GPT
entry by ARMvisor to emulate guest’s privilege level
access, while entries in U-SPT have the same permis-
sion as in GPT. Table 4 demonstrates mapping of the ac-
cess permission bits in kernel space region from GPT to
SPT. ARMvisor loads either K-SPT or U-SPT to ARM’s
TTBR (Translation Table Base Register) depending on
whether the virtual CPU mode it is switching to is priv-
ileged or non-privileged.

The mechanism of double shadow paging eliminates the
need for SPT flushing after virtual mode switch, as was
required in the previous single-table permission remap-
ping methodology. However, the maintenance of double
PTs adds complexity to the design of the synchroniza-
tion model for GPT and SPT for shadow paging mech-
anism in ARMvisor. Memory usage in the system will
also grow since more pages are allocated as first/second
level of U-SPT/K-SPT during the lifecycle of a process
comparing with the single SPT model.

GUD GKD
Virtual User Space | Client | No access
Virtual Kernel Space | Client Client

Table 5: Domain configuration in Shadow Page Table

To reduce memory usage in the double shadow pag-
ing model, we utilize ARM’s Domain control mecha-
nism and map one GPT to only one SPT. Permission
bits of the SPT entries that map to kernel space region
are translated by ARMvisor as in the double shadow
paging model. However, the Domain Access Control
Register (DACR) is configured by ARMvisor to reflect
the same protection level on the corresponding SPT. Ta-
ble 5 lists the Domain configuration of ARMvisor. GUD
and GKD represent the domain bits of SPT that maps to
“Guest User space” and “Guest Kernel space” respec-
tively. In Virtual User Space, GUD is set as client and
GKD is set as No access to protect the guest kernel space
from invalid access by its user space. In the Virtual Ker-
nel Space region, both GUD and GKD are set as client.
DACR is modified by ARMvisor for events that involve
in virtual CPU mode switch such as system call, inter-
rupts and return to user space.

ARMyvisor uses memory trace to maintain the coherence
between GPT and SPT. Once a SPT is allocated to map
a GPT, the memory page of this GPT is write protected.
This allows ARMyvisor to determine when the guest OS
tries to modify the GPT entries. The synchronization
model is implemented by using a RMAP data structure
which records the reverse mapping from guest physical
pages to SPT entries. When a guest physical page is
identified as GPT, the SPT entries pointing to the page
will have their write permission bits disabled. There-
fore, later modification of GPT will trigger a protection
fault and ARMvisor will update the SPT to prevent it
from becoming inconsistent with GPT.

3.2.4 Virtual MMU emulation

Other than guest physical memory allocation and
shadow paging mechanism, ARMvisor must emulate a
virtual MMU for guest OS to access. The ARM proces-
sor provides coprocessor, CP15, to control the behav-
ior of MMU. The controls include enabling/disabling
MMU, reloading TTBR, resetting Domain register, ac-
cessing FSR/FAR, changing ASID as well as operating



102 e ARMoyvisor: System Virtualization for ARM

Cache and TLB. All of them are handled in the memory
virtualization.

4 Cost model

In a virtualized environment, guest applications and op-
erating systems inevitably suffer certain degree of per-
formance degradation, which correlates to the design of
hypervisor. For hypervisor developers, it is crucial to
have a cost model to assist them on analyzing perfor-
mance bottlenecks before adopting optimization. In this
section, we will propose a cost model to formulate hy-
pervisor overheads so as to discover the deficiencies of
hypervisor.

The cost model defines Guest Performance Ratio (GPR)
to evaluate a hypervisor design. As shown in (1), GPR is
defined as the ratio of the execution time for an applica-
tion running natively on the host (7, ) versus the time
taken in the virtual machine (7%, ). The range of values
is 0 < GPR <= 1. Theoretically, Ty, is greater than or
equal to Tj,. If GPR is close to 1, this means the guest
application runs in native speed. Otherwise, if GPR is
close to 0, this means the guest application suffer huge
overheads from virtualization.

GPR = Thost / Tguest (1)

In (2), Tgyes 1s divided into two parts: Tqve represents
the instruction streams of a guest application, which can
be natively executed on the host, while T,;; represents
the virtualization overheads. In practice, the value of
Tharive S usually constant and relats to the type of guest
application. Meanwhile, the value of T,;,, is related to
both guest application type and hypervisor design. For
example, in matrix manipulation applications, most time
is spent on non-sensitive instructions, and as a result,
the value of Tusive is close to Ty If the application
has many sensitive instructions, the value of 7, will be
higher.

Tguest = Thative + Tirt (2)

Developers will optimize the T,;; which is decomposed
into five parts, as shown in 3.

Tvirt = Tcpu + Tmem + Tsuspend + Tidle + € (3)

The components are described as follows.

T.pu represents the cost of emulating sensitive instruc-
tions and exception generating instructions, such as
software interrupt. It can be formed as following
formula:

Tcpu = ch(l) : Tinst(i) +Zce(]) : Texcpt(j)

Tnem represents memory virtualization overheads in-
cluding emulating guest memory abort, handling
shadow paging, and maintaining consistency be-
tween guest page table and shadow page table. It
can be formed as following formula:

Tnem = Cm(O) “Tape Jrcm( 1) “Tshadow + Cm(Z) : 7jvync

T;, represents the cost of I/O virtualization, including
memory mapped I/O and port mapped I/O. Both
are emulated using the device model provided by
the hypervisor. It can be formed as following for-
mula:

T, = an(l) : Tmmio(i) +ZCb(]) ' Tportio(j)

Tiuspena Tepresents time during which the guest is tem-
porally suspended by the hypervisor. For example,
when an interrupt is coming, guest is trapped into
hypervisor, and then hypervisor will handle this in-
terrupt by its ISR. Switching to other virtual ma-
chines or host thread, the running guest will be sus-
pended for a while.

€ is used to represent as the side effect from virtual-
ization. For instance, cache or TLB flushing may
cause guest application suffer the penalty of cache
miss or TLB miss.

According to the cost model, we can figure out the opti-
mization approaches in three directions:

1. Reducing the virtualization trap counts: try to re-
duce Cs, Ce, Cm, Ca, Cb variables

2. Reduce the emulation time : try to reduce Tj,,

Texcph Tabt’ Tmiss’ T:vyna TmmiOa Tportim Tsuspend, €

3. Changing virtualization model by paravirtualiza-
tion or hardware assist. This can eliminate some
variables.

In the following section, we will follow these guidelines
to optimize the CPU and Memory virtualization. For
CPU virtualization, we proposed Shadow Register file



(SRF) to reduce traps from sensitive instructions. Addi-
tionally, Fast Instruction Trap (FIT) is used to reduce the
emulation time of some sensitive instructions. In virtu-
alizing ARM’s MMU, we use paravirtualization tech-
nique to eliminate the synchronization overhead; this
will be further illustrated in later sections.

5 Optimization
5.1 CPU Optimization

Frequent lightweight traps for instruction emulation re-
sult in significant performance loss of the guest sys-
tem. As a result, software techniques are important to
minimize the frequency of “trap and emulation” count
for sensitive instructions. Beside the lightweight and
heavyweight traps mentioned before, two abstractions
Direct Register File Access (DRFA) and Fast Instruc-
tion Trap (FIT) are proposed to accelerate the proce-
dure of instruction emulation and reduce the overhead
in CPU virtualization. The optimizing results showed
great promise and will be demonstrated in later section.

We proposed Shadow Register File (SRF), which maps
virtual CPU shadow states of the Register File into a
memory region accessible by both the VMM and guest
with read/write permission. Rather than unconditionally
trapping on every sensitive instruction, DRFA speeds up
the execution by replacing SWIs and sensitive instruc-
tions with a sequence of load or store instructions that
access the SRF in guest address space. The methodol-
ogy can be applied to instructions that only read or write
the SRF and do not need privilege permission for sub-
sequent emulation. Furthermore, VMM security is en-
sured because the SRF contains only the virtual state of
guest, which if corrupted, would not affect the operation
of the VMM.

Currently, DRFA is successfully employed to read
and write the ARM PSR (Program Status Register),
LDM/STM (2) and CP15 c1, ¢5 and c6 access in ARM-
visor. To illustrate, pseudo-code for replacing a mcr
instruction with DRFA is shown in Figure 5. The in-
struction is substituted by loading and effectively modi-
fying the register copy in SRF to ensure the desired ac-
tion. However, since SRF only contains subset of the
VCPU state, it must be coherent with the VCPU Regis-
ter File copy which ARMvisor acknowledges and with-
out which the guest system’s behavior would be unpre-
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Figure 5: Shared memory mapping between KVM and
Guest

dictable. In fact, to reduce cost of keeping them coher-
ent, the synchronization is only held on demand and the
overhead is actually low.

Unlike the previous instructions which can be replaced
with DRFA, there are other instructions which require
extra emulation and which must be finished in privileged
mode. As mentioned in Section 3.1.1, several sensitive
instructions that relate to ARM co-processor operations
(including cache operations) require higher privilege for
correct emulation. Vowing to simplify the emulation
path for such cases, we replaced those instructions with
Fast Instruction Trap (FIT). This consists of a series of
pre-defined macros which encode information of the re-
placed instructions. ARMyvisor’s FIT handler is actu-
ally mapped in guest address space in high memory sec-
tions because the decoding process of instructions em-
ulation is not necessary for FIT’s. Thus, in contrast to
Lightweight instruction traps, the emulation overhead of
FIT is considerably lower since instructions can be han-
dled without a context switch to ARMvisor.

5.2 Memory Optimization

To reduce the overhead of memory virtualization, ARM-
visor paravirtualizes the guest operating system to sup-
port shadow paging. We found that many protection
faults happened during guest process creation when ap-
plying the synchronization model mentioned previously
to ARMyvisor. Second-level guest page table is usually
modified by guest OS for Copy-On-Write or remapping
usage. After analyzing such behavior in detail, we sim-
ply add two hyper-calls in the guest source code to hint
ARMyvisor that modifications of second-level GPT were
made by guest OS. One hyper-call is added as the guest
OS sets the page table entry; the other one is added to
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Device Description

CPU ARM Cortex-A8
CPU Clock Frequency 720 MHz
Cache hierarchy 16KB of L1-Instruction Cache
16KB ofL.1-Data Cache
256KB of L2 Unified cache

RAM 256MB

Board TI BeagleBoard

Table 6: Hardware configuration

notify ARMyvisor when guest OS frees a second-level
page table. These notifications will free the synchro-
nization overhead for guest second-level page tables.

6 Evaluation

We currently support ARMv7 for host and ARMv6 for
guest. For the host, we used ARM TI BeagleBoard with
ARM Cortex-A8 as our platform. The detailed hard-
ware configuration is showen in Table 6. The software
parts consists of the ARMvisor (Linux 2.6.32), QEMU-
ARM (0.11.1) as well as para-virtualized Guest (Linux
2.6.31.5). In the guest, we use Realview-eb ARM11 as
our hardware environment for guest OS.

To demonstrate the overhead of virtualization on ARM-
visor, we first measured the slowdown of ARMyvisor
compared with native performance when running the
micro-benchmarks LMBench [11]. Then we analyze the
overhead in depth by an internal profiling tool and we
develop a trap cost model to explain what other over-
heads exist. Finally, groups of application benchmarks
will also be evaluated the performance of ARMyvisor.

6.1 Profiling counter

Table 7 shows the trap counts when executing a simple
program in the guest that does nothing but returned im-
mediately. Column kvm_orig shows trap counts with-
out CPU and Memory optimization, while in column
kvm_opt column all optimizations are enabled. This
do-nothing program actually measures the overhead of
process creation. During the procedure of fork and
exec, page tables are modified frequently for mapping
libraries or data into the address space. Common Oper-
ating Systems use Demand Paging to manage the mem-
ory usage. Nonetheless, the approach generates great
overhead in Memory Virtualization due to the design of

kvm_orig | kvm_opt

sen_inst_trap 12825 813
irq 6 3

fast_trap 5034 5562
dat_trans 1301 25
protection 299 0
mmio 95 56

Dabt_true 178 186
Pabt_kvm 758 6

(inst_trans)

Pabt_true 106 106

mem_pv 0 714

Total_trap 20602 7471

Table 7: Profiling count for nothing

our page table synchronization model. In our synchro-
nization model, the same page table is repeatedly being
modified when forking and loading program for execu-
tion. Since we write-protect the page table when the cor-
responding shadow page table is found, repeated filling
of entries in the page table generates consequent permis-
sion fault, and causes the corresponding shadow page
being zapped often. We provide a solution to such use
case by adding hyper-calls for page table modification.
Page table protection traps disappear because the syn-
chronization model is not necessary anymore. Further-
more, the subsequent page fault is eliminated since we
map the memory address in shadow page in the hyper-
call for page table entry modification before the guest
accesses the page.

As illustrated above, kvm_opt has far less sensitive in-
struction traps since abundant portion of traps were re-
placed with direct access to SRF in the guest address
space. On the other hand, the translation misses for both
data and instruction access are reduced tremendously in
kvm_opt, since we map the corresponding memory ad-
dress in shadow page table when the hyper-call for guest
page table modification is triggered. The protection trap
count for page table modification also comes down to
zero since any attempts by guests to modify the sec-
ond level page table is acknowledged by KVM through
hyper-calls and the protection model is removed. Even
hyper-calls for guest page table set/free introduce cer-
tain overhead to the system; the total trap count of Mem-
ory Virtualization does decline enormously. In conclu-
sion, after the optimization in CPU and Memory Virtu-
alization are applied, the total trap count is only about
36% compared to original version.
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Figure 6: Ratio of performance slowdown on LMBench
6.2 LMBench bination logic of guest code in ARMyvisror to largely

To evaluate the performance when applying different
optimization on ARMyvisor in guest system’s basic op-
eration, LMBench is measured to help us understand
the bottleneck of our current design. LMBench con-
tains suites of benchmarks that are designed to measure
numerous system operations such as system call, IPC,
process creation and signal handling. We refer to the
paper [12] to choose sets of benchmarks in LMBench
and measured them in various environments and com-
pare them with native performance.

Figure 6 presents the ratio of slowdown on 3 different
extensions of features comparing to native Linux kernel.
The simple version means no optimization applied in the
ARMoyvisor, all sensitive instructions will be trapped into
hypervisor and the guest OS does not inform ARMvisor
for creating or modifying a page table so hypervisor
needs to trace the guest page table. The cpu-opt ver-
sion improves the performance of ARMvisor in three
aspects: firstly it use SRF technique to reduce the trap
overheads from several sensitive instructions for instruc-
tions as MSR, MRS and CPS. Secondly, it uses binary
translation to change guest TLB/Cache operations on-
the-fly. All of the TLB operations are translated into
NOP operations since the guest no longer needs to main-
tain hardware TLB, and the hypervisor will assist the
guest to maintain TLB according to the shadow page
tables. And finally, the overhead of exception/interrupt
handling in guest OS is reduced by finishing the com-

reduce the traps of critical instructions. The full-opt
version further comprise the memory para-virtualization
which uses hyper-calls to inform ARMvisor about guest
page table modification and finalization, and ises SWI
fast trap to reduce the memory tracing overhead and
SWI delivery overhead.

As can be seen in Figure 6, system call and signal han-
dling related benchmarks suffer great performance loss
in ARMvisor. Performance slowdown is less signif-
icant in lat_select benchmark, typically when the
number of selected fd increases since the accounted
time portion for native execution increases. Nonethe-
less, the slowdown still reaches 30 times when select-
ing 10 files. After measuring those benchmarks using
the proposed cost model, we figured that the perfor-
mance gap could be mainly attributed to the frequent
lightweight traps for instruction emulation during the
execution path. Each trap includes a pair of context
switches between guest and VMM, which is time con-
suming. Decoding individual sensitive instructions for
correct emulation also generate latencies for the total ex-
ecution. Moreover, since the SWI exception is indirectly
generated by ARMyvisor’s virtual exception emulator,
the cost of exception delivery adds additional slowdown
to the system call operation. However, after applying
CPU-opt in ARMvisor, performance improves largely
since the times of lightweight trap for instruction em-
ulations reduces. Mem-opt hardly contributes any per-
formance improvement for system call and signal han-
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Figure 7: Ratio of performance improvement on LMBench

dling since those operations also would not require large
amounts of page table modification. Figure 7 demon-
strates that All-opt improves benchmarks’ performance
in categories of system call, signal handling and select
approximately over 80% on average.

The All-opt version has less profound improvements
in IPC related benchmarks including lat_pipe and
lat_unix. According to our profiling results, I/O ac-
cess rate in IPC operation is much higher contrast to
the three types of benchmarks mentioned above. The
behaviors are quite different in pipe and Unix Socket
operation. In the scenario of communicating through
pipe, the guest kernel scheduler is often called to switch
the process for inter-process message sending and re-
ceiving. Linux Kernel scheduler fetches hardware clock
counter as TSC (Time Stamp Counter) for updating
the run queue reference clock for its scheduling policy.
Since we currently focus on minimizing CPU and Mem-
ory virtualization overhead, All-opt improve less signif-
icantly in pipe operation, since the overhead results in
frequent heavyweight traps exists for I/O emulation.

Process creation benchmarks like 1at_procfork, lat_
procexec and lat_procshell have similar behavior
as the do-nothing program. As previously mentioned,
synchronization for page tables in Memory Virtualiza-
tion results in considerably larger overhead for process
operations than in the other benchmarks. As shown in
Figure 7, the performance of process creation operation
improves about 45% on average in Mem-opt solely.

Benchmark lat_pagefault tests the latency of page

fault handling in operating system. Even though we map
the page in shadow on the PTE write hyper-calls to pre-
vent further translation miss; performance improvement
in Mem-opt is smaller than in process creation bench-
marks. Profiling by our cost model, we found that sen-
sitive instruction traps account for larger proportion of
total traps than those of process creation. As a result, the
optimization for CPU virtualization has more notable ef-
fect on performance improvement.

7 Conclusion and future works

In this paper, we investigated the challenges of con-
structing virtualization environments for embedded sys-
tems by the implementation of an ARM based hypervi-
sor, ARMvisor. ARMvisor assumes that ARM proces-
sor has no hardware virtualization extension. The exper-
imental results show that ARMyvisor suffers huge perfor-
mance degradation when techniques such as trap-and-
emulation and shadow paging are being adopted. As a
result, we formulized a cost model for discovering the
performance bottlenecks of hypervisor in depth. Fur-
thermore, based on the cost model, several optimization
methodologies are proposed to reduce the overheads
of CPU and Memory virtualization. The experimen-
tal results have shown leaping performance improve-
ment with up to 4.65 times speedup in average on LM-
Bench by comparing with our original design. We con-
clude that to virtualize embedded ARM platforms with-
out hardware virtualization extension in current archi-
tecture, the cost model is crucial to assist developers to
further optimize their hypervisors.
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Abstract

Model-checking techniques are limited in the number
of states that can be handled, even with new optimiza-
tions to increase capacity. To be able to apply these
techniques on very large code base such as the Linux
Kernel, we propose to slice the problem into parts that
are manageable for model-checking. A first step toward
this goal is to study the current topology of internal de-
pendencies in the kernel.

1 Introduction

As a general goal of “applying model-checking tech-
niques to the Linux Kernel”, we studied the literature
around this topic in [9]. One major conclusion is that
despite the use of model-checking under the hood in
some tools (such as Coccinelle [4]), direct application
of existing model-checking tools and algorithms seems
impossible because the whole kernel is too big, i.e. con-
tains too much state.

To circumvent this limitation, we propose to work at
the source code level instead of working on the model-
checking algorithm itself. By breaking down the code
base into smaller chunks, the number of states that must
be analyzed is reduced. Before working on the slicing
itself, we propose to study the current internal depen-
dency topology of the kernel.

In the remainder of this paper, we will first make a brief
presentation in section 2 of the topic discussed in [9];
then in section 3 we describe how we built the graph
representing the kernel. Section 4 will focused on the
analysis of what is inside the graph and what it means
for us, before we conclude.

2 Model-Checking and Kernel

We are interested in answering the question: “is it possi-
ble to directly apply model-checking to the Linux Ker-
nel code base”. A literature survey for kernel-related
verification, including but not limited to Linux, that
might be linked to model-checking, revealed at least two
major projects:

o SLAM, initiated by Microsoft

e Coccinelle

A third major project to be cited is the effort conducted
by Engler et al.

2.1 A first step: compiler extensions to check rules

Using compiler extensions to check system rules has
been the first major attempt to check system code. This
has been performed as a fork of the GCC compiler with
a matching language called METAL, which allows defi-
nition of a state machine and patterns to match in source
code. Thanks to this tool, called xgcc [6], a first major
empirical study of errors in kernel source code has been
performed [5] against Linux, OpenBSD and the FLASH
embedded system. Results showed that device drivers
were the main hot point in term of bugs.

Those results were corroborated ten years later by the
Coccinelle team as part of a similar updated survey [12]
using their own tools. Newer kernels showed a real im-
provement since the first study.

e 109 o
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2.2 Verification at Microsoft: SLAM

With the introduction of boolean programs [2], work
started on verification of code at Microsoft. The goal
was to verify correct usage of interfaces, i.e. APIs [3].
Boolean programs are an abstraction of source code
where all variables are substituted with booleans: this
allows for state evaluation to take place. This is code
using a CEGAR (Counter-Example Guided Abstraction
Refinement) loop, allowing to determine feasible paths
in the source code. It allows, in fine, to find code-paths
that are not good and hence bugs.

Results are good enough (in term of bug finding and
false positive) that the tool has been included in the Win-
dows 7 DDK as the Static Driver Verifier [1].

2.3 Coccinelle, tracking Linux bugs

The Coccinelle tool was designed to apply massive
changes to APIs, defined as “collateral evolutions”
[8, 10] and has been rapidly used to hunt bugs in the
code. In order to apply API evolutions, the tool must
work at a higher level than only source code: it is a “se-
mantic patch” tool, i.e. instead of replacing a line by
another, the code is manipulated at the level of adding
or removing a parameter to a function. This is internally
done by transforming the patch into a temporal logic for-
mula, which is matched against the source code: model-
checking.

Once the tool could match source code, its developers
thought of using it to find bugs: the Semantic Patch Lan-
guage is used to describe what to change and how; with
a couple of new operators introduced, it can be used to
find bugs. So naturally Coccinelle has been used to track
them. It is now being used for discovering protocols, i.e.
how an API should be used [7], and to track bug life cy-
cles [11].

3 Kernel graph

The goal is to be able to study dependencies between
“modules” in the source code of the kernel. We consider
those modules to be the .o files, produced during the
compilation. This assumption is done because:

e itis easy to extract symbols usages from object files
using elf parsing (readelf for example)

e it can be matched to C source files
The directed graph is then defined as:

e Nodes are the objects files that have been analyzed
o Edges are symbols used/exported by object files

e Edges are directed.

Edge directions are defined with the source being the ob-
ject file (A) that is uses a symbol and the target being the
object file (B) that exports this symbol: this symbolize a
dependency: A — B.

The analyzed object files are limited to the architecture
that the code has been built for. To date, all the process-
ing has only been done on an AMD64 system. Also,
since we limit ourselves to build the kernel using the
defconfig and allyesconfig configurations, we are
sensitive to changes of those configurations. The first
one will only build with a subset of modules that fits
for the system, while the second will enable much more
code, nearly everything.

Code used to extract all the information is avail-
able at git://git.mandriva.com/users/alissy/
callgraph.git, and is written in Python using
SQLAIlchemy, PyLibELF and Tulip modules.

4 Graph analysis

In this section we explain what is measured on the
graph, and why. Then we present, explain and try to
interpret those results.

Linux versions considered were 3.0 through 3.4, cover-
ing a time span of nearly one year.!

4.1 Measures

We will look at occurrence of edges in the graph: they
are labeled with the symbols corresponding to the rela-
tion, so it allows us to see how much a symbol is used.
From this we can derive which symbols are the most
important in term of usage.

13.0 released July 22" 2011; while 3.4 released May 20™ 2012.


git://git.mandriva.com/users/alissy/callgraph.git
git://git.mandriva.com/users/alissy/callgraph.git
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We will see how dense the graph is. Graph density is

defined as follows, for a given graph G = (E,N): i Nodes
Version | defconfig | allyesconfig
de E| V3.0 1836 9593
TN x (IN[-1) v3.1 1842 9764
v3.2 1861 9897
We will check the average path length inside the graph, v3.3 1874 10044
. PSR . v3.4 1871 10172
that is how “far” apart two nodes are. It is computed o
. T . . ges
directly thanks to the Tulip“ library, which states: Version | defconfig | allyesconfig
v3.0 51700 321463
Returns the average path length of a graph, V3.1 52390 332865
that is the sum of the shortest distances for all v3.2 53005 337717
pair of distinct nodes in that graph divided by v3.3 53418 344314
the number of those pairs. For a pair of non v3.4 33646 349271
connected nodes, the shorted distance is set to Figure 1: Number of nodes and edges
0.
We will have a look at the degrees of the graph, in and
out. As a reminder, in-degree of a node is the number Nod
. odes
of exported symbols used, and out-degree is the number Version | defconfig | allyesconfig
of imported used ones. By used, it means we can have v3.0 - _
duplicates: a symbol is used by several other ones. v3.1 +0.33% +1.78%
) v3.2 +1.03% +1.36%
To have a better view of the dependency, we propose V33 30.70% F1.49%
to produce “heatmap” of the kernel dependency, with v34 | —0.16% +1.27%
subdirectory granularity, available in section 4.7. Edges
Version | defconfig | allyesconfig
4.2 Graph size v3.0 - -
v3.1 +1.33% +3.55%
. v3.2 +1.17% +1.46%
Before we present the specific measures, we can already V33 | 10.78% 1.95%
have a look at the general graph size: number of nodes, v34 | +0.43% +1.44%

number of edges. The raw values are available in Fig-
ure 1. Variations are presented in Figure 2 and are com-
puted using the previous one, considering the first ver-
sion as a basis. Each version is compared to its first
ancestor, e.g. v3.1 against v3.0. In the second table,

Figure 2: Variations in nodes and edges

positive values indicate increases, while negative values SLOCCount
indicate decreases. Version | defconfig | allyesconfig
v3.0 9614824 9612505
We also measured the size of the code base using SLOC- v3.1 | 9704743 9702470
Count (v2.26) to compare the size evolution of the graph zii Zggsgfg Zggg?gg
and the related code base. This information is presented V34 110120350 10119606
in Figure 3. The evolution is computed the same way Evolution
than previously explained. Version | defconfig | allyesconfig
A first observation we can make is that, looking at Fig- zg? +0.-94% +0._94%
ures 3 and 2, while the size of the code base evolution v32 | +1.62% +1.63%
is similar between defconfig and allyesconfig, and v3.3 +1.17% +1.17%
raw numbers shows that the difference is very small, it v34 | +1.43% +1.44%

seems not to be correlated with the evolution of nodes

Figure 3: Code base size evolution
nor edges.

Zhttp://tulip.labri. fr


http://tulip.labri.fr
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4.3 Measure: Symbols occurrences

Symbols occurrences are computed simply by counting
how many times a symbol is used, i.e. how many edges
with this symbol exists in the graph. Raw values for ker-
nel v3.0 are available in Figure 4; values for other ver-
sions (v3.1 to v3.4) are not provided but they are close.
The table is limited to top 10. In the most used edges,
throughout the versions, we can derive three categories:

e String manipulations, with printk () being one of
the most used symbols

e Memory management,
kfree(), kmalloc_caches(),
alloc_trace() and __kmalloc()

for example functions
kmem_cache_

e Locking primitives case, including mutex_lock ()
(in the defconfig), mutex_lock_nested() (in
the allyesconfig) and mutex_unlock ()

Looking at the 50 most used symbols, there is not
much change in the categories involved: strings see
more symbols used (sprintf(), str*()); memory
management sees its space extended with for exam-
ple memset (), memcpy (), _copy_from_user() and
_copy_to_user(); locking primitives are also in the
top 50.

Extending our view from top 10 to the top 50, how-
ever, shows a difference when looking at the results
on allyesconfig: strings functions are less present
in the hall of fame, and driver-related symbols appear:
drv_get_drvdata(), drv_set_drvdata(). Also,
workqueues symbols (especially __init_work()) ap-
pear in the top 50 when looking at allyesconfig but
not in defconfig.

4.4 Measure: Graph density

The raw values are available in Figures 5 and 6.

Figure 5 shows that the density for allyesconfig is
slightly lower than that of defconfig, which is not a
surprise considering the definition of both. A fact that
is not that obvious, however, is that in defconfig, on
the set of versions studied, density is quite stable; while
in allyesconfig we can see that it is constantly drop-
ping, even though the decrease is slow.

Symbol Occurrences
defconfig
_raw_spin_lock 782
_cond_resched 806

__kmalloc 846
current_task 864
mutex_lock 912
mutex_unlock 936
kmem_cache_alloc_trace 1254
kmalloc_caches 1270
printk 1658
kfree 1706
allyesconfig
mutex_lock_nested 4614
mutex_unlock 4898
__kmalloc 5156
_stack_chk_fail 6258
kmem_cache_alloc_trace 6922
kmalloc_caches 6950
kfree 10152
printk 11336
__gcov_init 19014
__gcov_merge_add 19014

Figure 4: Symbols occurrences in the graph, kernel v3.0

Density
Version | defconfig | allyesconfig
v3.0 0.015346 0.003494
v3.1 0.015449 0.003492
v3.2 0.015313 0.003448
v3.3 0.015219 0.003413
v3.4 0.015333 0.003376

Figure 5: Graph density

To have a better understanding we looked more closely
at the density inside kernel v3.0. For each subdirectory
containing source code, we compare density between
defconfig and allyesconfig; the values are avail-
able in Figure 6. Some directories are highly impacted:
crypto, drivers, fs, net, security, sound while
some other are not, or only slightly: arch, block, init,
ipc, kernel, 1ib, mm.

4.5 Measure: Average path length

The raw values are available in Figure 7. A more de-
tailed per-subdirectory overview on kernel v3.0 to v3.4
is available in Figure 8 for the defconfig build and in
Figure 9 for the allyesconfig build.

In Figure 7, we observe that in both defconfig and
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Linux v3.0 Density

Subdir | defconfig | allyesconfig

arch 0.039320 0.035418

block | 0.268398 0.281667

crypto 0.241935 0.073537

drivers 0.021583 0.002376

fs 0.063002 0.018673

init | 0.291667 0.291667

ipc 0.712121 0.719697

kernel 0.122087 0.126854

lib 0.019572 0.016000

mm | 0.309949 0.299454

net | 0.060322 0.015070

security 0.288762 0.103541

sound | 0.173263 0.024607

Figure 6: Graph density per subdirectory, v3.0

Average Path Length
Version | defconfig | allyesconfig
v3.0 2.410770 2.013618
v3.1 2.413076 2.013085
v3.2 2.415017 2.013867
v3.3 2.417895 2.014709
v3.4 2.429603 2.014612

Figure 7: Graph average path length

allyesconfig the average path length slowly in-
creases, at least between versions 3.0 and 3.4; more-
over, there is an order of magnitude of difference in the
increase between both build configurations: the incre-
ment for defconfig is around 0.002 (although going
from 3.3 to 3.4 shows an increment of 0.012), while
in allyesconfig it is around 0.0006 with two majors
points: going from 3.0 to 3.1, we have a decrease of
about 0.0005 and from 3.3 to 3.4 it also decreases but
only 0.00009.

Since the major difference between both consists of
more drivers (not only the drivers subdirectory), it is
trivial to assume that the reason is inside those. We pro-
pose to have a closer look at this in the table available
in Figure 9, in Section 4.5.1. To have a better under-
standing of the “big” increase between 3.3 and 3.4 in
defconfig, we will have a look at the details in Fig-
ure 8 in Section 4.5.2.

4.5.1 Detailed Average Path Length, kernel 3.0 to
3.4, defconfig

In Figure 8, we can notice:

e The arch subdirectory is nearly constantly de-
creasing, apart from the 3.3 to 3.4 evolution which
shows a slight increase.

e The block subdirectory shows a constant average
path length, with a step between 3.2 and 3.3, going
from 1.80 to 2.17, before and after it is strictly the
same values.

e The crypto and drivers subdirectories are
evolving together, especially with 3.2 showing a
light decrease on both, while they increase the rest
of the time.

e For fs we can observe a constant decrease, al-
though kernel 3.4 shows a noticeable increase.
This is probably to be linked with the number of
commits concerning cifs (54), xfs (57), ext4
(59), nfsd (61), proc (64), btrfs (118), and nfs
(181).

e While init is slowly increasing, ipc and mm are
much more stable.

e The lib subdirectory shows a decrease, dropping
from 1.15 to 0.96.

e Security-related subdirectory, security, is hav-
ing a rough time, alternating between increase, de-
crease and stability (3.2 and 3.4 shows the same
values

e The net subdirectory also shows an alternating be-
havior.

e Main part of the kernel, in the kernel subdirec-
tory, is decreasing in a quite stable way, dropping
from 2.0607 to 2.0417 over the studied versions.

e The sound part is also slowly decreasing over ver-
sions.

So, generally speaking, some parts of the kernel are
“shrinking”, i.e. each sub-part is getting closer to its
neighbors: this is when average path length decreases.
Some other parts are in expansion, with a good example
being the drivers part. Finally, the global increase be-
tween 3.3 and 3.4 observed in the previous table can be
explained by the changes in crypto, drivers, fs and
net.
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Average Path Length — defconfig Average Path Length — allyesconfig

Subdir v3.0 v3.1 v3.2 v3.3 v3.4 Subdir v3.0 v3.1 v3.2 v3.3 v3.4
arch | 2.140192 | 2.132726 | 2.118681 | 2.090058 | 2.096498 arch | 2.079778 | 2.073589 | 1.959125 | 1.969219 | 2.192387
block | 1.809524 | 1.809524 | 1.809524 | 2.169355 | 2.169355 block | 1.930000 | 1.907692 | 1.907692 | 2.278049 | 2.278049
crypto | 1.790323 | 1.817204 | 1.802151 | 1.881048 | 1.989919 crypto | 1.897335 | 1.897335 | 1.921848 | 1.906866 | 1.920599
drivers | 2.910024 | 2.911436 | 2.897755 | 2.919029 | 3.008717 drivers | 3.005424 | 3.011469 | 3.028173 | 3.009538 | 3.000608
fs | 2.570742 | 2.532482 | 2.525733 | 2.491692 | 2.680926 fs | 3.037271 | 3.044064 | 3.048455 | 3.016527 | 3.007562
init | 1.805556 | 1.833333 | 1.833333 | 1.944444 | 1.944444 init | 1.861111 | 1.861111 | 1.861111 | 1.861111 | 1.861111
ipc | 1.363636 | 1.348485 | 1.348485 | 1.348485 | 1.348485 ipc | 1.363636 | 1.348485 | 1.348485 | 1.348485 | 1.348485
kernel | 2.060689 | 2.067626 | 2.059235 | 2.049458 | 2.041655 kernel | 1.915090 | 1.914885 | 1.914908 | 1.914107 | 1.914962
lib | 1.155375 | 1.140758 | 1.125184 | 1.002295 | 0.964706 lib | 1.026194 | 0.956759 | 0.953852 | 1.248667 | 1.254550
mm | 1.914116 | 1.914116 | 1.917551 | 1.911837 | 1.921633 mm | 1.934973 | 1.938251 | 1.942359 | 1.958333 | 1.960813
net | 2432165 | 2.359474 | 2.475096 | 2.350066 | 2.490345 net | 2.855261 | 2.843975 | 2.854679 | 2.840436 | 2.836698
security | 2.613087 | 2.563300 | 2.832659 | 2.834008 | 2.832659 security | 3.212210 | 3.227209 | 3.187363 | 3.187960 | 3.177200
sound | 2.191919 | 2.191287 | 2.181980 | 2.181420 | 2.181420 sound | 2.546933 | 2.495413 | 2.533996 | 2.530829 | 2.530232

Figure 8: Graph average path length per subdirectories,
v3.0 to v3.4, defconfig

4.5.2 Detailed Average Path Length, kernel 3.0 to
3.4, allyesconfig

Figure 9, shows that the behavior for arch is not ex-
actly the same as in defconfig build configuration.
crypto increases slightly. Meanwhile drivers starts
higher than in defconfig, increases slightly in 3.1,
and then decreases in v3.3 to finish at a similar level
than in defconfig. The fs subdirectory, however,
shows an inverse behavior in allyesconfig than in
defconfig, with higher average path length, increas-
ing from roughly 2.5 to 3.0.

The init directory remains stable, with similar values
than in defconfig configuration. Similarly ipc re-
mains unchanged, as does kernel: the values are nearly
constant along versions for allyesconfig, and shows
a light difference (1.91 versus 2.05) from defconfig.
The 1ib subdirectory also shows an inverse behavior in
allyesconfig. The mm subdirectory shows a slight in-
crease, while in defconfig there was a slight decrease.

The alternating behavior observed for net is con-
firmed with values ranging from 2.83 to 2.85. In
allyesconfig, the security subdirectory shows a
constant decrease and an important delta, ranging from
3.21 to 3.17 while it was between 2.56 and 2.83
for defconfig. Finally, the sound subdirectory is
quite stable around 2.53 with a light decrease at 2.49
for kernel v3.1, exposing a similar behavior than in
defconfig build configuration, the only difference be-
ing the values: around 2.18.

Major differences are fs, security, sound and lib.
One could have expected that drivers showed a much

Figure 9: Graph average path length per subdirectories,
v3.0to v3.4, allyesconfig

more bigger difference.
4.6 Measure: Degrees

The raw values, from an aggregated subdirectory point
of view are available in Figure 10 for kernel v3.0 and 11
for kernel v3.4. Those values are another point of view
of the heatmap available, for example, in Figure 12. As
areminder, in-degree of a node in the graph we use maps
to exported symbols, i.e. they are used by other nodes.

A first look at values shows that:

e Between successive versions of the kernel, there is
an increase in degrees, both in and out. This is con-
sistent with the expansion we already exposed.

e The top three consuming subdirectories are
drivers, net and £s, in that order for defconfig
and drivers, fs and net for allyesconfig.

e The top five consumed subdirectories are kernel,
drivers, net, fs and mm in defconfig. The
allyesconfig mode shows the same results,
apart from mm being replaced by 1ib.

Those results can be generalized to versions from 3.0 to
3.4, even though we can notice a decrease in out-degree
for kernel 3.4 in defconfig build configuration for the
arch subdirectory. A closer look at this specific subdi-
rectory shows that:

e In-degree is constantly growing, meaning more and
more symbols exported.




Linux v3.0 Degrees in
Subdir | defconfig | allyesconfig
arch 4540 16112
block 541 1621
crypto 258 907
drivers 8803 87986
fs 6097 28262
init 85 135
ipc 103 104
kernel 12876 92789
lib 4006 26397
mm 5418 24879
net 6504 29760
security 721 1403
sound 1681 11054
Degrees out
Subdir | defconfig | allyesconfig
arch 3489 6831
block 602 906
crypto 497 1322
drivers 17081 191946
fs 7751 42208
init 316 357
ipc 354 431
kernel 4298 6904
lib 396 1001
mm 1721 2798
net 10668 37958
security 1252 3176
sound 3155 25304

Figure 10: Graph degrees per subdirectory, v3.0

e Out-degree is increasing-decreasing: 3489 for
v3.0, 3421 for v3.1, 3608 for v3.2, 3343 for v3.3
and finally 3421 for v3.4.

4.7 Measure: Heatmaps

Heatmaps are generated from the previously presented
dependency graph. It allows to more easily visualize
how things are organized:

o First, we merge together nodes at a defined depth
(in term of subdirectories), while keeping edges
as they were originally: hence, we get the same
dependencies but with a bigger granularity, more
human-readable

e Then, we process all the newly-created nodes, and
we count the number of edges between each pairs
of nodes
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Linux v3.4 Degrees in
Subdir | defconfig | allyesconfig
arch 4983 19822
block 633 1816
crypto 258 1087
drivers 9106 94828
fs 6224 30152
init 85 138
ipc 105 106
kernel 13336 101674
lib 4010 29268
mm 5551 25978
net 6704 31429
security 747 1580
sound 1863 11337
Degrees out
Subdir | defconfig | allyesconfig
arch 3421 7594
block 733 1192
crypto 515 1382
drivers 17696 207607
fs 8080 46375
init 325 374
ipc 360 464
kernel 4599 7767
lib 399 1149
mm 1776 3105
net 10960 41552
security 1271 3888
sound 3430 26482

Figure 11: Graph degrees per subdirectory, v3.4

e Finally, to be able to compare between versions of
the kernel, we normalize things

A first look at two heatmaps, Figures 12 and 13 which
are Linux v3.0 kernel’s root, respectively in defconfig
and allyesconfig builds. Note that color scale maxi-
mums differ at 0.16 and 0.3; we can see the same results
as those presented in Section 4.4.

A closer look at the drivers subdirectory is available
in Figure 14. A first observation is that dependencies
are mainly contained inside each subdirectory: there is
a thin line with variable value, but nearly always max-
imum, that runs for each subdirectories’ intersection
with itself. We can also note that there are three other
lines, yet lighter: base, pci and usb. Those directories
contains generic stuff for all drivers, or PCI/USB stack,
hence it is normal that they are being used by a lot of
other sub-directories. Other versions of the kernel (e.g.
v3.4 in Figure 15) shows nearly the same behavior, only
the range of values changes.
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Figure 13: HeapMap of Linux v3.0, allyesconfig

Another kind of “heatmap” could be created, that we
could call binary heatmap, in which we do not count the
number of edges between two nodes, but only the exis-
tence of an edge between those nodes: it is an adjacency
matrix.

5 Conclusion

Those few metrics allows us to have a better look at
the kernel: a first interesting fact, easily readable in the
heatmaps and not that surprising, is that dependencies
are rather located in spots. Drivers depend mainly on
stuff that concern the specific driver, a bit on generic
stacks such as base, pci or usb, plus a couple of
generic libraries in the kernel such as mm for memory

HeatMap: inux-v3.0.merged-nodes. drivers.ip'

Figure 14: HeapMap of Linux v3.0, drivers subdirec-
tory

management, 1ib for things like strings handling and
kernel for basic stuff.

A second result, which is also not surprising, is that the
kernel is expanding, not only in term of code base size
(this fact is well known), but we can see it also from
a density and average path length: over time, at least
within the time span studied, density is decreasing and
average path length is increasing. This, only from a
global point of view: the details in average path length
and density shows that each subsystem evolves in a spe-
cific way.

There are some limitations to the present overview of
the kernel. First, even if we extract all kind of supported
symbols (by the terms of 1ibelf) and store them with
the correct type in the database, we do not (yet) make
use of this kind of meta-data: is the symbol a function,
a variable? When trying to cluster the kernel, this might
become a good point.

Another limitation, due to the current implementation, is
that we do not reproduce the “full tree” in the graph, we
only assign nodes a label with the full path: this could
ease a more generic and deeper analysis, especially in-
teresting for drivers or fs subdirectories.

The current study only covers the kernel over one year,
ranging from 3.0 to 3.4: it is clearly not enough to draw
very generic conclusions. An attempt has been made
to run the current symbols extraction over kernel rang-
ing from 2.6.20 to 3.4; it has not been possible due to
time constraints: building old kernel with recent GCC
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Figure 15: HeapMap of Linux v3.4, drivers subdirec-
tory

seems not to be trivial, and symbols extraction for so
many kernel would have required much more time than
available. This is, however, an issue that must be ad-
dressed to be able to confirm the current observation
over a wider sample of kernel.

A new measure that could enhance this study is cluster-
ing coefficient: we have not been able to perform this
one due to time constraints. Applying the same analysis
to other (big) code bases, such as Mozilla (Firefox) or
LibreOffice, would be interesting.
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Non-scalable locks are dangerous
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Abstract

Several operating systems rely on non-scalable spin locks
for serialization. For example, the Linux kernel uses
ticket spin locks, even though scalable locks have better
theoretical properties. Using Linux on a 48-core ma-
chine, this paper shows that non-scalable locks can cause
dramatic collapse in the performance of real workloads,
even for very short critical sections. The nature and sud-
den onset of collapse are explained with a new Markov-
based performance model. Replacing the offending non-
scalable spin locks with scalable spin locks avoids the
collapse and requires modest changes to source code.

1 Introduction

It is well known that non-scalable locks, such as simple
spin locks, have poor performance when highly con-
tended [1, 7, 9]. It is also the case that many systems
nevertheless use non-scalable locks. However, we have
run into multiple situations in which system through-
put collapses suddenly due to non-scalable locks: for
example, a system that performs well with 25 cores com-
pletely collapses with 30. Equally surprising, the offend-
ing critical sections are often tiny. This paper argues that
non-scalable locks are dangerous. For concreteness, it
focuses on locks in the Linux kernel.

One piece of the argument is that non-scalable locks can
seriously degrade overall performance, and that the sit-
uations in which they may do so are likely to occur in
real systems. We exhibit a number of situations in which
the performance of plausible activities collapses dramati-
cally with more than a few cores’ worth of concurrency;
the cause is a rapid growth in locking cost as the number
of contending cores grows.

Another piece of the argument is that the onset of per-
formance collapse can be sudden as cores are added. A
system may have good measured performance with N
cores, but far lower total performance with just a few

more cores. The paper presents a predictive model of
non-scalable lock performance that explains this phe-
nomenon.

A third element of the argument is that critical sections
which appear to the eye to be very short, perhaps only
a few instructions, can nevertheless trigger performance
collapses. The paper’s model explains this phenomenon
as well.

Naturally we argue that one should use scalable locks [1,
7, 9], particularly in operating system kernels where
the workloads and levels of contention are hard to con-
trol. As a demonstration, we replaced Linux’s spin locks
with scalable MCS locks [9] and re-ran the software that
caused performance collapse. For 3 of the 4 benchmarks
the changes in the kernel were simple. For the 4th case
the changes were more involved because the directory
cache uses a complicated locking plan and the directory
cache in general is complicated. The MCS lock im-
proves scalability dramatically, because it avoids the per-
formance collapse, as expected. We experimented with
other scalable locks, including hierarchical ones [8], and
observe that the improvements are negligible or small—
the big win is going from non-scalable locks to scalable
locks.

An objection to this approach is that non-scalable behav-
ior should be fixed by modifying software to eliminate
serialization bottlenecks, and that scalable locks merely
defer the need for such modification. That observation is
correct. However, in practice it is not possible to elimi-
nate all potential points of contention in the kernel all at
once. Even if a kernel is very scalable at some point in
time, the same kernel is likely to have scaling bottlenecks
on subsequent generations of hardware. One way to view
scalable locks is as a way to relax the time-criticality of
applying more fundamental scaling improvements to the
kernel.

The main contribution of this paper is amplifying the
conclusion from previous work that non-scalable locks
have risks: not only do they have poor performance, but
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they can cause collapse of overall system performance.
More specifically, this paper makes three contributions.
First, we demonstrate that the poor performance of non-
scalable locks can cause performance collapse for real
workloads, even if the spin lock is protecting a very short
critical section in the kernel. Second, we propose a single
comprehensive model for the behavior of non-scalable
spin locks that fully captures all regimes of operation,
unlike previous models [6]. Third, we confirm on mod-
ern x86-based multicore processors that MCS locks can
improve maximum scalability without decreasing perfor-
mance, and conclude that the scaling and performance
benefits of the different types of scalable locks is small.

The rest of the paper is organized as follows. Section 2
demonstrates that non-scalable locks can cause perfor-
mance collapse for real workloads. Section 3 introduces
a Markov-based model that explains why non-scalable
locks can cause this collapse to happen, even for short
critical sections. Section 4 evaluates several scalable
locks on modern x86-based multicore processors to de-
cide which scalable lock to use to replace the offending
non-scalable locks. Section 5 reports on the results of us-
ing MCS locks to replace the non-scalable locks in Linux
that caused performance collapse. Section 6 relates our
findings and modeling to previous work. Section 7 sum-
marizes our conclusions.

2 Are non-scalable locks a problem?

This section demonstrates that non-scalable spin locks
cause performance collapse for some kernel-intensive
workloads. We present performance results from four
benchmarks demonstrating that critical sections that con-
sume less than 1% of the CPU cycles on one core can
cause performance to collapse on a 48-core x86 machine.

2.1 How non-scalable locks work

For concreteness we discuss the ticket lock used in the
Linux kernel, but any type of non-scalable lock will
exhibit the problems shown in this section. Figure 1
presents simplified C code from Linux. The ticket lock
is the default lock since kernel version 2.6.25 (released
in April 2008).

An acquiring core obtains a ticket and spins until its
turn is up. The lock has two fields: the number of the
ticket that is holding the lock (current_ticket) and

struct spinlock_t {
int current_ticket;
int next_ticket;

}
void spin_lock(spinlock_t *lock)
{
int t =
atomic_fetch_and_inc(&lock->next_ticket);
while (t != lock->current_ticket)
; /* spin */
}
void spin_unlock(spinlock_t *lock)
{
lock->current_ticket++;
}

Figure 1: Pseudocode for ticket locks in Linux.

the number of the next unused ticket (next_ticket). To
obtain a ticket number, a core uses an atomic increment
instruction on next_ticket. The core then spins until
its ticket number is current. To release the lock, a core
increments current_ticket, which causes the lock to
be handed to the core that is waiting for the next ticket
number.

If many cores are waiting for a lock, they will all have
the lock variables cached. An unlock will invalidate
those cache entries. All of the cores will then read the
cache line. In most architectures, the reads are serialized
(either by a shared bus or at the cache line’s home or
directory node), and thus completing them all takes time
proportional to the number of cores. The core that is next
in line for the lock can expect to receive its copy of the
cache line midway through this process. Thus the cost of
each lock handoff increases in proportion to the number
of waiting cores. Each inter-core operation takes on the
order of a hundred cycles, so a single release can take
many thousands of cycles if dozens of cores are waiting.
Simple test-and-set spin locks incur a similar O(N) cost
per release.

2.2 Benchmarks

We exercised spin locks in the Linux kernel with four
benchmarks: FOPS, MEMPOP, PFIND, and EXIM. Two are
microbenchmarks and two represent application work-
loads. None of the benchmarks involve disk I/O (the
file-system cache is pre-warmed). We ran the bench-
marks on a 48-core machine (eight 6-core 2.4 GHz AMD



Opteron chips) running Linux kernel 2.6.39 (released in
May 2011).

FOPS creates a single file and starts one process on each
core. Each thread repeatedly opens and closes the file.

MEMPOP creates one process per core. Each pro-
cess repeatedly mmaps 64 kB of memory with the
MAP_POPULATE flag, then munmaps the memory. MAP_
POPULATE instructs the kernel to allocate pages and pop-
ulate the process page table immediately, instead of doing
so on demand when the process accesses the page.

PFIND searches for a file by executing several instances
of the GNU find utility. PFIND takes a directory and
filename as input, evenly divides the directories in the
first level of input directory into per-core inputs, and
executes one instance of find per core, passing in the
input directories. Before we execute the PFIND, we create
a balanced directory tree so that each instance of find
searches the same number of directories.

EXIM is a mail server. A single master process listens
for incoming SMTP connections via TCP and forks a
new process for each connection, which accepts the in-
coming message. We use the version of EXIM from
MOSBENCH [3].

2.3 Results

Figure 2 shows the results for all benchmarks. One might
expect total throughput to rise in proportion to the num-
ber of cores for a while, then level off to a flat line due
to some serial section. Throughput does increase with
more cores for a while, but instead of leveling off, the
throughput decreases after some number of cores. The
decreases are sudden; good performance with N cores is
often followed by dramatically lower performance with
one or two more cores.

FOPS. Figure 2(a) shows the total throughput of FOPS
as a function of the number of cores concurrently running
the benchmark. The performance peaks with two cores.
With 48 cores, the total throughput is about 3% of the
throughput on one core.

The performance collapse in Figure 2(a) is caused by a
per-entry lock in the file system name/inode cache. The
kernel acquires the lock when a file is closed in order to
decrement a reference count and possibly perform clean-
up actions. On average, the code protected by the lock
executes in only 92 cycles.
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MEMPOP. Figure 2(b) shows the throughput of MEM-
POP. Throughput peaks at nine cores, at which point
it is 4.7x higher than with one core. Throughput de-
creases rapidly at first with more than nine cores, then
more gradually. At 48 cores throughput is about 35% of
the throughput achieved on one core. The performance
collapse in Figure 2(b) is caused by a non-scalable lock
that protects the data structure mapping physical pages
to virtual memory regions.

PFIND. Figure 2(c) shows the throughput of PFIND,
measured as the number of find processes that complete
every second. The throughput peaks with 14 cores, then
declines rapidly. The throughput with 48 cores is ap-
proximately equal to the throughput on one core. A non-
scalable lock protecting the block buffer cache causes
PFIND’s performance collapse.

EXIM. Figure 2(d) shows EXIM’s performance as a
function of the number of cores. The performance col-
lapse is caused by locks that protect the data structure
mapping physical pages to virtual memory regions. The
3.0.0 kernel (released in Aug 2011) fixes this collapse
by acquiring the locks involved in the bottlenecked op-
eration together, and then running with a larger critical
section.

Figure 3 shows measurements related to the most con-
tended lock for each benchmark, taken on one core. The
“Operation time” column indicates the total number of
cycles required to complete one benchmark operation
(opening a file, delivering a message, etc). The “Ac-
quires per operation” column shows how many times the
most contended lock was acquired per operation. The
“Average critical section time” column shows how long
the lock was held each time it was acquired. The “% of
operation in critical section” reflects the ratio of total
time per operation spent in the critical section to the total
time for each operation.

The last column of Figure 3 helps explain the point in
each graph at which collapse starts. For example, MEM-
POP spends 7% of its time in the bottleneck critical sec-
tion. Once 14 (i.e., 1.0/0.07) cores are active, one would
expect that critical section’s lock to be held by some core
at all times, and thus that cores would start to contend
for the lock. In fact MEMPOP starts to collapse somewhat
before that point, a phenomenon explained in the next
section.
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Figure 2: Sudden performance collapse with ticket locks.
Benchmark Operation time Top lock instance name Acquires Per Average crl?lcal section % of '()Peratlon. in
(cycles) operation time (cycles) critical section
FOPS 503 d_entry 4 92 73%
MEMPOP 6852 anon_vma 4 121 7%
PFIND 2099 M address_space 70K 350 7%
EXIM 1156 K anon_vma 58 165 0.8%

Figure 3: The most contended critical sections for each Linux microbenchmark, on a single core.




As an example of a critical section that causes non-
scalability, Figure 4 shows the most contended critical
sections for EXIM. They involve adding and deleting an
element from a list, and consist of a handful of inlined
instructions.

2.4 Questions

The four graphs have common features which raise some
questions.

e Why does collapse start as early as it does? One
would expect collapse to start when there is a sig-
nificant chance that many cores need the same lock
at the same time. Thus one might expect MEMPOP
to start to see decline at around 14 cores (1.0/0.07).
But the onset occurs earlier, at nine cores.

e Why does performance ultimately fall so far?

e Why does performance collapse so rapidly? One
might expect a gradual decrease with added cores,
since each new core should cause each release of the
bottleneck lock to take a little more time. Instead,
adding just a few more cores causes a sharp drop in
total throughput. This is worrisome; it suggests that
a system that has been tested to perform well with
N cores might perform far worse with N 4+ 2 cores.

3 Model

This section presents a performance model for non-
scalable locks that answers the questions raised in the
previous section. It first describes the hardware cache
coherence protocol at a high level, which is representa-
tive of a typical x86 system, and then builds on the basic
properties of this protocol to construct a model for un-
derstanding performance of ticket spin locks. The model
closely predicts the observed collapse behavior.

3.1 Hardware cache coherence

Our model assumes a directory-based cache coherence
protocol. All directories are directly connected by an
inter-directory network. The cache coherence protocol is
a simplification of, but similar to, the implementation in
AMD Opteron [4] and Intel Xeon CPUs.
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static void

anon_vma_chain_link(
struct anon_vma_chain *avc,
struct anon_vma *anon_vma)

{
spin_lock (&anon_vma->lock);
list_add_tail (&avc->same_anon_vma,

&anon_vma->head);

spin_unlock (&anon_vma->lock);

}

static void

anon_vma_unlink (
struct anon_vma_chain *avc,
struct anon_vma *anon_vma)

{
spin_lock (&anon_vma->lock);
list_del (&avc->same_anon_vma) ;
spin_unlock (&anon_vma->lock);

}

Figure 4: The most contended critical sections from
EXIM. This compiler inlines the code for the list manipu-
lations, each of which are less than 10 instructions.

3.1.1 The directory

Each core has a cache directory. The hardware (e.g., the
BIOS) assigns evenly sized regions of DRAM to each
directory. Each directory maintains an entry for each
cache line in its local DRAM:

[ tag | state | core ID ]

The possible states are:

1. invalid (I) — the cache line is not cached;

2. shared (S) — the cache line is held in one or more
caches and matches DRAM;

3. modified (M) — the cache line is held in one cache
and does not match DRAM.

For modified cache lines the directory records the cache
that holds the dirty cache line.

Figure 5 presents the directory state transitions for loads
and stores. For example, when a core issues a load re-
quest for a cache line in the invalid state, the directory
sets the cache line state to shared.
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1|s|™M
Load | S| S | S
Store M| M| M

Figure 5: Directory transitions for loads and stores.

1| S| M
Load | - | — | DP
Store | — | BI | DI

Figure 6: Probe messages for loads and stores.

3.1.2 Network messages

When a core begins accessing an uncached cache line,
it will send a load or store request to the cache line’s
home directory. Depending on the type of request and
the state of the cache line in the home directory, the
home directory may need to send probe messages to all
directories that hold the cache line.

Figure 6 shows the probe messages a directory sends
based on request type and state of the cache line. “BI”
stands for broadcast invalidate. “DP” stands for direct
probe. “DI” stands for direct invalidate. For example,
when a source cache issues a load request for a modified
cache line, the home directory sends a directed probe to
the cache holding the modified cache line. That cache
responds to the source cache with the contents of the
modified cache line.

3.2 Performance model for ticket locks

To understand the collapse observed in ticket-based spin
locks, we construct a model. One of the challenging
aspects of constructing an accurate model of spin lock
behavior is that there are two regimes of operation: when
not contended, the spin lock can be acquired quickly,
but when many cores try to acquire the lock at the same
time, the time taken to transfer lock ownership increases
significantly. Moreover, the exact point at which the
behavior of the lock changes is dependent on the lock us-
age pattern, and the length of the critical section, among
other parameters. Recent work [6] attempts to model this
behavior by combining two models—one for contention
and one for uncontended locks—into a single model, by
simply taking the max of the two models’ predictions.
However, this fails to precisely model the point of col-
lapse, and does not explain the phenomenon causing the
collapse.

a (] ai At g
So Sk-1 Sk Sk+1 Sn-1

Figure 7: Markov model for a ticket spin lock for n cores.
State i represents i cores holding or waiting for the lock.
a; is the arrival rate of new cores when there are already i
cores contending for the lock. s; is the service rate when
i+ 1 cores are contending.

To build a precise model of ticket lock behavior, we
build on queueing theory to model the ticket lock as a
Markov chain. Different states in the chain represent
different numbers of cores queued up waiting for a lock,
as shown in Figure 7. There are n+ 1 states in our model,
representing the fact that our system has a fixed number
of cores (n).

Arrival and service rates between different states rep-
resent lock acquisition and lock release. These rates
are different for each pair of states, modeling the non-
scalable performance of the ticket lock, as well as the
fact that our system is closed (only a finite number of
cores exist). In particular, the arrival rate from k to k+ 1
waiters, ay, should be proportional to the number of re-
maining cores that are not already waiting for the lock
(i.e., n — k). Conversely, the service rate from k+ 1 to k,
Sk, should be inversely proportional to k, reflecting the
fact that transferring ownership of a ticket lock to the
next core takes linear time in the number of waiters.

To compute the arrival rate, we define a to be the average
time between consecutive lock acquisitions on a single
core. The rate at which a single core will try to acquire
the lock, in the absence of contention, is 1/a. Thus, if
k cores are already waiting for the lock, the arrival rate
of new contenders is a; = (n — k) /a, since we need not
consider any cores that are already waiting for the lock.

To compute the service rate, we define two more parame-
ters: s, the time spent in the serial section, and c, the time
taken by the home directory to respond to a cache line
request. In the cache coherence protocol, the home direc-
tory of a cache line responds to each cache line request
in turn. Thus, if there are k requests from different cores
to fetch the lock’s cache line, the time until the winner
(pre-determined by ticket numbers) receives the cache
line will be on average c-k/2. As a result, processing
the serial section and transferring the lock to the next



holder when k cores are contending takes s+ ck/2, and
. . o 1

the service rate is s; = T2

Unfortunately, while this Markov model accurately rep-
resents the behavior of a ticket lock, it does not match
any of the standard queueing theory that provides a sim-
ple formula for the behavior of the queueing model. In
particular, the system is closed (unlike most open-system
queueing models), and the service times vary with the
size of the queue.

To compute a formula, we derive it from first prin-
ciples. Let P,...,P, be the steady-state probabili-
ties of the lock being in states O through n respec-
tively. Steady state means that the transition rates bal-
ance: P;-ay = Py -s;. From this, we derive that
P.=P- ﬁlk), -Hf;l(s—kic). Since Y (P =1, we
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Given the steady-state probability for each number of
cores contending for the lock, we can compute the aver-
age number of waiting (idle) cores as the expected value
of that distribution, w =} ;' i - F;. The speedup achieved
in the presence of this lock and serial section can be
computed as n — w, since on average that many cores are
doing useful work, while w cores are spinning.

3.3 Validating the model

To validate our model, Figures 8 and 9 show the predicted
and actual speedup of a microbenchmark with a single
lock, which spends a fixed number of cycles inside of a
serial section protected by the lock, and a fixed number
of cycles outside of that serial section. Figure 8 shows
the predicted and actual speedup when the serial section
always takes 400 cycles to execute, but the non-serial
section varies from 12.5k to 200k cycles. As we can see,
the model closely matches the real hardware speedup for
all configurations.

In Figure 9, we also present the predicted and actual
speedup of the microbenchmark when the serial section
is always 2% of the overall execution time (on one core),
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Figure 8: Predicted and actual performance of ticket spin
locks with a 400-cycle serial section, for a microbench-
mark where the serial section accounts for a range of
fractions of the overall execution time on one core.
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Figure 9: Predicted and actual performance for a mi-
crobenchmark where the critical section accounts for
2% of the execution time on one core, but with varying
execution time for each invocation of the serial section.

but the time spent in the serial section varies from 400
to 25,600 cycles. Again, the model closely matches the
measured speedup. This gives us confidence that our
model accurately captures the relevant factors leading to
the performance collapse of ticket locks.

One difference between the predicted and measured
speedup is that the predicted collapse is slightly more
gradual than the collapse observed on real hardware.
This is because the ticket lock’s performance is unsta-
ble near the collapse point, and the model predicts the
average steady-state behavior. Our measured speedup
reports the throughput for a relatively short-running mi-
crobenchmark, which has not had the time to “catch” the
instability.
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3.4 Implications of model results

The behavior predicted by our model has several im-
portant implications. First, the rapid collapse of ticket
locks is an inherent property of their design, rather than
a performance problem with our experimental hardware.
Any cache-coherent system that matches our basic hard-
ware model will experience similarly sharp performance
degradation. The reason behind the rapid collapse can
be understood by considering the transition rates in the
Markov model from Figure 7. If a lock ever accumulates
a large number of waiters (e.g., reaches state n in the
Markov model), it will take a long time for the lock to
go back down to a small number of waiters, because the
service rate sy rapidly decays as k grows, for short serial
sections. Thus, once the lock enters a contended state, it
becomes much more likely that more waiters arrive than
that the current waiters will make progress in shrinking
the lock’s wait queue.

A more direct way to understand the collapse is that the
time taken to transfer the lock from one core to another
increases linearly with the number of contending cores.
However, this time effectively increases the length of the
serial section. Thus, as more cores are contending for the
lock, the serial section grows, increasing the probability
that yet another core will start contending for this lock.

The second implication is that the collapse of the ticket
lock only occurs for short serial sections, as can be seen
from Figure 9. This can be understood by consider-
ing how the service rate s; decays for different lengths
of the serial section. For a short serial section time s,
Sk = W is strongly influenced by £, but for large s, s;
is largely unaffected by k. Another way to understand
this result is that, with fewer acquire and release opera-
tions, the ticket lock’s performance contributes less to
the overall application throughput.

The third implication is that the collapse of the ticket
lock prevents the application from reaching the maxi-
mum performance predicted by Amdahl’s law (for short
serial sections). In particular, Figure 9 shows that a mi-
crobenchmark with a 2% serial section, which may be
able to scale to 50 cores under Amdahl!’s law, is able to
attain less than 10x scalability when the serial section is
400 cycles long.

4 Which scalable lock?

The literature has many proposals for scalable locks,
which avoid the collapse that ticket locks exhibit. Which
one should we use to replace contended ticket locks?
This section evaluates several scalable locks on modern
x86-based multicore processors.

4.1 Scalable locks

A common way of making the ticket lock more scalable
is to adjust its implementation to use proportional back-
off when the lock is contended. The challenge with
this approach is what constant to choose to multiply the
ticket number with. From our model we can conclude
that choosing the constant well is important only for
short critical section, because for large critical sections
collapse does not occur. For our experiments below, we
choose the best value by trying a range of values, and
selecting the one that gives the best performance. This
choice provides the best result that the proportional lock
could achieve.

Another approach is to replace the ticket lock with a
truly scalable lock. A scalable lock is one that generates
a constant number of cache misses per acquisition and
therefore avoids the collapse that non-scalable locks ex-
hibit. All of these locks maintain a queue of waiters and
each waiter spins on its own queue entry. The differences
in these locks are how the queue is maintained and the
changed necessary to the lock and unlock APIL

MCS lock. The MCS lock [9] maintains an explicit
queue of gnode structures. A core acquiring the lock
adds itself with an atomic instruction to the end of the
list of waiters by having the lock point to its gnode, and
then sets the next pointer of the gnode of its predecessor
to point to its gnode. If the core is not at the head of the
queue, then it spins on its gnode. To avoid dynamically
allocating memory on each lock invocation, the gnode
is an argument to lock and unlock.

K42 lock. A potential downside of the MCS lock is
that it involves an API change. The K42 lock [2] is a
variant of the MCS lock that requires fewer API changes.
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Figure 10: Throughput for cores acquiring and releasing
a shared lock. Results start with two cores.

CLH lock. The CLH lock [5] is a variant of an MCS
lock where the waiter spins on its predecessor gnode,
which allows the queue of waiters to be implicit (i.e., the
gnode next pointer and its updates are unnecessary).

HCLH lock. The HCLH lock [8] is a hierarchical vari-
ant of the CLH lock, intended for NUMA machines. The
way we use it is to favor lock acquisitions from cores
that share an L3 cache with the core that currently holds
the lock, with the goal to reduce the cost of cache line
transfers between remote cores.

4.2 Results

Figure 10 shows the performance of the ticket lock, pro-
portional lock, MCS lock, K42 lock, and CLH lock on
our 48-core AMD machine. The benchmark uses one
shared lock. Each core loops, acquires the shared lock,
updates 4 shared cache lines, and releases the lock. The
time to update the 4 shared cache lines is similar between
runs using different locks, and increases gradually from
about 800 cycles on 2 cores to 1000 cycles in 48 cores.
On our x86 multicore machine, the HCLH lock improves
performance of the CLH lock by only 2%, and is not
shown.

All scalable locks scale better than ticket lock on this
benchmark because they avoid collapse. Using the CLH
lock results in slightly higher throughput over the MCS
lock, but not by much. The K42 lock achieves lower

Lock type Single Single Shar.ed
acquire release acquire
MCS lock 25.6 27.4 53
CLH lock 28.8 39 517
Ticket lock 21.1 2.4 30
Proportional lock 22.0 2.8 30.2
K42 lock 47.0 238 74.9

Figure 11: Performance of acquiring and releasing an
MCS lock, a CLH lock, and a ticket lock. Single ac-
quire and release are measurements for one core. Shared
acquire is the time for a core to acquire a lock recently
released by another core. Numbers are in cycles.

throughput than the MCS lock because it incurs an addi-
tional cache miss on acquire. These results indicate that
for our x86 multicore machine, it does not matter much
which scalable lock to choose.

We also ran the benchmarks on a multicore machine with
Intel CPUs and measured performance trends similar to
those shown in Figure 10.

Another concern about different locks is the cost of 1ock
and unlock. Figure 11 shows the cost for each lock
in the uncontended and contended case. All locks are
relatively inexpensive to acquire on a single core with
no sharing. MCS lock and K42 lock are more expensive
to release on a single core, because, unlike the other
locks, they use atomic instructions to release the lock.
Acquiring a shared but uncontended lock is under 100
cycles for all locks, except the CLH lock. Acquiring the
CLH lock is expensive due to the overhead introduced
by the gnode recycling scheme for multiple cores.

5 Using MCS locks in Linux

Based on the result of the previous section, we replaced
the offending ticket locks with MCS locks. We first
describe the kernel changes to use MCS locks, and then
measure the resulting scalability for the 4 benchmarks
from Section 2.

5.1 Using MCS Locks

We replaced the three ticket spin locks that limited
benchmark performance with MCS locks. We modi-
fied about 1,000 lines of the Linux kernel (700 lines
for d_entry, 150 lines for anon_vma, and 150 lines for
address_space).
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Figure 12: Performance of benchmarks using ticket locks and MCS locks.

As noted earlier, MCS locks have a different API than the
Linux ticket spin lock implementation. When acquiring
an MCS lock, a core must pass a gqnode variable into
mcs_lock, and when releasing that lock the core must
pass the same gnode variable to mcs_unlock. For each
lock a core holds, the core must use a unique gnode, but
it is acceptable to use the same gnode for locks held at
different times.

Many of our kernel modifications are straightforward.
We allocate an MCS gnode on the stack, replace
spin_lock and spin_unlock with mcs_lock and
mcs_unlock, and pass the gnode to the MCS acquire
and release functions.

In some cases, the Linux kernel acquires a lock in one
function and releases it in another. For this situation,
we stack-allocate a gnode on the call frame that is an
ancestor of both the call frame that calls mcs_lock and
the one that calls mcs_release. This pattern is common

in the directory cache, and partially explains why we
made so many modifications for the d_entry lock.

Another pattern, which we encountered only in the di-
rectory cache code that implements moving directory
entries, is changing the value of lock variables. When
the kernel moves a d_entry between two directories, it
acquires the lock of the d_entry->d_parent (which is
also a d_entry) and the target directory d_entry, and
then sets the value d_entry->d_parent to be the tar-
get d_entry. With MCS, we must make sure to unlock
d_entry->d_parent with the gnode originally used to
lock the target d_entry, instead the gnode original used
to lock d_entry->d_parent.

5.2 Results

The graphs in Figure 12 show the benchmark results from
replacing contended ticket locks with MCS locks. For a



large number of cores, using MCS improves performance
by at least 3.5 and in one case by more than 16 x.

Figure 12(a) shows the performance of FOPS with MCS
locks. Going from one to two cores, performance with
both ticket locks and MCS locks increases. For more
than two cores, performance with the ticket spin lock
decreases continuously. Performance with MCS locks
initially also decreases from two to four cores, then re-
mains relatively stable. The reason for this decrease in
performance is that the time spent executing the critical
section increases from 450 cycles on two cores to 852
cycles on four cores. The critical section is executed
multiple times per-operation and modifies shared data,
which incurs costly cache misses. As more cores are
added, it is less likely that a core will have been the last
core to execute the critical section, and therefore it will
incur more cache misses, which will increase the length
of the critical section.

Figure 12(b) shows the performance of MEMPOP with
MCS locks. Performance with MCS and ticket locks
increases up to 9 cores, at which point the performance
with ticket locks collapses and continuously decreases
as more cores are used. The length of the critical sec-
tion is relatively short. It increases from 141 cycles on
one core to about 350 cycles on 10 cores. MCS avoids
the dramatic collapse from the short critical section and
increases maximum performance by 16.6x.

Figure 12(c) shows the performance of PFIND with MCS.
The address_space ticket spin lock performs well up
to 15 cores, then causes a performance drop that con-
tinues until 48 cores. The serial section updates some
shared data which increases the time spent in the criti-
cal section from 350 cycles on one core to about 1100
cycles on more than 44 cores. MCS provides a small
increase in maximum performance, but not as much as
with MEMPOP since the critical section is much longer.

Figure 12(d) shows the performance of EXIM with MCS.
Ticket spin locks perform well up to 39 cores, then cause
a performance collapse. The critical section is relatively
short (165 cycles on one core), so MCS improves maxi-
mum performance by 3.7x on 48 cores.

The results show that using scalable locks is not that
much work (e.g., less work than using RCU in the kernel)
and avoids the performance collapse that results from
non-scalable spin locks. The latter benefit is important
because institutions often use the same kernels for several
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years, even as they upgrade to hardware with more cores
and the likelihood of performance cliffs increases.

6 Related Work

The literature on scalable and non-scalable locks is vast,
many practitioners are well familiar with the issues, and
it is well known that non-scalable locks behave poorly
under contention. The main contribution that this paper
adds is the observation that non-scalable locks can cause
system performance to collapse, as well as a model that
nails down why the performance collapse is so dramatic,
even for short critical sections.

Anderson [1] observes that the behavior of spin locks
can be “degenerative”. The MCS paper shows that ac-
quisition of a test-and-set lock increases linearly with
processors on the BBN Butterfly and that on the Symme-
try this cost manifests itself even with a small number of
processors [9]. Many researchers and practitioners have
written microbenchmarks that show that non-scalable
spin locks exhibit poor performance under contention on
modern hardware. This paper shows that non-scalable
locks can cause the collapse of system performance un-
der plausible workloads; that is, the locking costs for
short critical sections can be very large on the scale of
kernel execution time.

The Linux scaling study reports on the performance col-
lapse that ticket locks introduce on the EXIM benchmark,
but doesn’t explain the collapse [3]. This paper shows
the collapse and the suddenness with several workloads,
and provides a model that explains the acuteness.

Eyerman and Eeckhout [6] provide closed formulas to
reason about the speedup of parallel applications that
involve critical sections, pointing out that there is regime
in which applications achieve better speedup than Am-
dahl’s law predicts. Unfortunately, their model makes
a distinction between the contended and uncontended
regime and proposes formula for each regime. In addi-
tion, the formulas do not model the insides of locks; in-
stead, they assume scalable locks. This paper contributes
a comprehensive model that accurately predicts perfor-
mance across the whole spectrum from uncontended to
contended, and applies it to modeling the inside of locks.

7 Conclusion

This paper raises another warning about non-scalable
locks. Although it is well understood that non-scalable
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spin locks have poor performance, it is less well appre-
ciated that their poor performance can have dramatic
effect on overall system performance. This paper shows
that non-scalable locks can cause system performance
to collapse under real workloads and that the collapse is
sudden, and presents a Markov model that explains the
sudden collapse. We conclude that using non-scalable
locks is dangerous because a system that has been tested
with N cores may experience performance collapse at
a few more cores—or, put differently, if one upgrades
a machine in hopes of achieving higher performance,
one might run the risk of ending up with a performance
collapse. Scalable locking is a stop-gap solution that
avoids collapse, but achieving higher performance with
additional cores can require new designs using lock-free
data structures.
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Abstract

Enterprise Solid State Storage (SSS) are high perform-
ing class devices targeted at business critical applica-
tions that can benefit from fast-access storage. While it
is exciting to see the improving affordability and appli-
cability of the technology, enterprise software and Op-
erating Systems (OS) have not undergone pertinent de-
sign modifications to reap the benefits offered by SSS.
This paper investigates the I/O submission path to iden-
tify the critical system components that significantly im-
pact SSS performance. Specifically, our analysis fo-
cuses on the Linux I/O schedulers on the submission
side of the I/O. We demonstrate that the Deadline sched-
uler offers the best performance under random I/O inten-
sive workloads for the SATA SSS. Further, we establish
that all I/O schedulers including Deadline are not opti-
mal for PCle SSS, quantifying the possible performance
improvements with a new design that leverages device
level I/0 ordering intelligence and other I/O stack en-
hancements.

1 Introduction

SSS devices have been in use in consumer products for
a number of years. Until recently, the devices were
sparingly deployed in enterprise products and data cen-
ters due to several technical and business limitations.As
the performance and endurance continue to improve and
prices fall, we believe large scale utilization of these de-
vices in higher demanding environments is imminent.
Flash-based SSS can replace mechanical disks in many
I/0O intensive and latency sensitive applications.

SSS device operations are complex and different from
the mechanical disks. While SSS devices make use of
parallelism to achieve orders of magnitude in improved
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read performance over mechanical disks, they employ
complex flash management techniques to overcome sev-
eral critical restrictions with respect to writes.The abil-
ity to fine-tune a storage device for optimal utilization
is largely dependent on the OS design and its I/O stack.
However, most contemporary I/O stacks make several
fundamental assumptions that are valid for mechanical
disks only. This has opened up a sea of opportunities for
designing I/O stacks that can leverage improved perfor-
mance of the SSS devices. For instance, the OS and file
systems can comprehend that SSS contain more intelli-
gence to perform tasks like low level block management
and thus expose rich interface to convey more informa-
tion such as free blocks and I/O priorities down to the
device.

In this paper, we first set guidelines for measuring SSS
performance based on enterprise relevant workloads.
We then discuss the complete life cycle of an I/O request
under Linux OS, identifying system software compo-
nents in the submission path that are not quite tuned to
leverage the benefits of SSS. Specifically, we profile the
Linux I/O stack by measuring current performance yield
under current I/O scheduler schemes and quantifying
the performance that can be improved with a better de-
sign. For our study, we have used an off-the-shelf SATA
SSS as well as a soon-to-be-available Dell PowerEdge
Express Flash PCle SSS to evaluate improvements to
Linux I/O stack architecture during the I/O request sub-
mission operation.

1.1 Background

SSS performance and device characteristics have been
evaluated along several parameters under various OSes
and workloads by the industry as well as academia.
There has been a specific focus on design tradeoffs [3],

e 131 e



132 e Fine Grained Linux I/O Subsystem Enhancements to Harness Solid State Storage

Access Spec Block Size KB | %Reads | %Random o
DBOLTP 8 7 100 Application
Messaging 4 67 100
OS Paging 64 90 0 Linux Kernel Layer
SQL Server Log 64 0 0

Table 1: Configuration Parameters

High Performance Computing [1], throughput perfor-
mance [2], and so on. However, there is little published
work about the detailed analysis on end-to-end I/O re-
quest submission or completion operations. Specifi-
cally, the focus of the study is the I/O scheduler and
request queue management from the request submission
perspective. We plan on presenting our findings and rec-
ommendations on IRQ balancing and interrupt coalesc-
ing from the completion standpoint in subsequent papers
in the near future.

All our experiments were conducted on x86-64 bit ar-
chitecture based Linux server based on 3.2.8 kernel.
A dual socket Sandy Bridge motherboard with two 8-
core Intel Xeon CPU E5-2665 64-bit processors run-
ning at 2.40 GHz, with two hardware threads (with hy-
per threading) per core, 64GB of DDR III RAM was
used. 175GB Dell PowerEdge Express Flash PCle SSS
and LSI MegaRAID SAS 9240 storage controller with
a Samsung 100GB SATA SSS connected were used for
I/O measurements.

We chose fio [7] as our benchmarking tool mainly due
to its asynchronous I/O support. We believe SSS will
be deployed in the enterprise primarily for these four
usage models: OS paging, Messaging, DB-OLTP and
SQL Server Log. Thus, we focused our measurements
on workloads generated using these I/O configuration
parameters, as shown in Table 1.

2 1/0 Request Submission

I/O request traverses through different components of
the Linux subsystem as shown above. Most of these
layers are optimized to work better for rotational disks.
Assumptions such as seek time made considering the
mechanical factors of hard drives are not valid for SSS
and therefore introduction of SSS poses I/O subsystem
architectural challenges. We considered the following
components in the I/O submission path for targeted SSS
specific optimizations.

Virtual File System

¥
File System Direct| 1/0
* W
Block Layer
SCSI MID Layer I/0 Scheduler

!

Storage Controller Driver

Hard drives
Figure 1: 1/0 Block Digram

File System and Buffered I/O - When data is accessed
through a file system, extra processing and reads are
needed to access meta-data to locate the actual data.
Furthermore, buffered I/O copies data from SSS to sys-
tem memory before eventually copying into the user
space. This could potentially cause higher latencies. All
our empirical data collected and presented in this paper
are based on Direct I/O path with no paging or buffering
involved.

SCSI Layer Protocol Processing and Abstraction - SCSI
subsystems provide enhanced error recovery as well as
retry operations for the I/O requests. However, as PCle
interconnect operates in a much more closed system en-
vironment, it is fairly safe to assume that transport level
errors are rare. Thus, it is more efficient to allow the up-
per layer protocol (in user space) to perform error han-
dling for PCle SSS. As the SCSI mid layer contributes
about 20% additional latency to the I/O submission path
[4], our PCIe SSS design bypasses the SCSI layer in its
entirety.

Request Re-ordering and Merging (I/O Scheduler) - The
block layer uses one of the elevator (IO scheduler algo-
rithms) to reorder and merge the adjacent requests to
reduce the seek time of hard drives and increase per-
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formance. But in case of SSS with no seek latency in-
volved, using elevator algorithms just adds processing
overhead. Section 2.1 presents the taxonomy of various
I/O schedulers and further quantifies the performance
delivered when the system is configured with each of
those scheduler schemes.

Shown above is the 10 flow of the new driver model
adopted by Dell PowerEdge Express Flash PCle SSS
which avoids generic request queue, IO schedulers and
SCSI subsystem. Furthermore, the device utilizes modi-
fied AHCI driver with queue depth of 256 elements in
order to maximize performance. Section 3 describes our
approach further and exhibits the performance gains re-
alized due to these pertinent optimizations.

2.1 1/0 Scheduler

The purpose of introduction of these algorithms was to
schedule disk I/O requests in such a way that the disk
operations will be handled efficiently. Different I/O
schedulers were introduced along the way. Selecting
the right one matching SSS behavioral strengths and ap-
plication workload would improve the I/O performance
substantially.

Completely Fair Queuing - The Completely Fair Queu-
ing (CFQ) scheduler aims to provide equal amount of

I/O bandwidth among all processes issuing 1/O requests.
Each time a process submits a synchronous I/O re-
quest, it is moved to the assigned internal queue. Asyn-
chronous requests from all processes are batched to-
gether according to their process’s I/O priority. During
each cycle, requests are moved from each non-empty in-
ternal request queue into one dispatch queue in a round-
robin fashion. Our experiments using CFQ scheduler
show that the scheme is suited well for large sequential
accesses, however, sub-optimal for small or random I/O
workloads. Once in the dispatch queue, requests are or-
dered to minimize disk seeks and serviced accordingly,
which may not improve performance in case of SSS, as
solid state devices have negligible seek time. Further-
more, we observed that CFQ scheduling caused a no-
ticeable amount of increase in the CPU utilization.

Deadline Scheduler - In Deadline scheduler, an expira-
tion time or “deadline” is associated with each block
device request. Once a request reaches its expiration
time, it is serviced immediately, regardless of its tar-
geted block device. To maintain efficiency, any other
similar requests targeted at nearby locations on disk will
also be serviced. The main objective of the Deadline
scheduler is to guarantee a response time for each re-
quest. The Deadline scheme is well suited in most real
world workload scenarios such as messaging as shown
here, where SSS are deployed for random I/O perfor-
mance with deeper queue depths.

Noop Scheduler - Among all I/O scheduler types, the
Noop scheduler is the simplest. It moves all requests
into a simple unordered queue, where they are processed
by the device in a simple FIFO order. The Noop sched-
uler is suitable for devices where there are no perfor-
mance penalties for seeks. This characteristic makes
Noop scheduler suitable for workloads that demand
the least possible latency operating with small queue
depths. Also, it may be noted that the SSS firmware
has built-in algorithms to optimize the read/write per-
formance, so in many cases it is best suited for the SSS
internal algorithms to handle the read/write order. Se-
lecting Noop scheduler will avoid I/O subsystem over-
head in rearranging I/O requests.

We further validated our claims by experimenting with
SATA SSS. At deeper queue depths, the Deadline sched-
uler performed better than CFQ by 15% and against the
Noop scheduler by around 3%. For sequential writes,
we found that CFQ outperforms Deadline as well as
Noop schedulers by 30%.We believe most enterprise
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end users will invest in SSS devices for random I/O per-
formance benefit and therefore recommend using Dead-
line scheduler as the default configuration.

3 Optimized Dell Driver Performance

We were able to realize significant performance im-
provement when the SCSI layer is bypassed. How-
ever, the gains were much more substantial when the
I/O scheduler logic was avoided as well. Our approach
yielded at least 27% better small random read I/O per-
formance at lower queue depths. Another important as-
pect of our new methodology was to circumvent the lim-
itations imposed by the AHCI interface. The current
Linux AHCI driver implementation does not allow the
queue depth to increase beyond 31, although most of the
enterprise class SSS devices support queue depths up to
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256. As a result, we were able to attain up to 200%
improvement in small random write I/O performance at
deeper queue depths.

Finally, our approach is tuned to offer the best possi-
ble SSS performance under most critical and I/O inten-
sive enterprise applications such as DB-OLTP and Mes-
saging without sacrificing performance of other possi-
ble usage scenarios such as DB logs or OS Paging. We
observed gains of up to 40% and 50% respectively for
DB-OLTP and Messaging workloads.

4 Conclusion

We have discussed the current Linux storage I/O stack
and its constituents. We also identified specific compo-
nents that contribute to SSS performance degradation. A
new approach for PCle SSS is presented that bypasses
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conventional Linux I/O request management and pushes
requests out to the device with minimal processing in the
software stack. The study quantifies performance gains
of up to 200% in some specific I/O patterns and up to
50% in some real world workload scenarios for PCle
SSS.

While it is possible to avoid much of the Linux stack for
PCle SSS, I/0 to devices such as SATA SSS can only
be serviced by traversing the conventional stack. Al-
though the current I/O schedulers are outdated and im-
perfect when addressing SSS, they have a critical role to
play to optimize the performance of SAS or SATA SSS.
We demonstrate that a “one size fits all” scheduler pol-
icy does not work well for SATA SSS. Of the current
crop of schedulers, the Deadline scheduler offers up to
15% performance advantage over Noop and therefore
it is best suited for most I/O intensive enterprise appli-
cations. We recommend using Deadline as the default
configuration.

As the SSS technology continues to advance, we believe
the I/0 scheduler methodology should evolve taking the
device characteristics into account by working in con-
cert with the intelligence present in the device.

5 Future Work

No system I/O analysis is complete without a thorough
investigation of the completion path. We plan on focus-
ing on two aspects: interrupt coalescing opportunities
and IRQ balancing schemes that work best for SSS. As
we believe vendors continue to support increased num-
ber of MSI-X vectors for parallelism, MSI-X configu-
ration especially from the NUMA optimizations stand-
point will need to be understood.

It is of paramount importance to understand and opti-
mize the SSS devices from a system perspective at a
macro level. For example, real enterprise applications
run with file systems and RAID arrays. We believe file
systems can gain from organizing meta-data in a way
that take into account the special characteristics of SSS.
Thus, we intend to study the impact of these and other
proposed changes in future on various areas of Linux
system design.
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Abstract

This paper describes the improvements we have done to
eCryptfs, a POSIX-compliant enterprise-class stacked
cryptographic filesystem for Linux. The major improve-
ments are as follows. First, for stacked filesystems, by
default, the Linux VFS framework will maintain page
caches for each level of filesystem in the stack, which
means that the same part of file data will be cached
multiple times. However, in some situations, multiple
caching is not needed and wasteful, which motivates us
to perform redundant cache elimination, to reduce ide-
ally half of the memory consumption and to avoid un-
necessary memory copies between page caches. The
benefits are verified by experiments, and this approach
is applicable to other stacked filesystems. Second, as
a filesystem highlighting security, we equip eCryptfs
with HMAC verification, which enables eCryptfs to de-
tect unauthorized data modification and unexpected data
corruption, and the experiments demonstrate that the de-
crease in throughput is modest. Furthermore, two minor
optimizations are introduced. One is that we introduce
a thread pool, working in a pipeline manner to perform
encryption and write down, to fully exploit parallelism,
with notable performance improvements. The other is
a simple but useful and effective write optimization. In
addition, we discuss the ongoing and future works on
eCryptfs.

1 Introduction

eCryptfs is a POSIX-compliant enterprise cryptographic
filesystem for Linux, included in the mainline Linux
kernel since version 2.6.19. eCryptfs is derived from
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Cryptfs [5], which is part of the FiST framework [6].
eCryptfs provides transparent per file encryption. Af-
ter mounting a local folder as an eCryptfs folder
with identity authentication passed, the file copied into
the eCryptfs folder will be automatically encrypted.
eCryptfs is widely used, for example, as the basis
for Ubuntu’s encrypted home directory, natively within
Google’s ChromeOS, and transparently embedded in
several network attached storage (NAS) devices.

eCryptfs is implemented as a stacked filesystem inside
Linux kernel, it does not write directly into a block de-
vice. Instead, it mounts on top of a directory in a lower
filesystem. Most POSIX compliant filesystem can act as
a lower filesystem, for example, ext4 [2], XFS [4], even
NFS [3]. eCryptfs stores cryptographic metadata in the
header of each file written, so that encrypted files can be
copied between hosts, and no additional information is
needed to decrypt a file, except the ones in the encrypted
file itself.

The rest of this paper is organized as follows. For back-
ground information, Section 1 introduces the eCryptfs
cryptographic filesystem. Section 2 describes the opti-
mizations for eCryptfs performance. Section 3 presents
the data integrity enforcement for eCryptfs security.
Section 4 discusses our ongoing and future works on
eCryptfs. Section 5 concludes the paper.

2 Performance Improvements
2.1 Redundant Cache Elimination

The page cache is a transparent filesystem cache imple-
mented in Linux VES (Virtual File System) framework.

o 137 o
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The fundamental functionality is to manage the memory
pages that buffer file data, avoiding frequent slow disk
accesses. For eCryptfs (and other stacked file systems in
Linux), there exist (at least) two levels of page caches,
as shown in Figure 1. The upper level is the eCryptfs
page cache, which buffers the plain text data to interact
with the user applications. The lower level page cache
belongs to the file system on top of which eCryptfs is
stacked, and it buffers the cipher text data as well as
the eCryptfs file metadata. The eCryptfs file read/write
works as follows,

e Read operations result in the call of VFS vfs_
read, which searches the eCryptfs page cache. If
no matching page is found, vfs_read calls the
file system specific readpage call back routine to
bring the data in. For eCryptfs this is eCryptfs_
readpage, which calls vfs_read again to cause
the lower file system to read the data from the disk
into eCryptfs page cache. The data is then de-
crypted and copied back to the user application.

e Write operations result in the call of VFS vfs_
write, which copies the data from user space
buffer into the eCryptfs page cache, marks the cor-
responding page dirty, then returns without en-
cryption (unless the system currently has large
amount of dirty pages). Encryption is normally
performed asynchronously by the dedicated OS
kernel thread, during the job of flushing dirty
pages into lower page cache, by invoking file sys-
tem specific writepage call back routine, here is
ecryptfs_writepage. This routine encrypts a
whole page of data into a temporary page, then in-
vokes vEs_write to copy the encrypted data from
the temporary page into the lower page cache.

In real life, eCryptfs is often deployed in archive and
backup situations. For the former case, people archive
their private documents into an eCryptfs protected direc-
tory, consequently, the corresponding eCryptfs files are
created and opened for writing, and those files are later
opened generally for reading. The latter case is simi-
lar, user copies files out from eCryptfs folder, modifies,
and copies the revised files back to replace the original
ones. In this case, the eCryptfs files are opened for either
reading or writing as well, in other words, in the above
situations, the files are almost never online edited, i.e.,
opened for both reading and writing. This is also true
for some other situations.
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Figure 1: Page caches for eCryptfs on top of ext4 under
original implementation.
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Figure 2: Page caches for eCryptfs on top of ext4 under
read optimization for encrypted file.

If the eCryptfs file is opened only for reading, the lower
page cache is not needed since the cipher data will not
be used after decryption. This motivates us to perform
redundant cache elimination optimization, thus reduce
ideally half of the memory consumption. The page
cache is maintained only at the eCryptfs level. For first
read, once the data has been read out from disk, de-
crypted and copied up to eCryptfs page cache, we free
the corresponding pages in the lower page cache im-
mediately by invoking invalidate_inode_pages2_
range, as shown in Figure 2. A better solution is to
modify the VFS framework to avoid allocating the lower
page entirely, but that would be much more compli-
cated, and we want to limit our revisions in the scope
of eCryptfs codes.

If the eCryptfs file is opened for writing, and the write
position is monotonic increasing, which guarantees the
same data area will not be repeatedly written, then the
eCryptfs page cache is not needed since the plain data
will not be used after encryption. It is beneficial to main-
tain the page cache only at the lower level. Once the
data has been encrypted and copied down to lower page
cache, the corresponding pages in eCryptfs page cache
are freed immediately.
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enum efsrwstate {
ECRYPTFS RW _INIT,
ECRYPTFS RW_RDOPT,
ECRYPTFS RW_WROPT,
ECRYPTFS_RW_NOOPT,

33

struct ecryptfs_rw_state {
struct mutex lock;
efsrwstate state;

35

struct ecryptfs_inode_info {

struct ecryptfs rw_state rw_state;

35

Figure 3: The data structures for redundant cache elim-
ination for encrypted file.
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Figure 4: The state machine for redundant cache elimi-
nation for encrypted file.

To achieve this optimization, we maintain a simple state
machine as an indicator. There are four states as shown
in Figure 3, ECRYPTFS_RW_INIT indicates an initial-
ized state, with neither readers nor writers. ECRYPTFS_
RW_RDOPT indicates the file is currently opened only for
reading, and the read optimization, i.e, lower page cache
early release applies. ECRYPTFS_RW_WROPT indicates
the file is currently opened only for writing and the write
position is monotonic increasing, in which case, the
write optimization, i.e, upper page cache early release
applies. ECRYPTFS_RW_NOOPT applies for remaining
cases. As shown in Figure 4, when a file data struc-
ture is initialized, the state is set to ECRYPTFS_RW_INIT.
If it is then opened for reading, the state transitions to
ECRYPTFS_RW_RDOPT, and remains unchanged until a

1 static int ecryptfs_readpage(struct file * file,
struct page *page)
{

2

3

4 flags = inode_info->crypt_stat.flags.

5 /* skip non-encrypted file */

6 if (!(flags & ECRYPTFS_ENCRYPTED))

7 goto out;

8 mutex_lock(&inode_info->rw_state.lock);

9 state = inode_info->rw_state.state;

10  if (state == ECRYPTFS_RW_RDOPT) {

11 pgoff_t index;

12 /* calculate the lower page index */

13 index = (ecryptfs_lower_header_size(
crypt_stat) >> PAGE_CACHE_SHIFT)

+ page->index;

14 /* release the lower page */

15 invalidate_inode_pages2_range(
lower_inode->i_mapping, index, index);

16 }

17 mutex unlock(&inode_info->rw_state.lock);

18 out:

19 ..

20 }

Figure 5: The readpage routine for eCryptfs for en-
crypted file.

writer gets involved. In that case, the state changes from
ECRYPTFS_RW_RDOPT to ECRYPTFS_RW_NOOPT. If the
file is initially opened for writing, the state becomes
ECRYPTFS_RW_WROPT, and remains unchanged until the
write position decreases or any reader gets involved, in
which case, the state becomes ECRYPTFS_RW_NOOPT.
After the file is closed by the last user, the state returns
to ECRYPTFS_RW_INIT.

Figure 5 shows the eCryptfs code implementing
readpage. After the data have been copied into
eCryptfs page cache, and redundant cache elimination
is applicable, in line 13, the corresponding lower page
index is calculated, then in line 15, the lower page is
released.

We evaluate redundant cache elimination on a machine
with a Pentium Dual-Core E5500 2.8GHz CPU, 4G of
memory (DDR3), the kernel version 3.1.0-7 1686 with
PAE enabled, the same test system is used for all the ex-
periments of this paper described. We use the command
‘iozone -tx-sy-r 4M -i 1’ to measure ‘Re-read’
throughput. Here x ranges from 1 to 256, increasing by
orders of 2, representing the number of processes, and
y ranges from 2G to 8M, representing the file size, such
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Number of Processes 7 if (ecryptfs_file_to_private(file)->crypt_stat->

Figure 6: Re-read throughput for redundant cache elim-
ination over original implementation.

that the total operated data set x *y is always equal to
2G.

As shown in Figure 6, the optimized eCryptfs achieves
a big speedup under this group of tests. This is because
the data set is 2G, if two level of page caches are present,
it will consume up to 4G memory, thus lead to a poor
re-read throughput due to memory page thrashing. With
the redundant cache elimination, the memory is enough
to buffer the data set, therefore brings a good through-
put.

There is furthermore a special case when the eCryptfs
folder is mounted with ecryptfs_passthrough flag
set, which allows for non-eCryptfs files to be read and
written from within an eCryptfs mount. For those non-
eCryptfs files, eCryptfs just relays the data between
lower file system and user applications without data
transformations. In this case, the data will be double
cached in each level of page cache, and the eCryptfs
page cache is not needed at all. For this case, we di-
rectly bypass the eCryptfs page cache by copying data
between lower file system and user buffer directly.

For example, Figure 7 shows the codes implementing
read. In line 14, vfs_read is invoked with the lower
file and user buffer as input, this will read data from
lower file system directly to user buffer. In line 19, the
eCryptfs inode attributes are updated according to the
ones of the lower inode.

Linux as well as most other modern operation systems
provide another method to access file, namely the mem-
ory mapping by means of the mmap system call. This
maps an area of the calling process’ virtual memory to
files, i.e, reading those areas of memory causes the file
to be read. While reading the mapped memory areas for
the first time, an exception is triggered and the architec-
ture dependent page fault handler will call file system

flags & ENCRYPTFS_ENCRYPTED)
8 goto out;
9 lower_file = ecryptfs_file to_lower(file);
10 /%
11 * directly read data into the user buffer from
12 * the lower file, bypass the ecryptfs page cache
13 */
14  err= vfs_read(lower _file, buf, count, &pos_copy);

15 /* update the ecryptfs inode attributes */

16  lower_file->f pos = pos_copy;

17 *ppos = pos_copy;

18  if (err>=0) {

19 fsstack_copy_attr_atime(file->f dentry->d_inode,
lower_file->f dentry->d_inode);

20 3}

21 return err;
22}

Figure 7: The read routine for eCryptfs for non-
ecrypted file.

const struct file_operations ecryptfs main_fops = {

1
2
3 .mmap = ecryptfs_file_ mmap,
4 5

5 static int ecryptfs_file_mmap(struct file *file,
struct vimn_area_struct *vma)

6

7

8 vma->vm_file = lower_file;

9 rc =lower_file->f_op->mmap(lower_file, vima);

10 get_file(lower _file);

11 new_ops = &inode_info->ecryptfs_vm_ops;

12 mutex_lock(&inode_info->lower_file mutex);

13 if (!inode_info->lower_vm_ops) {

14 inode_info->lower_vm_ops = vma->vm_ops;

15 new_ops.fault = ecryptfs vma_fault;

16 ... // the assigns to other interfaces omitted

17 }

18 mutex_unlock(&inode_info->lower_file_mutex);

19 vma->vim_ops = new_ops;

20 vma->vm_private_data = file;

21 return rc;

22}

Figure 8: The mmap routine for eCryptfs for non-
encrypted file.
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1 static int ecryptfs_vma_fault(struct vim_area_struct *
vma, struct vin_fault *vif)

2 {

3 file = vma->vm_private_data;

4 inode = file->f dentry->d_inode;

5 inode_info = ecryptfs_inode_to_private(inode);

6 return inode_info->lower_vm_ops->fault(vma, vmf);

73

Figure 9: The fault routine for eCryptfs for non-
encrypted file.

specific readpage routine to read the data from disk
into page cache.

With regard to mmap, to bypass the eCryptfs page cache,
the approach is shown in Figure 8. In line 8, the owner
of the vma address space is replaced with the lower file.
In line 9, the lower filesystem mmap implementation is
called, this will assign the lower filesystem implemented
operation set to the field vm_ops of vma. In line 14,
this set is saved and then vm_ops is replaced with the
eCryptfs implemented operation set in line 19, which,
in most cases, simply call the saved lower operation set,
and update some attributes, if necessary. For example,
the implementation of fault interface is shown in Fig-
ure 9. By this approach, the eCryptfs page cache will
not be generated.

2.2 Kernel Thread Pool based Encryption

Linux-2.6.32 introduced the feature of per-backing-
device based writeback. This feature uses a dedicated
kernel thread to flush the dirty memory of each storage
device. eCryptfs makes use of this feature by registering
an ‘eCryptfs’ backing device while mounting a eCryptfs
folder. Therefore, a dedicated kernel thread will be gen-
erated to flush the pages dirtied by eCryptfs from the
ecryptfs page cache to the lower page cache. Basically,
the kernel thread achieves this goal in two steps, first en-
crypting the data, then writing encrypted data to lower
page cache. Since encryption is CPU intensive task,
and the current write back framework supports only one
thread per device, it could not exploit the power of mul-
tiple CPU cores to perform parallel encryption, and will
slow down the speed of submitting pages to lower page
cache.

A better way is to use a kernel thread pool to do this
job in a pipeline manner. Two groups of kernel threads

—e— Pipeline —B— Origin extd

120 ——

Throughput (MB/s)

1 2 4 8 16 32 64 128 256

Number of Processes

Figure 10: Write throughput for thread pool based en-
cryption over original implementation and ext4.

are generated, one is responsible for encryption, called
e-thread. the other is for writing data down, called
w-thread. The number of e-thread is twice of the num-
ber of CPU cores. w-threads are spawned on-demand.
ecryptfs_writepage submits the current dirty page
to pipeline, wakes up the e-threads, then returns. The
e-threads grab dirty pages from the pipeline, perform
encryption, submit the encrypted pages to the next sta-
tion of the pipeline, and dynamically adjust the number
of w-threads according to the number of write pending
pages, if necessary. w-threads write the encrypted pages
to the lower page cache.

This approach is evaluated by measuring ‘Write’
throughput using iozone. For comparison, the through-
put on ext4 is also tested to give an upper bound. The
parameters are ‘iozone -tx -sy-r 4M -i 0 -+n’,
where x is from 1 to 256, corresponding, y from 8G
to 32M. As shown in Figure 10, the optimized codes
achieve an obviously higher throughput than the origi-
nal implementation.

2.3 Write Optimization

The Linux VFS framework performs buffered writes at
a page granularity, that is, it copies data from user space
buffers into kernel page cache page by page. During
the process, VES will repeatedly invoke the file sys-
tem specific write_begin call back routine, typically
once per page, to expect the file system to get the ap-
propriate page in page cache ready to be written into.
For eCryptfs, the routine is ecryptfs_write_begin,
which looks for the page cache, and grabs a page (allo-
cates it if desired) for writing. If the page does not con-
tain valid data, or the data are older than the counterpart
on the disk, eCryptfs will read out the corresponding
data from the disk into the eCryptfs page cache, decrypt



142 e Optimizing eCryptfs for better performance and security

| B New Origin |

120
90 M
. \.\L

1 2 4 8 16 32 64 128 256

30— =

Throughput (MB/s)

Number of Processes

Figure 11: Write throughput for write optimization over
original implementation.

them, then perform writing. However, for current page,
if the length of the data to be written into is equal to page
size, that means the whole page of data will be overwrit-
ten, in which case, it does not matter whatever the data
were before, it is beneficial to perform writing directly.

This optimization is useful while using eCryptfs in
backup situation, user copies file out from eCryptfs
folder, modifies, and copies the revised file back to re-
place the original one. In such situation, the file in
eCryptfs folder is overwritten directly, without reading.

Although the idea is simple, there is one more issue to
consider related to the Linux VFS implementation. As
described above, VFS calls write_begin call back rou-
tine to expect the file system to prepare a locked updated
page for writing, then VFS calls iov_iter_copy_
from_user_atomic to copy the data from user space
buffers into the page, at last, VFS calls write_end call
back routine, where, typically, the file system marks
the page dirty and unlocks the page. iov_iter_copy_
from_user_atomic may end up with a partial copy,
since some of the user space buffers are not present in
memory (maybe swapped out to disk). In this case, only
part of data in the page are overwritten. Our idea is to
let ecryptfs_write_end return zero at this case, to
give iov_iter_fault_in_readable achance to han-
dle the page fault for the current iovec, then restart the
copy operation.

This optimization is evaluated by measuring ‘Write’
throughput using iozone. The command parameters
are ‘iozone -tx-sy-r 4M -i 0 -+n’, where x is
from 1 to 256, correspondingly, y is from 8G to 32M,
and the files written into have valid data prior to the ex-
periments. As shown in Figure 11, the optimized codes
enjoy around 3x speedup over the original implementa-
tion under this group of tests.
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Figure 12: Write throughput for eCryptfs with HMAC-
MDS5 verification over the one without.

3 Data Integrity Enforcement

In cryptography, HMAC (Hash-based Message Authen-
tication Code) [1] is used to calculate a message authen-
tication code (MAC) on a message involving a crypto-
graphic hash function in combination with a secret key.
HMAC can be used to simultaneously verify both the
data integrity and the authenticity of a message. Any
cryptographic hash function, such as MD5 or SHA-1,
may be used in the calculation of an HMAC; the result-
ing MAC algorithm is termed HMAC-MD5 or HMAC-
SHAT1 accordingly. The cryptographic strength of the
HMAC depends upon the cryptographic strength of the
underlying hash function, the size of its hash output
length in bits, and on the size and quality of the cryp-
tographic key.

We implemented HMAC verification for eCryptfs, en-
abling it to detect the following situations,

o Unauthorized modification of file data

e Data corruption introduced by power loss, disk er-
ror etc.

Each data extent is associated with a HMAC value. Be-
fore an extent is encrypted and written to lower file page
cache, its HMAC is calculated, with the file encryption
key and the data of the current extent as input, and the
HMAC is saved in the lower file as well. When the data
is later read out and decrypted, its HMAC is recalcu-
lated, and compared with the value saved. If they do
not match, it indicates that the extent has been modi-
fied or corrupted, eCryptfs will return an error to user
application. Since the attacker does not know the file
encryption key, the HMAC value cannot be faked.
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The HMAC values are grouped into dedicated extents,
rather than appended at end of each extent due to a per-
formance issue. According to our test, vis_read and
vis_write with non extent-aligned length are much
slower than the aligned counterpart. Accordingly, the
data extents are split into groups.

The decrease in throughput due to HMAC verifica-
tion is evaluated by measuring ‘Write’ throughput us-
ing iozone, the hash algorithm is MD5. The command
parameters are ‘iozone -tx-sy-r 4M -i 0 -+n’,
where x is from 1 to 256, corresponding, y from 8G to
32M. As shown in Figure 12, the decrease is modest.

4 Future Work

We are implementing per-file policy support for
eCryptfs. That is, allow to specify policies at a file gran-
ularity. For example, a file should be encrypted or not,
what encryption algorithm should be used, what is the
length of the key, etc. In addition, we are consider-
ing to implement transparent compression support for
eCryptfs.

Related to VFS, we are taking into account to modify
VES to give filesystems more flexibilities, to maintain
page cache at their decisions.

5 Conclusion

This paper presents the optimizations to eCryptfs for
both performance and security. By default, Linux VFS
framework maintains multiple page caches for stacked
filesystems, which, in some situations, is needless and
wasteful, motivating us to develop redundant cache
elimination, the benefits of which have been verified
experimentally. Furthermore, this approach is applica-
ble to many other stacked filesystems. We enhance the
eCryptfs security by introducing HMAC verification. To
exploit parallelism, we introduce a thread pool, work-
ing in a pipeline manner to do the encryption and write
down jobs. We have also presented a simple write op-
timization, which is very useful while using eCryptfs in
backup situation.
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Android SDK under Linux

Jean-Francois Messier
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jf@messier.ca

Abstract

This is a tutorial about installing the various components
required to have an actual Android development station
under Linux. The commands are simple ones and are
written to be as independent as possible of your flavour
of Linux. All commands and other scripts are in a set
of files that will be available on-line. Some processes
that would usually require user attendance have been
scripted to run unattended and are pre-downloaded. The
entire set of files (a couple of gigs) can be copied after
the tutorial for those with a portable USB key or hard
disk.
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Android SDK under Linux

Agenda
 Introduction
« Hardware and software components
 Installation Process

Introduction

My background

My use of Android devices

Quick on the slideshow — Then, the demo
All files are available online;

- http://1529.ca/android
Questions are welcome
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We need some hardware

Lots of RAM and disk space
Fast processor(s).
Multiple monitor is helpful

- IDE and virtual device together
Real Android device is a good idea !

The components

Some compatibility libraries — maybe !
Everything is Java

Eclipse is your friend

Android SDK and Eclipse Integration

Those virtual devices
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32-bit compatibility libraries

sudo apt-get install ia32-libs
or (maybe)

yum install glibc.i686

Everything is Java

The tools for Android development are using Java

The applications use another JVM for Android.
Should be Oracle Java Development Kit (JDK)

Get it from

http://www.oracle.com/technetwork/javal/javase/downloads
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Java (continued)

« My quick script (3 + 2 lines):

tar -zxf jdk-7u2-linux-x64.tar.gz
sudo mv ./jdkl.7.0 02 /opt
sudo 1n -s /opt/jdkl.7.0 02/bin/java /usr/bin/java

which java
java -version

Eclipse is your friend

* In my installations, Eclipse is the main tool to edit
and manage the source files. It has the integration
for the Android libraries and tools.

* |use Eclipse Classic
» Get it here:

http://www.eclipse.org/downloads/?
osType=1linux
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My script for Eclipse

* Download the version you need, then:

tar -zxf eclipse-SDK-XXX-linux-gtk.tar.gz

sudo mv ./eclipse /opt

sudo 1ln -s /opt/eclipse/eclipse /usr/bin/eclipse
which eclipse

* Try to start from the command line or otherwise

» Create the shortcut as you see fit
(ubuntu) sudo apt-get -y install gnome-panel

(ubuntu) gnome-desktop-item-edit ~/Desktop --create-new

Setup the Android SDK

» Get the file, unzip and move it:
* The script:

wget
http://dl.google.com/android/android-
sdk r20-linux.tgz

tar -zxf android-sdk_r20-linux.tgz

sudo mv android-sdk-linux/ /opt
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Eclipse vs Android

Now, we have to setup Eclipse so that it knows Android
Help — Install New Software. Click Add...

Enter a name and enter the URL:
http://dl.google.com/android/eclipse

Click OK— (wait) Select All - Next (x2) — Accept all
licenses

Click Finish — (wait) OK on the Security Warning
Restart Eclipse

Eclipse vs Android (2)

Upon restart, Eclipse will configure the SDK.

Select Use existing SDKs, enter the target location:

/opt/android-sdk-linux
Click Next, Opt in or out of stats, Click Finish

Click Open SDK Manager to Acknowledge the warning
to open the Android SDK Manager
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Eclipse vs Android (3)

Here, we select the platform(s) where our apps will work.

Select the platform(s), the tools and the extras.
The more platforms you select, the longer it takes !
Only select those you need.

Accept all licenses, eftc...

Then, we have to run:

sudo chmod -R 777 /opt/android-sdk/tools

Offline install

There are scripts to download and install the files
directly, instead of downloading through the SDK.

The whole set of files is over 2GB.

The ZIPs are to be unzipped in different directories,
based on their names.

Scripts are available at my web site
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Let's get virtual !

Next, we create a Virtual Machine. It will run the Android
environment for the app we will develop.

Click Window — AVD Manager — New...

Give it a name, and select a target. Target depends on
installation we just did.

You can also specify options such as:

- SD Card, Snapshots, Skin, etc
Click Create AVD

Hello World |

Small test program
Test it on the VM

Transfer and Test on a real Android Device
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Questions

Contact info

Jean-Francois Messier
jf@messier.ca
http://www.android-outaouais.com
http://www.1529.ca/android




