
Proceedings of the
Linux Symposium

June 13th–15th, 2011
Ottawa, Ontario

Canada

Contents
X-XEN : Huge Page Support in Xen 7

A. Gadre, K. Kabra, A. Vasani & K. Darak

NPTL Optimization for Lightweight Embedded Devices 13
Geunsik Lim, Hyun-Jin Choi & Sang-Bum Suh

Analysis of Disk Access Patterns on File Systems
for Content Addressable Storage 23
Kuniyasu Suzaki, Kengo Iijima, Toshiki Yagi & Cyrille Artho

Verifications around the Linux kernel 37
A. Lissy, S. Laurière & P. Martineau

Faults in Patched Kernel 47
A. Lissy, S. Laurière & P. Martineau

Towards Co-existing of Linux and Real-Time OSes 55
H. Mitake, T-H. Lin, H. Shimada, Y. Kinebuchi, N. Li & T. Nakajima

Comparing different approaches for Incremental Checkpointing: The Showdown 69
M. Vasavada, F. Mueller, P. Hargrove & E. Roman

User-level scheduling on NUMA multicore systems under Linux 81
Sergey Blagodurov & Alexandra Fedorova

Management of Virtual Large-scale High-performance Computing Systems 93
Geoffroy Vallée, Thomas Naughton, Stephen L. Scott

The Easy-Portable Method of Illegal Memory Access Errors Detection for Embedded
Computing Systems 101
Ekaterina Gorelkina, Alexey Gerenkov, Sergey Grekhov

Recovering System Metrics from Kernel Trace 109
F. Giraldeau & J. Desfossez & D. Goulet & M. Dagenais & M. Desnoyers

State of the kernel 117
John C. Masters

Android Development 125
Tim Riker

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Linux Symposium
Martin Bligh, Google
James Bottomley, Novell
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Matthew Wilson

Proceedings Committee

Ralph Siemsen

With thanks to
John W. Lockhart, Red Hat
Robyn Bergeron

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

X-XEN : Huge Page Support in Xen

Aditya Sanjay Gadre
Pune Institute of Computer Technology

adivb2003@gmail.com

Kaustubh Kabra
Pune Institute of Computer Technology

kabrakaustubh@gmail.com

Ashwin Vasani
Pune Institute of Computer Technology

vasani.ashwin@gmail.com

Keshav Darak
Pune Institute of Computer Technology

keshav.darak@gmail.com

Abstract

Huge pages are the memory pages of size 2MB (x86-
PAE and x86_64). The number of page walks required
for translation from a virtual address to physical 2MB
page are reduced as compared to page walks required
for translation from a virtual address to physical 4kB
page. Also the number of TLB entries per 2MB chunk
in memory is reduced by a factor of 512 as compared to
4kB pages. In this way huge pages improve the perfor-
mance of the applications which perform memory inten-
sive operations. In the context of virtualization, i.e. Xen
hypervisor, we propose a design and implementation to
support huge pages for paravirtualized guest paging op-
erations.

Our design reserves 2MB pages (MFNs) from the do-
main’s committed memory as per configuration speci-
fied before a domain boots. The rest of the memory
is continued to be used as 4kB pages. Thus availabil-
ity of the huge pages is guaranteed and actual physi-
cal huge pages can be provided to the paravirtualized
domain. This increases the performance of the applica-
tions hosted on the guest operating system which require
the huge page support. This design solves the problem
of availability of 2MB chunk in guest’s physical address
space (virtualized) as well as the Xen’s physical address
space which would otherwise may be unavailable due to
fragmentation.

1 Introduction

“The Xen hypervisor is a layer of software running di-
rectly on computer hardware replacing the operating
system thereby allowing the computer hardware to run
multiple guest operating systems concurrently. Sup-
port for x86, x86-64, Itanium, Power PC, and ARM

processors allow the Xen hypervisor to run on a wide
variety of computing devices and currently supports
Linux, NetBSD, FreeBSD, Solaris, Windows, and other
common operating systems as guests running on the
hypervisor.”[5]

A system running the Xen hypervisor contains three
components:

1. Xen Hypervisor

2. Domain 0, the Privileged Domain (Dom0) – Priv-
ileged guest running on the hypervisor with direct
hardware access and guest management responsi-
bilities

3. Domain U, Unprivileged Domain Guests (DomU)
– Unprivileged guests running on the hypervisor.

Types of Virtualization in Xen:

1.1 Paravirtualization

A term used to describe a virtualization technique that
allows the operating system to be aware that it is running
on a hypervisor instead of base hardware. In this type of
virtualization, the operating system is modified in a way
that it has direct access to a subset of hardware.

1.2 Hardware Virtual Machine (HVM)

A term used to describe an unmodified operating sys-
tem that is running in a virtualized environment and is
unaware that it is not running directly on the hardware.
Special hardware support is required in this type of vir-
tualization i.e. Intel-VT or AMD-V.

• 7 •

8 • X-XEN : Huge Page Support in Xen

Figure 1: Huge Pages

Figure 2: Register bits.

2 Huge Pages

Huge pages (Figure 1) are memory pages of size
2MB/4MB depending upon the bits PAE and PSE in
CR4 register and PS bit (Figure 2) in the page directory
entry.

These bits can be set or cleared using specific instruc-
tions in kernel code. The bits table shown above depicts
the various page sizes supported according to the bits set
or cleared. Huge pages can be reserved in Linux kernel
by giving boot time parameter (hugepages) option or
by executing following command:

echo n > /proc/sys/vm/nr_hugepages
cat /proc/meminfo | grep Huge

3 Problem with huge pages in virtualized envi-
ronment

When the paravirtualized kernel is compiled with
CONFIG_HUGETLB_PAGE, support for HugeTLBfs is
enabled. Now when the request for hugepage reserva-
tion is made to the kernel, it reserves appropriate PFN
range.

Problem 1: This contiguous PFN range might not corre-
spond to a contiguous MFN range. When an application
allocates a hugepage, the kernel makes the reservation,
but when the application tries to access this hugepage,
the kernel crashes. The reason for this crash is the MFN
corresponding to first PFN of the allocated hugepage
range is now treated as contiguous hugepage by the ar-
chitecture. But the next MFN may not even belong to
the domain itself, hence the kernel crashes.

Problem 2: Consider the case when the allocated con-
tiguous PFN range corresponds to contiguous MFN
range. Even then the first MFN may not be aligned to a
2MB boundary. In this scenario also the kernel crashes.

Hence, the prerequisites for hugepage allocation in vir-
tualized environment are that allocated hugepages must
be contiguous, and must be 2MB aligned in both the
kernel address space (virtualized PFNs) and the hyper-
visor’s address space (MFN).

4 Motivation

Huge pages are used by various applications such as
JVM, Oracle, MySql for performance improvement.
These applications use mmap system call for huge page
allocation from huge page pool.

As the applications and data grow larger and larger, the
need of huge pages (HugeTLB) increases. The database
service providers have their databases deployed on ded-
icated servers where they utilize hugepage support for
improvement in performance. When these providers
now want to host these dedicated servers on the Xen
based cloud, there is a need to provide huge page sup-
port in the virtualized environment such that it will
be able to utilize the performance improvement of
HugeTLB.

2011 Linux Symposium • 9

5 Earlier work

Solution of this problem was previously attempted by
Dave McCraken. In that implementation there is a flag
named superpages in the config file specified for DomU.
If this particular flag is set to 1 in the config file, then
during domain creation all allocations are aligned on
2MB boundaries and in 2MB chunks (i.e. 512 MFNs).
Hence, the prerequisite for the domain creation in this
case is that hugepages (or 2MB contiguous chunks)
equivalent to the amount of domain’s memory (mem-
ory/2) should be available with Xen’s buddy allocator.
If these chunks are not available then the domain de-
nies booting. After the domain has booted and begins
using memory, then due to pre-existing fragmentation
problem the amount of contiguous PFNs required for
hugepage allocation may not be available with the do-
mains.

6 Innovation

In the server environment, when the database servers
must handle large amount of data and users, they are
usually hosted on the dedicated servers. To get the per-
formance benefits they use hugepages instead of nor-
mal 4kB pages. When these dedicated servers are to be
moved to Xen based cloud environment, that is where
our design to solve the problem fits in. In our imple-
mentation we allow to specify the number of hugepages
that will be required. When the domain is created, the
appropriate MFN and PFN ranges for hugepage alloca-
tion are reserved. This implementation ensures that once
the domain has booted it will always get that specified
number of hugepages. The implementation will be fur-
ther elaborated in Section 7.

7 Implementation

Our implementation works in three phases. In the first
phase we reserve the MFNs for hugepage allocation
from the Xen’s allocator. In the second phase we re-
serve equivalent PFN range in the kernel for hugepage
allocation. The third phase occurs when the request for
hugepage reservation for the applications is made by the
kernel. These three phases are further elaborated below.

Figure 3: Solution.

7.1 Domain Creation

In our implementation we added a parameter
hugepage_num which is specified in the config
file of the DomU. It is the number of hugepages
that the guest is guaranteed to receive when the
kernel asks for hugepage using its boot time
parameter or reserving after booting (eg. using
echo XX > /proc/sys/vm/nr_hugepages).

We have introduced two variables in the domain’s
structure in the Xen hypervisor: hugepage_num
is an integer which eventually stores the number of
hugepages mentioned in the config file of the domain,
and hugepage_list stores the MFNs of the pages to
reserve for the domain. When the domain is being cre-
ated, the number of hugepages is stored in the variable
hugepage_num, and then calls to Xen’s allocator for
2MB chunks (order 9) are made. The resulting MFNs
are added to hugepage_list.

struct domain {
:
//Storing MFN list
struct page_list_head hugepage_list;
//Number of hugepages
unsigned int hugepage_num;
:

} d;

10 • X-XEN : Huge Page Support in Xen

Figure 4: Domain Creation

Figure 5: Domain Booting

7.2 Domain Booting

When the domain is booting, the memory seen by the
kernel is reduced by the amount required for hugepages.
The kernel then makes a hypercall to Xen to get
the count of hugepages. Xen takes the count from
hugepage_num and returns it to the kernel. The
kernel now increments xen_extra_mem_start by
the amount equivalent to the count of hugepages i.e.
count * 2MB. This is required so that the function-
ing of ballooning driver is not hampered by our imple-
mentation. Now the kernel adds these PFNs (at 2MB in-
tervals) in the xen_hugepfn_list which is a newly
introduced variable in the kernel. Hence, the PFN range
is reserved in the kernel for hugepage allocation.

Figure 6: Demand Supply

7.3 Hugepage reservation Request

When a request for hugepage is made by using boot time
parameter or reserving after booting (eg. Using echo

XX > /proc/sys/vm/nr_hugepages), the kernel
makes a hypercall to allocate hugepage. The hypervisor
then removes one MFN from hugepage_list in the
domain’s structure and returns it to the kernel. The ker-
nel removes one PFN from xen_hugepfn_list in
the kernel. Then it maps 512 MFNs to the correspond-
ing PFNs beginning from the PFN and MFN just retried.
This process is repeated for the number of hugepages
requested by the kernel. Hence, all the requirements for
hugepage allocation are satisfied i.e. the hugepages are
contiguous and 2MB aligned on both kernel (PFN) and
hypervisor (MFN) side.

8 Performance

The performance of huge pages was measured by allo-
cating different memory sizes as shown in Figures 7 and
8. Memory was allocated using mmap function call and
flag MAP_HUGETLB was passed in the argument.

9 Constraints

1. Existing live migration techniques need to be mod-
ified to support huge page migration.

2. Our implementation may not support 1GB super
pages.

2011 Linux Symposium • 11

Figure 7: X-axis: Buffer Length & Y-Axis: Time re-
quired (Thread =4)

Figure 8: X-axis: Buffer Length & Y-Axis: Time re-
quired (Thread =6)

References

[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, Andrew Warfield. Xen and the art of virtual-
ization. In Proceedings of the nineteenth ACM sym-
posium on Operating systems principles, 2003.

[2] Abhishek Nayani, Mel Gorman & Ro-
drigo. Memory Management in Linux.
http://www.ecsl.cs.sunysb.edu/
elibrary/linux/mm/mm.pdf

[3] Tim Deegan, CITRIX Systems. Mem-
ory management in (x86) Xen. http:
//www.slideshare.net/xen_com_mgr/
xen-memory-management

[4] Andrés Krapf. XEN Memory Management (In-
tel IA-32). http://www-sop.inria.fr/
everest/personnel/Andres.Krapf/
docs/xen-mm.pdf

[5] http://www.xen.org/files/
Marketing/WhatisXen.pdf

12 • X-XEN : Huge Page Support in Xen

NPTL Optimization for Lightweight Embedded Devices
2011 Linux Symposium

Geunsik Lim
Samsung Electronics

geunsik.lim@samsung.com

Hyun-Jin Choi
Samsung Electronics

hj89.choi@samsung.com

Sang-Bum Suh
Samsung Electronics

sbuk.suh@samsung.com

Abstract

One of the main changes included in the current Linux
kernel is that, Linux thread model is transferred from
LinuxThread to NPTL[10] for scalability and high per-
formance. Each thread of user-space allocates one
thread (1:1 mapping model) as a kernel for each thread’s
fast creation and termination. The management and
scheduling of each thread within a single process is to
take advantage of a multiple processor hardware. The
direct management by the kernel thread can be sched-
uled by each thread. Each thread in a multi-processor
system will be able to run simultaneously on a different
CPU. In addition, the system service while blocked will
not be delayed. In other words, even if one thread calls
blocking a system call, another thread is not blocked.

However, NPTL made features on Linux 2.6 to opti-
mize a server and a desktop against Linux 2.4 dramat-
ically. However, embedded systems are extremely lim-
ited on physical resources of the CPU and Memory such
as DTV, Mobile phone. Some absences of effective and
suitable features for embedded environments needs to
be improved to NPTL. For example, the thread’s stack
size, enforced / arbitrary thread priority manipulation in
non-preemptive kernel, thread naming to interpret their
essential role, and so on.

In this paper, a lightweight NPTL (Native POSIX
Threads Library) that runs effectively on embedded sys-
tems, for the purpose of a way to optimize is described.

1 Introduction

Generally speaking, most existing embedded environ-
ments have been designed and developed for specific
purposes, such as Mobile phone, Camcorder, DTV.
However, in order to satisfy customer’s diverse needs,

recent embedded products are required to become
smarter.

Many customers want to efficiently use embedded prod-
ucts in their life. To fulfill these needs, most embedded
products offer their own app-stores. Customers down-
load from these app-stores and install programs they
need in their daily life. With the appearance of these
app-stores, the number of applications for embedded
products is dramatically increasing.

In mobile environments, where CPU and memory[12]
resources are limited compared to desktop or server en-
vironments, the increase of applications make it more
important to design and develop an efficient system
without any resource expansion.

The higher performance hardware incurs higher cost in
manufacturing; therefore, most companies prefer lower
cost hardware solutions if they can achieve safe and rea-
sonably fast run-time execution environment through ef-
ficient supports from underlying platform itself. Com-
panies equipped with these solutions will have a big ad-
vantage in business especially in terms of cost competi-
tiveness.

The performance and degree of integration of hardware
improves every year. However, designing and develop-
ing optimized software especially for lightweight em-
bedded environments is still a hard goal to achieve.
Recently, the number of processes or threads running
in user-space of Linux-based embedded products has
reached at least 200 and sometimes exceeds 700.

For comparison, Microsoft Windows 7 running in desk-
top environment with a high performance CPU and high
capacity memory, on average has more than 700 threads
created and managed. These processes and threads have
process condition cycles such as running and waiting de-
pending on the conditions given.

• 13 •

14 • NPTL Optimization for Lightweight Embedded Devices

Considering this, we may guess that the number of
processes or threads running in embedded products
with lower hardware specification is non-negligible, i.e.
large enough to require an efficient solution using mini-
mum memory footprint and achieving optimized perfor-
mance.

The NPTL 1:1 thread mapping model, which appeared
in Linux Kernel 2.6, dramatically improved the limits
of scalability and performance as compatered with the
existing LinuxThread. NPTL[1] [3] was originally pro-
vided as an alternative option for LinuxThread for com-
patibility, but with the popularity of NPTL model, recent
Linux distribution releases only support NPTL, which
obsoletes thepierce augments on the useless of NPTL
model.

The NPTL model adapted in released versions of De-
bian/Ubuntu, Fedora/RHEL, and openSUSE need im-
provements in order to support lightweight development
environments. This paper tackles this issue and pro-
poses many ways of achieving the improvements.

2 Thread stack size for embedded system

In implementing multi-programs through user-space
threads, the stack size of a single thread is directly pro-
portional to the maximum number of threads which a
developer can produce. When a thread is created, stacks
in shared memory region are allocated to the thread.

In general, the basic stack size in latest Linux distribu-
tions is 10 MB per thread. The stack size of a thread
has been increased from 2MB to 8MB and now 10MB
to avoid stack overflow problems at various Linux dis-
tributions such as Ubuntu, Fedora, openSUSE.

Due to low power management and cost competitive-
ness, most mobile embedded systems provide limited
physical resources. Moreover, the swap device, which
is normally used to overcome physical memory short-
age, is not supported in most embedded environments.

Therefore, in order to implement efficient applications,
developers should obey good thread programming styles
and find an optimal stack size for threaded applications.
In this way, we can implement an efficient and economic
system without additional hardware support.

Generally speaking, two main reasons of system panic
caused by user-space thread libraries are 1) OS bugs,

and 2) page segment fault error by abnormal program
operations. In application developers’ point of view, OS
bugs are difficult to control, but page segment fault er-
ror by abnormal program can be avoided through the
adjustment of stack size to the right size.

Other than memory expansion and swap space support,
there are three software approaches to solve system
problems effectively.

• Increase or decrease the available stack size with
ulimit

Check and adjust the stack size through ulimit
command in running shell. Adjustments made with
the ulimit command only affect the shell where the
ulimit command is given and its children. There-
fore, in order to alter the setting globally in the sys-
tem, the ulimit command should be executed at the
end of booting cycle (eg. /etc/rc.sysinit).

• Define individual stack size of a user-space thread
(pthread_attr_)

Thread attribute value that application developer
defined must be initialized by pthread_attr_init(),
when developer want to define a stack size using
POSIX standards for multi-thread programming.
Developers call pthread_attr_getstacksize() library
function to determine the stack size, and they can
dynamically control the stack size of a thread with
pthread_attr_setstacksize() library function. Stack
size may also be set when creating threads using
the pthread_create() library function.

• Establish appropriate stack size policy for all
threads in NPTL layer

Many application developers use
pthread_attr_getstacksize() with t_attr.__stacksize
variable which is defined differently for each
architecture internally. In the NPTL library,
t_attr.__stacksize variable takes the value assigned
to the thread’s stack size. If this value is not set, the
system set by default stack size ulimit command
brings.

Figure 1 shows the internal operation flow of user-space
thread created through any process under NPTL envi-
ronment. We have to decide the default stack size of
embedded system that want to select as a default stack
size value about all threads that are created in specified

2011 Linux Symposium • 15

pthread_attr_init

pthread_attr_setstacksize

pthread_create_1

pthread_create(tid,attr,*,*)

* Setting attribute properties of thread
before running of pthread_create function
by application programmer

pthread_create_2

allocate_stack()

create_thread()

Assign stack size

mmap system call

LWP1

do_clone()

thread structure
stack variables

ARCH_CLONE()

Task Data Structure
(Thread Data Info)

MM Data Structure
LWP3LWP2 LWP4

TID1 TID2 TID3 TID4

start_thread()

Application Interface
(POSIX Standards)

Middleware

Operating System

__clone()

CLONE_VM, CLONE_FS,
CLONE_FILE, CLONE_THREAD

atomic_increment

atomic_decrement

Ready or
Waiting

Running

Blocked

Terminated

* Get the stack size
from the attribute
if it is set

* Limitation of
stack size:
 >=16,384bytes

* Copy values from the
user-provided attributes.

* Setting of guardsize
and stacksize

Created

Figure 1: Internal operation flow of thread

embedded system. Through it, we can manage consis-
tent policy that adjust default stack size of thread at the
middleware level automatically.

Since most threads created under embedded environ-
ment run light operations, it is typical to use stack
sizes much less than the 10MB default used on servers.
Thread stack size of embedded application is less than
1MB in general. Considering the minimum memory
space of data structure for the creation of threads, Linux-
based embedded system needs the stack size of more
than 16,384 bytes per thread essentially. The stack size
of 16,384 bytes includes guard size of 4,096 bytes dur-
ing memory mapping practically. In other words, to pre-
vent stack overflow, deduction 4,096 bytes from stack
size by using pthread_attr_setstacksize() function is al-
located to memory space for guard size as below.

4003b000 1127K r-x-- /lib/libc-2.12.so
40139000 8K ----- /lib/libc-2.12.so
4013b000 20K rw--- /lib/libc-2.12.so
40140000 8K r---- /lib/libc-2.12.so
40142000 8K rw--- /lib/libc-2.12.so
40144000 8K rw--- [anon]
40146000 4K ----- [anon]
40147000 12K rwx-- [anon]

402bf000 4K ----- [anon]
402c0000 12K rwx-- [anon]
402c3000 4K ----- [anon]
402c4000 12K rwx-- [anon]
..... remainder omitted

To decide default stack size in embedded system, we
have to profile the distribution map of stack size that all
threads are utilizing in embedded system. Otherwise,
Run-time error may occur when application developer
try to use stack size at run-time after reduce stack size
of thread remarkably more than default stack size for
normal operation.

When application developers compile threaded applica-
tion source, they can compile entire source without any
error problems. However, a segmentation fault error can
occur when stack usage exceeds the size defined during
running ELF binary code compiled like above.

In contrast, if the application allocates too large stack
size for new thread using pthread_attr_setstacksize()
function, then new thread creation will sometimes fail.
As a result, system will return error code (number is 12)
for the call to run pthread_create() function, and there-
after will not be able to create more threads. There-
fore, in spite of Linux system different from uCLinux
can support improved Virtual memory Management, it
needs attention to allow a large stack size thoughtlessly
under embedded environment.

3 Thread naming

It is very hard to identify the purpose of each
thread when there hundreds of them in an embed-
ded system. Optimization of user-space functions and
SQA(Software Quality Assurance) is essential process
before mass production for product competitiveness and
reliability after complete entire development process us-
ing limited hardware resources.

If it is possible to monitor the purpose of individual
thread for hundreds of threads run in embedded system
at this time, we can improve development productivity
rapidly by finding the part of thread’s abnormal running
and debugging and optimizing it. It is possible to dis-
tinguish main role of relevant child threads using the
name of thread function set as the 3rd parameter dur-
ing pthread_create() function call. Alternatively, the ap-
plication developer may obtain a unique value for each

16 • NPTL Optimization for Lightweight Embedded Devices

thread with Thread Local Storage (TLS)[11] that is sup-
ported by CPU and cross-compiler. This value is used
for the purpose of identifying which thread runs a spec-
ified function at some point.

However it is difficult to know the unique purpose of
each thread executed by this method, when there are
hundreds of threads calling the same function by us-
ing pthread_create() function. If we expand and support
the “Thread Naming” interface at middleware layer, or
user-space thread model like NPTL, it would be easy to
understand the operational purpose of all threads in the
platform.

In a large scale project, many teams participate and co-
work to develop, and often cause bad effect by cre-
ating another task to check and understand the op-
erational purpose of threads created by other teams.
When several developers in each team produce thread
using additional support like pthread_set_naming_np()
and pthread_get_naming_np() for embedded system,
the team to improve performance can analyze the
detail information of all threads produced obviously
by defining the role of additional thread by using
pthread_set_naming_np() library call.

Table 1 below shows the sample output including the
role of threads. When threaded applications using GDB
(GNU Debugger) use named threads, system program-
mers can distinguish each other. Readability can be im-
proved by understanding the detail flow of thread to an-
alyze the purpose of creating, sleeping and finishing of
each thread.

4 Thread profiling

We can find the optimal time point for booting the sys-
tem by profiling the time interval between ahead thread
and back thread and CPU share of all threads created
before the initial GUI screen of embedded platform ap-
pears.

For example, when the share of CPU for specific region
is low during the system booting, we can maximize the
CPU usage and shorten the system boot time by sep-
arating independent functions as threads, and by mov-
ing some threads. If the generation of thread occurred
long after specific thread’s execution, Analyze CPU us-
age of thread executed for long time in detail. If CPU
usage were not high, the research for system optimiza-
tion would be possible. Despite high CPU usage during

embedded system booting, if relevant scheduling work
could be possible after initial screen appears, it would
be effective to run those threads after initial screen ap-
pearance.

Table 2 shows information like Stack Size, Guard Size,
Priority Value, Start Time, Time Gap which can be used
to optimize system boot time. Performance optimiza-
tion is possible by debugging internal operation infor-
mation of user-space functions and identifying naming
information of relevant threads because thread number
168 is executed almost for 1 second in the table below.

5 Extension of pthread_{set|get}_priority_np
interface

When Linux kernel based on 2.6 version uses system
call and library call, it consists of total 140 priorities
with normal priority level using nice value from -20 to
19 and real-time priority level from 0 ∼ 99. Low num-
ber have high priority in Linux kernel-space.

Normal priority is defined in the file of kernel/
sched.c and Linux kernel schedule this tasks with
O(1) scheduler or CFS scheduler (since 2.6.23)[4]. De-
pending on Linux kernel version, after allocate one nor-
mal priority between bitmap 100 and bitmap 139 about a
nice value between -20 and 19 by user-space application
developers.

User-space real-time support and a few challenges for
100% POSIX compliance was written in the section “8.
Remaining Challenges” in Native POSIX Threads Li-
brary for Linux[10] paper by Ulrich Drepper.

Infrastructure for POSIX compatible real-time support
for user-space was improved by adding features such
as Priority Queuing, Robust Mutex (RT_MUTEX)[8] and
Priority Inheritance[5] [7] [9] to Linux and Glibc.
This means application developer can realize real-time
threaded programming in user-space. Table 3 shows the
system call and library call for setting scheduling prior-
ity against the process/thread with normal priority and
the process/thread with real-time priority.

The scheduling priority of an already-running normal
priority thread can be changed by a system call like set-
priority(), nice().

In case of tasks having real-time priority value, there
are possible values for scheduling policy like SCHED_RR

2011 Linux Symposium • 17

STACK-ADDR PID TID Thread Naming Stack Size Memory(RSS)
(hex) (process) (thread) (thread’s role) (kbytes) (kbytes)

[0x40a1b460] [339] [342] Files Copy Extension 64 910
[0x40a2b460] [339] [343] LifeCycle Controller 64 4,211
[0x40a3b460] [339] [344] Micom Task 64 200
[0x40a4b460] [339] [345] Event Dispatcher 64 355
[0x40a5b460] [339] [346] Device Node Manager 64 305
[0x40a6b460] [339] [347] Micom Task Extension #1 64 200
[0x40aeb460] [339] [348] Media API 512 5,442
[0x412a8460] [339] [350] Message Event Handler 64 34
[0x41328460] [339] [351] Drawing Process 512 204
[0x41338460] [339] [352] FlashTimerTask 64 382
[0x41ac5460] [339] [353] UI Manager 512 566
[0x41ad5460] [339] [354] Multi IPI Recovery 64 705
[0x41267460] [339] [355] System Process 64 9,376
[0x41cbc460] [339] [356] MediaCaptureComponent 64 202
[0x41ccc460] [339] [357] MP4 MediaPlayer 512 7,109
[0x41cdc460] [339] [358] JPEG Component 64 153
[0x41cec460] [339] [359] Media Component 64 776
[0x41cfc460] [339] [360] Async I/O 64 371
[0x41cdc460] [339] [361] Video Output Component 64 2,221
[0x41cec460] [339] [362] Service Manager 64 460

- - ... below omission ... -

Table 1: Thread naming information of each user-space thread

(real-time round-robin policy), SCHED_FIFO (real-time
FIFO policy), SCHED_OTHER (for regular non-real-time
scheduling) and so on. The scheduling priority in user-
space can be set from 1 to 99 for real-time scheduling
policy. Therefore, the priority of normal non-real-time
threads is counted as 0.

Considered real-time property under embedded environ-
ment SCHED_RR seems ideal, SCHED_FIFO is more use-
ful to take advantage of performance practically because
simple policy is good for performance and effective for
management.

struct sched_param {
.
int sched_priority;
.

};

Table 4 shows number of gettid() system call according
to architecture.

Because the use of gettid() is CPU-architecture depen-
dent in Linux kernel 2.6, system call number varies dif-
ferent among CPU architectures. You may utilize get-
tid() system call with the following definition because
of non-implementation of gettid() in Linux system.

/* Using gettid syscall in user-space */
#define gettid() syscall(__NR_gettid)

We use gettid() instead of getpid() in NPTL thread
model to find out the unique number of thread executed
in the related function region to apply normal priority to
threads are created as nice value. The gettid() function
has to be made using syscall(__NR_gettid). And then,
the use of gettid() function is available to utilize gettid()
function by syscall(__NR_gettid) in the function of rel-
evant thread.

Above _syscall() function returns kernel-space thread id
that mapped about user-space thread id that is running
by calling include/asm-arm/unistd.h header
file. The gettid() system call is defined as follows in
the file kernel/timer.c.

18 • NPTL Optimization for Lightweight Embedded Devices

PID TID StackSZ GuardSZ Priority StartTime Time Gap
(process) (thread) (byte) (byte) (nice) (msec)

160 162 262,144 4,096 5 1792015420 195
160 163 262,144 4,096 0 1792015423 3
160 164 262,144 4,096 0 1792015551 128
160 165 262,144 4,096 5 1792015666 115
160 166 262,144 4,096 5 1792015668 2
160 167 262,144 4,096 5 1792015670 2
160 168 262,144 4,096 5 1792016634 977
160 169 262,144 4,096 10 1792016637 3
160 170 262,144 4,096 5 1792016781 144
160 171 262,144 4,096 5 1792016783 2
160 172 262,144 4,096 5 1792016786 3
160 173 262,144 4,096 5 1792016788 2
160 174 262,144 4,096 -5 1792016873 85
160 175 262,144 4,096 -5 1792016874 1
160 176 262,144 4,096 5 1792016876 2
160 177 262,144 4,096 5 1792016878 2
160 178 262,144 4,096 5 1792016880 2
160 179 262,144 4,096 5 1792016917 37
160 180 262,144 4,096 5 1792016920 3
160 181 262,144 4,096 5 1792016922 2
160 182 262,144 4,096 -15 1792016925 3
160 183 262,144 4,096 5 1792017258 333
160 184 262,144 4,096 5 1792017260 2
160 185 262,144 4,096 5 1792017262 2
160 186 262,144 4,096 0 1792017264 2
160 187 262,144 4,096 0 1792017266 2
160 188 262,144 4,096 5 1792017284 18

- - ... below omission ... - -

Table 2: Thread profiling result

/* gettid syscall details in Linux */
asmlinkage long sys_gettid(void){

return current->pid;
}

When you try to utilize gettid() system call using above
method, it is recommended to add thread library func-
tion including system calls after considering the im-
pact of embedded system’s performance because of
the cost of system calls. It is very useful to mea-
sure execution time, calls and errors for system calls of
thread library function to be added to know the cost of
CPU usage. The file arch/arm/kernel/call.S of
the ARM Architecture defines sys_set_thread_aread()
as sys_ni_syscall (224) and sys_get_thread_area as

sys_ni_syscall (225).

Maintenance of source code of large scale project can
be simplified by avoiding having many different func-
tions preferred by developer in embedded platform. In-
stead a uniform common interface can be obtained by
extending thread function of pthread_set_priority_np()
or pthread_get_priority_np() additionally for the appli-
cation developer to get ID value of a thread easily.

POSIX compatibility is very important in the view of
standardization, but considering the characteristics of
embedded platform, when we need additional thread
API, application developers are able to know the ex-
tended thread API by making the name of function with
the format of _np() to express "Non Portable" meaning

2011 Linux Symposium • 19

Scheduling PID/TID Function Name Call Interface LinuxThread NPTL
Priority (API) (classification) (interface) (interface)

Normal priority
Process

setpriority()
System call getpid() gettid()

nice()
(from -20 to 19)

Thread
setpriority()

System call getpid() gettid()
nice()

real-time priority
Process

sched_setscheduler()
System call getpid() gettid()

sched_setparam()
(from 1 to 99)

Thread
pthread_setschedprio()

Library call getpid() gettid()
pthread_setschedparam()

Table 3: LinuxThread VS. NPTL scheduling system call comparison

Architecture File name gettid()
syscall number

i386
./arch/i386/kernel/entry.S

224
./arch/x86/kernel/syscall_table_32.S

ARM ./arch/arm/kernel/call.S 224

MIPS
./arch/mips/kernel/scall32-o32.S

4,222
./arch/mips/kernel/scall64-932.S

PPC ./arch/ppc/kernel/misc.S 207
SH ./arch/sh/kernel/entry.S 224

Table 4: The number of gettid() per CPU architecture

in the end of function.

In addition, the extension of these additional common
interface and unified programming specification main-
tain consistently application interface management of
embedded system that is extended the scale of platform
more and more. We can continue software update easily
and rapidly for new features while preserving without
modifying existing code.

6 Controlling CPU scheduling of
{self|another} thread

By increasing the speed of user’s application under em-
bedded system environment at specific time, users often
want to get shorten application’s waiting time. The sup-
port of these mechanisms raise the flexibility of schedul-
ing priority for CPU usage when threads need higher
CPU usage at specific time. Effective throughput of ap-
plications are possible by grouping thread applications
based on the importance of processing speed and re-
sponse speed in embedded system having limited CPU
performance.

When new threads according to Task scheduling impor-
tance hierarchy are created, we need the thread dealing
mechanism to realize the way to give suitable schedul-
ing priority value of thread. Table 5 shows explanation
about task classification and task meaning according to
the Task scheduling importance hierarchy table.

We can minimize user’s waiting time for embed-
ded devices by self-adjusting a thread’s scheduling
priority at specific time, or by changing another
thread’s normal priority at run-time dynamically with
pthread_setschedparam() library call in Linux 2.6 based
NPTL environment.

Improvement is important, keeping POSIX compatibil-
ity with additional thread APIs to give different priority
to many threads produced in one process. This means
that reuse of the existing source is possible continually.

The pseudo code below shows the implementation of
NPTL Library to control scheduling priority arbitrarily
or by force for user-space threads based on normal pri-
ority that are created on non-preemptive Linux kernel
2.6.

20 • NPTL Optimization for Lightweight Embedded Devices

Hierarchy of
Description

scheduling priority
Busy Task Busy task means the threads in the top of screen
(Urgent) which interact with user

or which occupy CPU usage under processing CPU.
Foreground Task Foreground task is thread that appear in the screen

(Normal) of user’s embedded device but doesn’t have activity
to be processed immediately.

Service Task Service task is middleware level component which supply
(Support) important functions for processing of application and

thread that occupies service of system.
Background Task Background task is thread that occupies activity not

(Hidden) visible to user.
Idle Task Idle task is thread that doesn’t occupy component of

(Unlimited) any active application in embedded system.

Table 5: Task scheduling importance hierarchy

int __pthread_setschedparam(tid,
policy, param)

pthread_t tid;
int policy;
const struct sched_param *param;

{
/* To support priority,if use SCHED_FIFO,

* SCHED_RR,display notification message

* (@/usr/include/linux/sched.h) */

/* Default value is a normal priority */
struct pthread *pd=(struct pthread *)tid;

if (policy == SCHED_OTHER){
/* Scheduling priority of thread */
int which = PRIO_PROCESS ;

/* Handling of SCHED_OTHER priority */
if (param->sched_priority < -20 &&

param->sched_priority > 19){
printf("ERR! Nice range:-20~19\n");
return errno;

}
/* Getting LWP(thread id of kernel) to

* change scheduling priority about

* assigned thread id.

*/
if (setpriority(which,unique_kernel_tid(),

param->sched_priority)){
perror("setpriority() Error.\n");
result = errno;

}

Mentioned above, after improving scheduling-related

thread function of NPTL library, the way described be-
low can control thread application’s scheduling actively
to apply different scheduling priority to many threads
which are created in one process in embedded system.

/*
* @Description: arbitrarily & by force

* thread scheduling for urgent threads

* @thread variables:(pthread_t thread[max])

* If you want to affect priority about each

* thread in a process in Linux 2.6 + NPTL,

* We recommend that you use SCHED_OTHER

* policy based on priority scheduling.

* Or,If you need time critical performance

* about threads, use real-time SCHED_RR

* using pthread_setschedparam() syscall.

*/

struct sched_param schedp;
/* priority number of between -20~19. */
int priority = -20 ;
memset(&schedp, 0, sizeof(schedp));
schedp.sched_priority = priority;

/* for controlling self thread */
pthread_setschedparam(pthread_self(),
SCHED_OTHER, &schedp)

/* for controlling another thread */
pthread_setschedparam(thread[i],
SCHED_OTHER, &schedp)

2011 Linux Symposium • 21

7 Optimization: configurability and building
with -Os

Glibc library[6] including NPTL has a lot of features.
However embedded system do not need all features of
glibc library. For this reason, it takes compilation time
of more than 40 minutes to build the entire glibc source
on average at the high-end Linux development computer
(e.g: Intel Core2 Quad 9400, RAM 2GB).

We can consider how to compile entire glibc source with
same configuration structure and build process like the
compilation of Linux kernel. By doing so, we can com-
pile only the necessary software components among a
lot of components of glibc source for embedded sys-
tem. How to compile this method can be modular as
a functional unit reduce a long compilation time at soft-
ware development step. Through this method, we do not
select a unnecessary shared object libraries (e.g: NSS,
NIS, DNS, CIDN, Locales, Segfault, Crypt, NSS, Re-
solv, etc) for lightweight rootFS. As a result, hard disk
space and memory footprint can be minimized through
configurable build method.

If you try to compile glibc sources with -Os option
without -O2 through gcc compiler’s optimization option
interface[2] at the configurable build system menu of
NPTL library, shared object binary files can be mini-
mized to fit in the embedded system environment.

Without any optimization option, the compiler’s goal is
to reduce the cost of compilation and to make debugging
produce the expected results. Turning on optimization
flags makes the compiler attempt to improve the perfor-
mance and/or code size at the expense of compilation
time and possibly the ability to debug the program.

• -Os: Optimize for size. -Os enables all -O2 opti-
mization that do not typically increase code size. It
also performs further optimization designed to re-
duce code size.

• -O0: Reduce compilation time and make debug-
ging produce the expected results. This is the de-
fault.

• -O1: Optimize. Optimizing compilation takes
somewhat more time, and a lot more memory for
a large function. With -O, the compiler tries to
reduce code size and execution time, without per-
forming any optimization that take a great deal of
compilation time.

• -O2: Optimize even more. GCC performs nearly
all supported optimization that do not involve a
space-speed trade-off. As compared to -O, this op-
tion increases both compilation time and the per-
formance of the generated code.

• -O3: Optimize yet more. -O3 turns on all opti-
mization specified by -O2 and also turns on the
-finline-functions, -funswitch-loops, -fpredictive-
commoning, -fgcse-after-reload, -ftree-vectorize
and -fipa-cp-clone options.

8 Further work

Two issues of the current approach need to be addressed
for future research direction. First, the performance gain
issues of the CFS scheduler-based embedded Linux sys-
tem, and second, the performance trade off issues when
there are tasks with real-time priorities.

At latest version of the Linux kernel, the existing O(1)
scheduler was replaced by the CFS scheduler[4] in or-
der to maximize fairness of running tasks. This replace-
ment was applied after 2.6.23 version. Our proposed
approach shows some performance issues in evaluating
application responsiveness at the CFS scheduler-based
embedded Linux system.

For example, the time slot gap generated by our ap-
proach in the CFS scheduler is usually smaller than that
of O(1) scheduler. This results not much performance
gain in the CFS scheduler. CFS scheduler merged in
Linux 2.6.23 by Ingo Molnar is that nice value entered
by the application developer was replaced from time
slice table to weight table. This is possible through
vruntime (virtual run-time) which schedules tasks fairly.
If two nice values produce a small gap like 0, instead of
a large gap like 10, it is not easy to produce any perfor-
mance gain. Therefore, we need a new approach for task
scheduling policy which produces a wide gap for better
performance gain even in the CFS scheduler-based em-
bedded Linux system.

Second, the proposed approach doesn’t consider cases
when some tasks have real-time priorities. Any task
with real-time priority share CPU time with others, so
we need to find a preemptive way to replace these tasks
with more emergent tasks.

22 • NPTL Optimization for Lightweight Embedded Devices

9 Conclusions

We have shown through examples that current NPTL
thread model, which was introduced in Linux 2.6 for im-
provements of performance and scalability, has several
limitations. These limitations sometimes cause users to
wait several seconds tediously after they launch an ap-
plication downloaded from app-stores.

In general, the nature of embedded system environment
has physical conditions with limited CPU and memory.
Therefore, the existing embedded systems using NPTL
are needed to improve by operating lightly and speedily
with the best technical methods.

We introduced several approaches of improving the cur-
rent NPTL thread model: a suitable thread stack size for
embedded environments, thread naming interface ex-
pansion for optimization, supports of thread profiling
and debugging components to minimize the boot time
of embedded platform, a thread priority management
method according to scheduling importance of thread
application, an arbitrary or enforced thread scheduling
control policy to speed up user application processing,
selective source compile methods using modular config-
uration structure for minimizing memory footprint, etc.

We also have shown that the improved NPTL thread
model has better performance and fewer memory foot-
print compared to the current model.

Our results confirm that the existing NPTL thread model
in Linux can be utilized in embedded system through the
several improvement features. This provides cost effec-
tive development opportunity for embedded developers
to start developing thread models for embedded systems
through existing open source like Linux.

10 Acknowledgments

We would like to thank Wonsuk Lee for his valuable
reviews and comments. We would like to thank my
Samsung colleagues KyungIm Jung and Jae-Min Ryu
for some suggestions and review of the article. We’d
also like to thank all those members of the Linux kernel
development community who have contributed patches.

References

[1] Sebastien DECUGIS. Nptl stabilization
project(nptl tests and trace). In Ottawa Linux
Symposium, 2005.

[2] Free Software Foundation(FSF). GCC Online
Manual(Options that control optimization).
http://gcc.gnu.org/onlinedocs/
gcc/Optimize-Options.html#
Optimize-Options.

[3] Steven J. Hill. Native posix threads library (nptl)
support for uclibc. In Ottawa Linux Symposium,
2006.

[4] Ingo Molnar. CFS Scheduler Design.
http://people.redhat.com/mingo/
cfs-scheduler/sched-design-CFS.
txt.

[5] Ingo Molnar. PI-futex.
http://lwn.net/Articles/102216/.

[6] Roland McGrath. GNU C Library(Glibc).
http://www.gnu.org/software/libc/.

[7] Rusty Russell. Fast userlevel locking in linux. In
Ottawa Linux Symposium, 2002.

[8] Steven Rostedt. RT-mutex subsystem with PI
support. Linux kernel documentation:
kernel/Documentation/{rt-mutex.
txt|rt-mutex-design.txt}.

[9] Ulrich Drepper. Futexes Are Tricky. http://
www.akkadia.org/drepper/futex.pdf.

[10] Ulrich Drepper. Native Posix Thread Library for
Linux. http://people.redhat.com/
drepper/nptl-design.pdf.

[11] Ulrich Drepper. [TLS]ELF Handler For
Thread-Local Storage. http://people.
redhat.com/drepper/tls.pdf.

[12] Ulrich Drepper. What Every Programmer Should
Know About Memory. http://www.
akkadia.org/drepper/cpumemory.pdf.

Analysis of Disk Access Patterns on File Systems
for Content Addressable Storage

Kuniyasu Suzaki, Kengo Iijima, Toshiki Yagi, and Cyrille Artho
National Institute of Advanced Industrial Science and Technology

{ k.suzaki | k-iijima | yagi-toshiki | c.artho } @aist.go.jp

Abstract

CAS (Content Addressable Storage) is virtual disk with
deduplication, which merges same-content chunks and
reduces the consumption of physical storage. The per-
formance of CAS depends on the allocation strategy of
the individual file system and its access patterns (size,
frequency, and locality of reference) since the effect of
merging depends on the size of a chunk (access unit)
used in deduplication.

We propose a method to evaluate the affinity be-
tween file system and CAS, which compares the degree
of deduplication by storing many same-contents files
throughout a file system. The results show the affinity
and semantic gap between the file systems (ext3, ext4,
XFS, JFS, ReiserFS (they are bootable file systems),
NILFS, btrfs, FAT32 and NTFS, and CAS.

We also measured disk accesses through five bootable
file systems at installation (Ubuntu 10.10) and at boot
time, and found a variety of access patterns, even if same
contents were installed. The results indicate that the five
file systems allocate data scattered from a macroscopic
view, but keep block contiguity for data from a micro-
scopic view.

1 Introduction

Content Addressable Storage (CAS) is becoming a pop-
ular method to manage virtual disks for many instances
of virtual machines [2, 6]. In CAS systems, data is man-
aged in chunks, and it is addressed not by its physical
location but by a name derived from the content of that
data (usually a secure hash is used as a unique name). A
CAS system can reduce the use of physical disk space
by deduplication, which merges same-content chunks
with a unique name.

CAS provides a universal virtual block device and ac-
cepts any file system on it. The performance depends on
data allocations and their access patterns through the file
system, because each file system has techniques to op-
timize space usage and I/O performance. The optimiza-
tions include data alignment, contiguous allocation, disk
prefetching, lazy evaluation, and so on. These factors
make the file system a key factor for the performance of
CAS.

From the view of the disk, a file system works as a
“filter” to allocate data. Even if the same contents are
saved, access patterns differ between file systems. Espe-
cially Linux has many file systems, because Linux sup-
ports a wide variety of targets, from mobile devices to
super computers. In this paper, we propose a method to
evaluate the affinity between file system and CAS. The
method evaluates the effect of deduplication when many
same-content files are stored throughout a file system.

We also analyze the real behavior of bootable file sys-
tems on CAS. We measure access patterns at installation
(write-centric processing) and boot time (read-centric
processing). From the results, we investigate the affinity
between file system and CAS behavior.

This paper is organized as follows. Section 2 reviews
features of CAS systems and Section 3 describes fea-
tures of Linux file systems. Section 4 proposes the
method to measure the affinity between file system and
CAS. Section 5 report the results, the affinity and real
behavior at installation and boot time. Section 6 dis-
cusses future works. Section 7 summarizes our conclu-
sions.

2 Content Addressable Storage

This section describes features of CAS (Content Ad-
dressable Storage) systems. A pioneering CAS system

• 23 •

24 • Analysis of Disk Access Patterns on File Systems for Content Addressable Storage

Figure 1: Virtual disk managed by CAS system.

is Venti developed for the Plan9 data archive [9]. Venti
is a block storage system in which chunks are identified
by a collision-resistant cryptographic hash.

Figure 1 shows a virtual disk managed by CAS. The vir-
tual disk is divided by chunk for each region. Each
chunk is named by its hash-value, and stored in a
database of the CAS system. The chunks are man-
aged by the mapping table, which translates from ad-
dress to hash-value. If the contents of chunks are the
same, the hash-value is same and the CAS system can
reduce its storage space consumption. A chunk is also
self-verifying with its hash digest and can keep data in-
tegrity.

In this paper we use LBCAS (LoopBack Contents Ad-
dressable CAS) version 2 [11, 12]. LBCAS offers a
loopback block file (virtual disk) which is managed by
FUSE (Filesystem in Userspace) [1]. Chunk data is cre-
ated when a write access is issued to the virtual disk.
The chunks are stored in a Berkeley DB [8] and man-
aged by their SHA-1 hash-value. The size of a chunk
is defined by the configuration (32 KB – 512 KB). The
driver of LBCAS has a memory cache for 32 chunks.
When a chunk overflows from the cache, the data is writ-
ten to the Berkeley DB.

3 File Systems

Many file systems are developed for Linux, and each of
them has its own advantages. In this paper, we treat 9 file
systems: ext3, ext4, XFS, JFS, ReiserFS, NILFS, btrfs,
FAT32 and NTFS. Unfortunately, not all of them can be
used a root file system, because boot loader and installer
have to recognize them. We used five file systems (ext3,
ext4, XFS, JFS, ReiserFS) to investigate the behavior at
installation and boot time.

3.1 Linux File Systems

This section describes the features of 9 file systems used
in this paper.

Ext3 is the default file system on many Linux distribu-
tions. It extends ext2 with journaling. ext3 keeps com-
patibility with ext2, including some limitations, such as
no extent allocation, no dynamic allocation of i-nodes,
etc.

Ext4 [7] succeeds ext3 and extends it with extent allo-
cation and delayed allocation. Extent allocation keeps
contiguous physical blocks for a file and reduces frag-
mentation. Delayed allocation is a technique to reduce
file fragmentation, which is also used by XFS.

JFS is a 64-bit journaling file system originally cre-
ated by IBM for AIX. JFS uses a B+ tree to accelerate
lookups in directories. JFS dynamically allocates space
for i-nodes as necessary. JFS increases disk I/O perfor-
mance by using allocation groups and extent allocation.
An allocation group is a sub-volume in a file system that
keeps track of free blocks and file data on its own. JFS
contains effective methods to use allocation groups.

XFS is a high-performance journaling file system orig-
inally created by Silicon Graphics. XFS increases disk
I/O performance by using allocation groups, extent allo-
cation, delayed allocation, and variable block size. Vari-
able block size allows XFS to be created with block
sizes ranging between 512 B and 64 KB, increasing I/O
bandwidth when large files are created. Delayed alloca-
tion makes it possible to allocate a contiguous group of
blocks, reducing fragmentation.

ReiserFS (version 3) is the first journaling file system to
be included in the standard Linux kernel. ReiserFS has
the tail packing optimization which allocates last partial
blocks of multiple files into a single block. The tech-
nique can reduce the internal fragmentation of files.

NILFS [4] is a stackable file system which is also called
log-structured file system. NILFS allocates data in suc-
cession from the top of a disk. The sequential write
achieves high I/O throughput on a real block device. The
data on the log-structured format are only appended and
never overwritten. In particular, a previous version of a
file can be retrieved in the file system.

Btrfs is a new file system which features copy-on-write.
Copy-on-write is used for creating a snapshot and for

2011 Linux Symposium • 25

Figure 2: Affinity evaluation between file system and CAS. The left figure shows bad allocation and the right figure
shows good allocation for CAS.

cloning. Btrfs has many new features which includes
extent allocation implemented on ext4.

FAT32 and NTFS are file systems for Windows. They
are not UNIX-style file systems and do not use i-nodes.
The data is managed by a unit called “cluster”, which
is a contiguous groups of hardware sectors. The orig-
inal development of FAT32 comes from floppy disks
and has simple structure. FAT32 manages the clusters
with an array, and does not perform well on large disks.
NTFS developed for WindowsNT and has several im-
provements over FAT, which includes extent allocation.
NTFS manage a file with the Master File Table (MFT)
containing meta-data about every file and directory. The
details of NTFS are not open, and the drivers for Linux
are developed in many ways. Currently most Linux dis-
tributions use the NTFS-3G driver.

3.2 Bootable File System

The boot loader has to recognize a file system in order
to load the kernel. The currently popular boot loader
GRUB recognizes some file systems. In order to analyze
the behavior at installation and boot time, we select five
popular file systems (ext3, ext4, XFS, JFS, and ReiserFS
version3) recognized by GRUB.

3.3 System Installation on a File System

Even if the same applications are installed on a file
system, the installer of a Linux distribution recognizes
the target file system, and customizes some files for it.

For example, the initial ram disk image “initrd” is cus-
tomized for a file system. A kernel and initrd are loaded
by GRUB from a file system at boot time, and the kernel
uses the configuration files to mount a file system on a
disk as the root file system.

The root file system has to include additional files to
maintain itself. Some of them are management tools for
the file system. Furthermore, each file system has spe-
cial features. For example ext3 and 4 file systems have a
lost+found directory to retrieve lost files, which other
file systems lack. However, the differences are small and
they are negligible for installation and booting.

4 Affinity between File System and CAS

File systems allocate data on a disk; in doing so, the act
as a filter. Each filter changes the location of data by its
own strategy. Depending on the location, the effect of
deduplication changes. We evaluate the difference from
the view of deduplication.

We develop a method to evaluate the affinity between
file system and CAS. The idea is simple. Ideally, even
if many same-content files are saved on CAS, the total
disk usage of CAS will be close to the size of one file,
because all files are deduplicated. Namely, the closer the
total disk usage is to the size of one file, the better the
allocation strategy for CAS.

For example, when 1,000 files with 1MB same-content
data are stored on a disk through a normal file system,
it will use 1,000 MB. However, if deduplication of CAS
works perfectly, the increase will amount to only 1MB.

26 • Analysis of Disk Access Patterns on File Systems for Content Addressable Storage

Figure 3: The increase of CAS space when 10,000 100 KB-files, 1,000 1,000 KB-files, 100 10,000 KB-files, 3,968
252 KB-files and 3,906 256 KB-files (which consume nominal 1GB) are stored on each file system (ext3, ext4, XFS,
JFS, ReiserFS, NILFS, btrfs, FAT32 and NTFS). The upper figure shows the results on 32 KB LBCAS and the lower
figure shows the results on 256 KB LBCAS. A small increase indicates good deduplication.

Figure 2 shows the image of the evaluation. The right
of Figure 2 shows poor allocation by a file system. At
that time, the locations of data are scattered and will not
deduplicated, except the non-used (zero-cleared by ini-
tialization) region. The left of Figure 2 shows good al-
location. The whole data is deduplicated and the con-
sumption of CAS is close to the size of the file.

The affinity comes from (1) Alignment matching, (2)
Contiguous allocation of data blocks, and (3) Non-
contamination with other data in a CAS chunk. If the
allocation strategy of a file system aligns data of a file at
the alignment of a CAS chunk, it increases the chance
of the file being deduplicated. Contiguous allocation of
data blocks is also important to fill a chunk with same-
content data. Non-contamination comes into play when
a chunk is not entirely filled up with contiguous allo-
cation of data blocks. At that time, the remainder of a
chunk should not be filled with other data. However,
some techniques pack data into a small empty region
and reduce the chance of data to be deduplicated. For
example, tail packing will contaminate a chunk.

The evaluation measures the affinity by determining the
total volume used by CAS. Unfortunately, this method-
ology is still simple, because it does not care of the vol-
ume management mechanism (for example, bitmap ta-
ble to manage free space) and meta-data which is used to
identify the locations of contents with file names. A vol-
ume management mechanism is fixed-size and the up-
date may be small and negligible. However, meta-data
is created for each file and the volume consumption of
meta-data is non-negligible when a file is small. On a
real evaluation we must care about the use of meta-data.

5 Affinity and Performance Evaluation

This section evaluates the affinity and performance be-
tween file system and CAS. The affinity of deduplica-
tion is described in section 5.1, and the real performance
of CAS on a file system is described in section 5.2.

2011 Linux Symposium • 27

5.1 Affinity evaluation between File System and
CAS

We measure the effect of deduplication, when many
same-content files are saved. We used random data as
contents, because they are not deduplicated with other
files. We tried to save 100 KB, 1,000 KB (1 MB),
10,000 KB (10 MB) random data files to fill 1 GB in
4 GB LBCAS system. Namely, 10,000 files for 100 KB,
1,000 files for 1 MB, 100 files for 10 MB were used.

The evaluation has to consider meta-data for each file.
We assume that a meta-data consists of 256 bytes for a
file. This means that the 10,000 files consume 256 KB
on disk for meta-data. The consumption of meta-data
is non-negligible when the deduplicated file is small.
For example, at the 100 KB case, 256 KB is used for
meta-data (256 B * 10,000) and the ideal consumption
of CAS is 356 KB (100 KB + 256 KB). We have to
care the increase. However, in the 1,000 KB case, the
total is 1,025.6 KB and at 10,000 KB case, the total is
10,002.56 KB.

We also tried to save 256 KB and 252 KB random data
files to check the suitable size for CAS deduplication.
If file system allocates the files in succession, 256 KB
(64 4 KB-file-system-blocks) files will fit to 256 KB
and 32 KB chunks many times. We assume a stack-
able file system corresponds to this case. When 252 KB
(63 4 KB-file-system-blocks) files are saved, 256 KB
chunks will each fit to 64 allocations. If a block (4KB) is
used between 2 contiguous files for meta-data or some-
thing, 252 KB data will also fit to 256 KB.

5.1.1 Experimental results

Figure 3 shows the increase of CAS when the files are
stored on 32 KB LBCAS and 256 KB LBCAS. The re-
sults are the average of three trials. They show the dif-
ferent effect of deduplication on each file system. When
the chunk size is larger than the size of test file, a file
does not fill a chunk, even if a file is allocated continu-
ously. At that time, a chunk is subject to contamination
by other data. For example, a 256 KB chunk is not filled
up with 100 KB, and 252 KB files. 256 KB file can
fill up a 256 KB chunk, but there is no big difference
between the 252 KB and 256 KB cases on any file sys-
tems.

Figure 4: Details on the increase of CAS described in
Figure 3. The maximum range is 35 MB. The figure
includes line which indicates ideal deduplication. The
upper figure shows the results on 32 KB LBCAS and
the lower figure shows the results on 256 KB LBCAS.
NTFS and ext3 are eliminated because they are out of
range. The results of 252 KB and 256 KB files are also
eliminated because we could not get alignment match-
ing cased by contiguous allocation of data blocks.

28 • Analysis of Disk Access Patterns on File Systems for Content Addressable Storage

Ext3 and NILFS show the worst results on 100 KB,
252 KB, and 256 KB files on 256 KB CAS. Their total
space usage reaches 1 GB, which means no deduplica-
tion. The results become better on 32 KB CAS, but they
are still worse than on the other file systems. The results
of ext3 and NILFS on 100 KB files are about 2.5 times
worse than for 252 KB and 256 KB on 32 KB CAS. We
guess the results come from the ease of contamination
when the chunk size is larger than a file. If a file is al-
located at a contiguous region, such as a stackable file
system, the chance to being contaminated is inversely
proportional to the size of file.

XFS and FAT32 show good results except for the 10 MB
file case on 256 KB CAS. We guess the data in a large
file is not allocated contiguously, which hampers dedu-
plication.

ReiserFS shows bad results on 256 KB CAS. We guess
it comes from tail packing, which contaminates a chunk.
256 KB chunks are large and the penalty of not to being
deduplicated has a big impact. ReiserFS also shows bad
results on the 10 MB file case on 256 KB CAS. This is
also caused by non-contiguous allocation for large files.

Figure 4 shows details of Figure 3, which limits the
maximum (35 MB), eliminates two file systems (ext3
and NILFS) and 2 trials (252 KB and 256 KB files), and
includes a line which indicates ideal deduplication. The
results indicate ext4, btrfs, and NTFS on 32 KB CAS
are close to the ideal case on any file size. They keep
three features; alignment matching, contiguous alloca-
tion of data blocks, and non-contamination with other
data. On 256 KB CAS, ext4 and btrfs show bad results
on 10,000 KB and 100,000 KB files, although they show
good results on 100 KB files. We guess ext4 and btrfs
cannot keep contiguous allocation of data blocks, and
suffer from contamination with other data on larger files.

5.1.2 Impact by chunk size

Figure 5 shows the ratio of consumption between 32 KB
and 256 KB CAS. The ratio indicates the improvement
by the smaller 32 KB chunk size. In the ideal case
the ratio is 8 times. It means 256 KB chunks are not
aligned or include slightly different data. For example,
JFS in the 100 KB file case reduces the space consump-
tion by 8 times on 32 KB CAS compared to 256 KB
CAS. From another view, small ratios indicate that there
is no improvement for small chunks when compared to

Figure 5: The ratio of space consumption on each file
system. It shows the improvement of 32 KB CAS from
256 KB CAS.

larger 256 KB chunks. At that time, the user should use
256 KB chunks because the mapping table of 256 KB
CAS is 8 times smaller than 32 KB CAS. For exam-
ple, ext4 and NTFS show that there is a little impact on
10 MB file case.

5.1.3 Future work

The experiments were tried on an initial disk image
which does not have fragmentation. We eliminate such
evaluations, because of it is not clear which metrics to
use to compare fragmented file systems, and we can-
not decide factors for deduplication. We recognize these
conditions to be important in real cases. Evaluations un-
der these conditions are our next challenge.

5.2 CAS performance at installation and at boot
time

We evaluated LBCAS performance at Linux installation
and at boot time. We installed Ubuntu 11.04 desktop
(Linux 2.6.38) on five file systems (ext3, ext4, XFS,
JFS, and ReiserFS) of 4 GB LBCAS on KVM [3] vir-
tual machine with 768 MB memory. KVM ran on a
ThinkPAD T400 with an Intel Core2 Duo processor with
2 GB of memory. We compared the effect of 32 KB
chunk and 256 KB chunk of LBCAS.

2011 Linux Symposium • 29

Figure 6: Access pattern at installation (left) and boot time (right) of Ubuntu on each file system. The X axis
indicates elapsed time and Y indicates the address of the disk access (4GB). The green “X” plots indicate write
accesses, and red “+” plots indicate read accesses. The file systems are ext3, ext4, JFS, XFS, and ReiserFS from top
to bottom.

30 • Analysis of Disk Access Patterns on File Systems for Content Addressable Storage

5.2.1 Access Trace at installation and boot time

Figure 6 shows the trace of access on each file system
at installation and boot time. The graphs indicate that
access patterns are different on each file system.

The left graphs show the installations. Most accesses
are write operations. The installation includes creating
the file system on CAS. The creation of a file system
is started after 50 sec. Before 50 sec, the installation
requires some preparations in memory.

The graphs show that the accesses of the five file sys-
tems are scattered in the 4 GB disk space. This prop-
erty remains the same even if the disk size is changed
to 2 GB or 8 GB. The results indicate that the five file
systems have different allocation strategies and allocate
data scattered from the macroscopic view of disk frag-
mentation.

The right graphs show booting. Booting is a read-centric
process, but there are write operations at the end of boot,
because several configuration files are updated. The ac-
cess distributions follow the written data at installation,
and there are no localities of reference from the macro-
scopic view.

5.2.2 Installation Time (Dynamic Feature)

Table 1 shows statistics of read and write accesses on
each file system at installation time. Installation is a
write-centric process and writes about 10 times as much
data as it reads.

The upper three rows show the accesses issued by file
system, access times, total volume of accesses, and the
average. The results show the ability of a file system.
Lower access times and fewer accesses are better. Ext4
shows the fewest access times and largest average access
on write operations. This result may be the effect of
delayed allocation, and it yields the fastest installation
time (Figure 6). JFS shows the smallest total volume
on write operations, but installation time is the worst,
because the number of accesses is large. A CAS system
is sensitive to access times, because the access unit is
the chunk size even if an access is only 1 bit. The boot
times of five file systems are almost proportional to the
write access times, and do not follow the total volumes.
Fewer accesses are better on a CAS system.

The lower four rows in Table 1 show the number of read
and write chunks of 32 KB and 256 KB size. Fewer
chunks are better. ReiserFS shows the best performance
on read and write, respectively, on both 32 KB and
256 KB chunks. This indicates ReiserFS is good at
locality of access, but accesses the same chunks many
times.

5.2.3 Disk Image of LBCAS (Static Feature)

Table 2 shows statistics of a static LBCAS disk image
with 32 KB and 256 KB chunks.

ReiserFS shows the fewest chunks, the smallest total
volume used by chunks, and the largest volume of zero-
cleared chunks on 32 KB and 256 KB chunks. The re-
sults of the number of chunks and total volume is about
10% less than other file systems, which might come
from tail packing to reduce disk consumption. This is
a good feature for a normal disk but it ruins the effect of
deduplication mentioned in Section 5.1.1.

The efficiency, which indicates the ratio of effective data
in a chunk, is more than 99% on all file systems using
32 KB chunks, although Figure 6 shows that data ac-
cesses look to be scattered. It shows that the allocation
strategies of the file systems pack data in small region.
However, the efficiencies of ext4 and XFS decrease to
less than 94% when using 256 KB chunks. These re-
sults indicate that ext4 and XFS allocate data discretely
for larger units. This feature suggests a suitable chunk
size of a file system.

On deduplication, ext4 is the best on 32 KB and 256 KB
chunks, which indicates that many same-content chunks
are created. We guess the effect comes from align-
ment matching, contiguous allocation of data blocks,
and non-contamination. This effect is predicted by the
results mentioned in Section 5.1.1 Figure 4. Currently
btrfs and NTFS are not bootable file systems and they
are out of scope on current experiments.

We compared the ratio of same chunks between 2 CAS
images which are installed same OS. Figure 7 shows
the image of comparison. The ratios are measured on
two types. One type is the ratio between 2 CAS images
of different file systems. The results indicate the affin-
ity between file systems from the view of CAS. It helps
the understanding the effect of mixture of CAS images
which has different file systems.

2011 Linux Symposium • 31

File system ext3 ext4 JFS XFS ReiserFS
read write read write read write read write read write

Access times 13,618 182,971 14,945 164,124 13,409 247,981 11,650 265,981 10,739 186,432
Total volume(MB) 385.6 3,808.2 413.3 3,745.1 393.3 3,194.8 385.4 4,740.6 327.0 3,946.4
Average (KB) 29.0 21.3 28.3 23.4 30.0 13.2 33.9 18.3 31.2 21.7
32KB LBCAS
Number of chunks 13,152 68,759 14,978 70,401 14,209 65,141 15,260 66,337 11,784 57,087
Total volume (MB) 411.0 2,148.7 468.1 2,200.0 444.0 2,035.7 476.9 2,073.0 368.3 1,784.0
256KB LBCAS
Number of chunks 2,314 8,684 2,712 9,222 2,687 8,207 2,839 8,499 2,066 7,170
Total volume (MB) 578.5 2,171 678.0 2,305.5 671.8 2,051.8 709.8 2,124.8 516.5 1,792.5

Table 1: Statistics of read/write accesses on each file system at installation time (dynamic feature). The bold figures
indicate the best performance.

File system ext3 ext4 JFS XFS ReiserFS
32 KB LBCAS

Number of chunks 67,157 67,819 64,770 65,415 56,671
Total volume (MB) 2,148.1 2,192.3 2,035.0 2,059.2 1,783.7

Zero-cleared chunk (MB) 1,947.9 1,903.7 2,061.0 2,036.8 2,312.3
Effectiveness (%) 99.88 99.93 99.90 99.99 99.94

Dedupication (Total MB / Unique MB) 49.47/8.75 73/19.16 10.94/3.75 15.03/7.06 12.69/5.44
256 KB LBCAS

Number of chunks 8,554 9,020 8,190 8,475 7,156
Total volume (MB) 2,169.8 2304.0 2,050.5 2,124.0 1,792.0

Zero-cleared chunk (MB) 1,926.3 1,792.0 2,045.5 1,972.0 2,304.0
Effectiveness (%) 98.40 93.13 99.12 92.10 99.47

Dedupication (Total MB / Unique MB) 31.25/2.0 49.0/8.25 3.0/1.75 5.25/1.75 3.0/0.5

Table 2: Statistics of a virtual disk for each file system (static feature). The row of effectiveness shows the ratio of
blocks of file system in a chunk. It shows coverage of effective region in a chunk. The row of deduplication shows
two data; total and unique. The total indicates the summation of same-content chunks. The unique indicates the
summation of merged chunks with deduplication. The bold figures indicate the best performance.

File system ext3 ext4 JFS XFS ReiserFS
read write read write read write read write read write

Access times 6,115 3,653 5,663 3,458 6,260 2,894 6,199 4,383 5,195 2,625
Total volume (MB) 209.7 39.7 228.0 40.7 198.1 17.2 216.8 22.7 187.7 27.2
Average (KB) 35.1 11.1 41.2 12.1 32.4 6.1 35.8 5.31 37.0 10.6
32 KB LBCAS
Number of chunks 8,065 1,491 8,548 1,522 8,130 1,204 8,507 1,094 7,402 1,295
Total volume (MB) 252.0 46.6 267.1 47.6 254.1 37.6 265.8 34.2 231.3 40.5
256KB LBCAS
Number of chunks 1,508 292 1,624 247 1,941 712 1,767 372 1,500 367
Total volume (MB) 377.0 73.0 406.0 61.8 485.3 178 441.7 93.0 375.0 91.8

Table 3: Statistics of read/write accesses on each file system at boot time (dynamic feature). The bold figures indicate
the best performance.

32 • Analysis of Disk Access Patterns on File Systems for Content Addressable Storage

Figure 7: Compare ratio of same chunks between 2 CAS
images which are installed same OS. The ratios are mea-
sured on 2 types. One type is the ratio between 2 CAS
images of different file systems. Another type is the ra-
tio between 2 CAS images which install same OS on
same file system at different time.

Another type of measurement is the ratio between 2
CAS images which install same OS on same file sys-
tem at different time. The results indicate the suitable
file systems which reduce consumption of physical re-
sources, when some users install same OS on the CAS
system with same file system.

Figure 8 shows the results. We measure the ratio on dif-
ferent chunk sizes from 4KB to 256KB, in order to know
the effect. The upper figure shows the ratio between
different file systems, which are illustrated in Figure 7
with solid lines. The results indicate that there are small
differences on any combination. It means there are not
strong affinities among the 5 file systems. The ratios
of same chunks depend on chunk size. On 4KB chunk
size, the ratio is very high from 80% to 90%, because
chunk size matches the block size of most file systems,
and most data blocks having the same contents will be
same. The most difference comes from meta-data and
file system management data, except ReiserFS which
has tail packing. Tail packing reduced the consumption
of storage 10% more than other file systems in Table 2.
Unfortunately, it was known to cause negative impact
on deduplication, because it contaminates a block for a
file. The effect was measured in a single CAS which
had many same files, mentioned in Section 5.1.1. How-
ever, the ratio of same chunks between 2 CAS images on
4KB chunk size is almost same to other file systems. It
means that tail packing assigned same fractions of files
in a block and keeps same chunk on different installa-

Figure 8: Ratio of same chunks between 2 CAS images
on different chunk size from 4KB to 256KB. The up-
per figure shows the ratio between different file systems.
The lower figure shows the ratio between different in-
stallations on same file system.

tion.

More than 8KB chunks show a ratio reduced inversely
proportional to chunk size. 8KB and 16KB chunk sizes
have 40% and 20% same chunks respectively on any
file systems. The results indicate it is difficult to get
same chunks between different file systems. It means
we should not use different file systems on CAS system.

The lower in Figure 8 of shows ratio of same chunks
between 2 CAS images which install same OS on same
file system at different time. The ratios also depend on
chunk size but the effects are different. Both jfs and
Reiser do not reduce the ratio inversely proportional to
chunk size. They keep high ratio of same chunk on
larger chunk sizes. Especially jfs and ReiserFS keep
50% same chunks on 256KB chunk size. The results
indicate that jfs, Reiser and ext4 allocate most files at
same addresses on an installation, but ext3 and xfs allo-
cate different addresses. We will investigate block allo-
cation repeatability in next challenge. The results means
we should use same file system on CAS system and the

2011 Linux Symposium • 33

file system is one of jfs or ReiserFS.

Figure 9 shows the statistics of installed files on ext3.
The upper figure indicates the number of files classified
by size, and lower figure indicates total volume occu-
pied by files classified by size. The number of files
shows the case on ext3 but the results on different file
systems are almost same. The lower figure is calculated
using a minimum unit of 4KB block and each file is
rounded up by 4KB. The calculation causes the big dif-
ference on ReiserFS case measured in Table 2, because
tail packing reduces the consumption.

The upper figure indicates 77.9% files are less than 4KB.
Less than 4KB file use only 1 block and do not affect
contiguous allocation of data blocks. The result implies
that we do not need to care about contiguous allocation,
but less than 4KB files use only 20.1% of the storage
showed in lower figure. The remaining portion, consist-
ing of files larger than 4KB, requires contiguous alloca-
tion in order to achieve high deduplication. The inves-
tigation of the relation of file size and deduplication is
not finished. We will continue the research.

5.2.4 Boot Time (Dynamic Feature)

Table 3 shows statistics of read and write accesses for
each file system at boot time. Boot is a read-centric pro-
cess and has about twice as many read than write opera-
tions. The table format is the same as Table 1.

From the view of disk accesses (upper three rows), Reis-
erFS and XFS are the best in read and write operations,
respectively. These features may be responsible for the
fastest boot time shown in Figure 6. The largest average
access size, however, occurs under ext4 for both opera-
tions. It might be a result of disk-prefetching contiguous
data blocks allocated by extent allocation.

The lowest number of chunks on 32 KB occurs on Reis-
erFS and XFS on read and write operations, respec-
tively. The lowest number of chunks on 256 KB oc-
curs on ReiserFS and ext4 on read and write operations,
respectively. The lowest number of read operations on
ReiserFS explains the fast boot time.

6 Discussions

In this paper we treat CAS, which offers block-level
deduplication, but there is another level of deduplica-
tion. We compare them in Section 6.1. The results in

Figure 9: Statistics of installed files on ext3. The upper
figure indicates the number of files classified by size,
and lower figure indicates total volume occupied by files
classified by size. Circular graphs show the percentage
of each items (total 100%).

Section 5.2 lead us the importance of optimization on
file system and CAS. We discuss two type of optimiza-
tion in Sections 6.2 and 6.3.

6.1 Deduplication on file system level

CAS offers block-level deduplication, but deduplication
is not limited to the block level. Deduplication can be
applied at the file system level, as implemented by lessfs
[5] and SDFS [10]. In this case, file system is limited to
the original one, and there is no affinity problem with
the file system.

File system deduplication means that file system in-
cludes the function of deduplication. It detects identical
content in files, and merges the same content at the file
system level. It does not care about block level restric-
tions. Namely, it does not care about block alignment
matching, contiguous allocation, and contamination by
other files.

34 • Analysis of Disk Access Patterns on File Systems for Content Addressable Storage

The evaluation we proposed in this paper is not applied
on file system deduplication, because all same-content
files are deduplicated perfectly. We already confirm the
effect of our evaluation method on lessfs and SDFS.
They deduplicate all files well. In order to evaluate file
system deduplication, we should use partially-similar-
content files. For example, we tried files in which 256-
bytes or 257-bytes of random data are repeated. The
case with 256-bytes is deduplicated well, but files con-
taining 257-bytes of repeated random data are not dedu-
plicated well on lessfs and SDFS. It means they offer
fixed-length deduplication. On fixed-length type, lo-
cation of same-content data in a file is very important.
Variable-length deduplication does not care about loca-
tion and deduplicates both files well, but requires more
comparison time.

File system deduplication has another disadvantage. A
file system which has deduplication is usually a pseudo
file system and is not usable as a bootable file system,
because it is not recognized by boot loader. An operat-
ing system on a virtual machine has to use a loop-back
file which is a pseudo block device, to install bootable
file system. Therefore the affinity problem between file
system on a virtual machine and loop-back file sup-
ported by file system deduplication will occur again.

6.2 FS Optimization for CAS

Boot time optimization for CAS is proposed in paper
[12]. It takes a trace of block accesses on ext3 and re-
allocates data blocks in the file system. The data blocks
in ext3 which are required to boot are arranged in line on
the disk. This increases the read-ahead coverage of ker-
nel prefetching. As a result, both the number of accesses
and the number of CAS chunks are reduced.

This optimization is necessary for each file system on
CAS. Optimization should consider the access profile
as well as storage deduplication. Storage deduplica-
tion could be further increased by using a binary patch
technique. We will investigate a delta encoding method
which reuses existing block data.

6.3 CAS Optimization for FS

In cloud computing, the storage system can optimize a
virtual disk for the file system used. Classically file sys-
tems have been optimized for a disk device. However,

a virtual disk on cloud computing, which is managed
by key-value storage, could change its behavior for a
file system. For example, when a file system prefetches
extra data, virtual storage could push the data to mem-
ory in advance. We will investigate an intelligent virtual
storage based on the analysis of file system features.

7 Conclusions

We analyzed the affinity between nine Linux file sys-
tems (ext3, ext4, XFS, JFS, ReiserFS, which are
bootable file systems, and NILFS, btrfs, FAT32 and
NTFS) and CAS with 32 KB and 256 KB chunks. We
proposed a method to evaluate the degree of deduplica-
tion by storing many same-content files through a file
system and showed the affinity between file system and
CAS. We also evaluated file systems on CAS by mea-
suring the access patterns at installation and boot time.

The evaluations with same-content files indicate the de-
gree of deduplication in a file system and show the affin-
ity between file system and CAS. We estimate the ef-
fects come from the alignment matching, contiguous
allocation of data blocks, and non-contamination with
other data. Ext4, btrfs, and NTFS show good affinity for
CAS.

At installation and boot time, ReiserFS shows good re-
sults, attributable mainly to reduced read and write ac-
cesses. The effect of deduplication on ReiserFS is not
so high in a single image. ext4 shows good results on
deduplication. The affinities between different file sys-
tems are little from the view of same chunks in CAS, but
jfs and ReiserFS have many same chunks between dif-
ferent installations respectively. The results suggest that
there is block allocation repeatability on jfs and Reis-
erFS. We will investigate it as next challenge.

The results of two types of experiments suggest the pos-
sibility of optimization of a file system and a virtual
disk. On cloud computing, an intelligent storage system
could change its behavior for a file system.

References

[1] FUSE: Filesystem in userspace,
http://fuse.sourceforge.net/

[2] K. Jin and E. L. Miler, The Effectiveness of Dedu-
plication on Virtual Machine Disk Images, The Is-
raeli Experimental Systems Conference, SYSTOR
2009.

2011 Linux Symposium • 35

[3] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori, kvm: the Linux Virtual Machine Mon-
itor, Proceedings of Linux Symposium 2007, Vol-
ume 1, pp. 225–230, June 2007.

[4] R. Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Ki-
hara, and S. Moriai, The Linux implementation of
a log-structured file system, ACM Operating Sys-
tems Review, Vol. 40 Issue 3, 2006.

[5] lessfs: open Source data deduplication for less,
http://www.lessfs.com/

[6] A. Liguori, E.V. Hensbergen, Experiences with
Content Addressable Storage and Virtual Disks,
First Workshop on I/O Virtualization (WIOV), De-
cember, 2008.

[7] A. Mathur, M.Cao, S. Bhattacharya, A. Dilger,
A. Tomas, and L. Vivier, The new ext4 filesys-
tem: current status and future plans, Proceedings
of Linux Symposium 2007, Volume 2, pp. 21–34,
June 2007.

[8] M.A. Olson, K. Bostic, and M. Seltzer, Berkeley
DB, Proceedings of USENIX FREENIX 1999, pp.
183–191, June 1999.

[9] S. Quinlan and S. Dorward, Venti: A New Ap-
proach to Archival Storage, Proceedings of the 1st
USENIX Conference on File and Storage Tech-
nologies, Monterey CA, January, 2002.

[10] SDFS: A user space deduplication file system,
http://www.opendedup.org/

[11] K. Suzaki, T. Yagi, K. Iijima, and N.A. Quynh,
OS Circular: Internet Client for Reference, Pro-
ceedings of the 21st Large Installation System Ad-
ministration Conference, pp.105-116, Dallas TX,
November, 2007.

[12] K. Suzaki, T. Yagi, K. Iijima, C. Artho and
Y. Watanabe, Effect of Disk Prefetching of Guest
OS on Storage Deduplication, ASPLOS Workshop
RESoLVE 2011.

36 • Analysis of Disk Access Patterns on File Systems for Content Addressable Storage

Verifications around the Linux kernel

Alexandre Lissy
Mandriva

alissy@mandriva.com

Laboratoire d’Informatique de l’Université de Tours
alexandre.lissy@etu.univ-tours.fr

Stéphane Laurière
Mandriva

slauriere@mandriva.com

Patrick Martineau
Laboratoire d’Informatique de l’Université de Tours

patrick.martineau@univ-tours.fr

Abstract

Ensuring software safety has always been needed,
whether you are designing an on-board aircraft com-
puter or next-gen mobile phone, even if the purpose
of the verification is not the same in both cases. We
propose to show the current state of the art of work
around the verification of the Linux kernel, and by ex-
tension also present what has been done on other ker-
nels. We will conclude with future needs that must be
addressed, and some way of improvements that should
be followed.

1 Introduction

The Linux kernel is an important piece of code, both
in terms of size (it is currently evaluated at 5 million
lines of code) and of role. Like any software, it needs to
be tested. Testing generally occurs through users run-
ning the kernel and reporting the bugs they identify.
Achieving good coverage of the code with this man-
ual approach is however not feasible: code analysis can
be used to ease verification and bring it to a new level.
These techniques are known as static analysis and have
been used for several years, not only for the Linux ker-
nel. Linux distributions do not use exactly the vanilla
kernel and may have patches added, so it is important to
be able to check not only upstream code but also down-
stream code. Having a clear view of what has already
been done in the field of Linux kernel checking is a first
but important step before deciding what kind of new ver-
ifications to work on. First, a more precise description
of our objectives is available in section 2, followed by
a presentation of some of the tools and related papers

starting with one of the main reference in section 3, then
presenting the SLAM initiative in section 4. The next
section 5 provides a specific look at the Linux case, pre-
senting SATURN in section 5.1, then some work around
model checking in section 5.2. Coccinelle and Under-
taker related work is presented respectively in section
5.3 and 5.4 just before presenting another way to ap-
proach the problem in section 5.5. Before concluding,
some work being done to entirely verify an OS kernel in
section 6 is presented.

2 Objectives

Our main goal is to bring more stability from a run-
time point of view to the kernel, and in fact to any soft-
ware that is packaged and available in Linux distribu-
tions in general, and in the Mandriva Linux distribution
in particular. The kernel is an interesting piece of code,
because it evolves rapidly (so that complex quality as-
surance is hard) and the codebase differs between the
vanilla one and the one used by distributions, which ap-
ply patches relating typically to hardware compatibility,
extended features, backports, etc. This part of a Linux
distribution is also a good candidate because of its aura:
is it easier to find people interested in augmenting the
quality of this kind of code than for other parts of other
critical code, even though some parts of the kernel are
less likely to bring attention. Thus the question: “can
we model-check the Linux kernel?”, which led to a first
part of the work: what is the current status of check-
ing techniques in Linux kernel and also in any other
kernel component? What is the literature on model-
checking techniques applied to the same case? What
has been already tested? What are the current known

• 37 •

38 • Verifications around the Linux kernel

limits of model-checking? What are the current known
limits of tools applying model-checking? Even “what
does model checking exactly mean in the context of the
Linux kernel?”. So the objectives of the present article
is to summarize what has been collected as part of this
digging work, trying to give a view of the current state of
the model checking techniques applied to Linux kernel
and other kernel (Windows, seL4). It is in no way com-
pletely exhaustive but a hopefully good compilation of
several “related work” section in many papers and com-
munications that have been found.

3 Foundation: From Stanford to Coverity

The ability to verify the source code of a kernel has been
studied by Engler et al., in [9] in which they present
some new way to enforce system reliability by using
rules in the compiler written by the programmers them-
selves. By “systems”, they do not only target kernel,
but also libraries or embedded systems. They intend to
check interfaces usage, i.e. whether APIs are used cor-
rectly. First, they describe why in their opinion model-
checking is not a viable option for this problem with the
following arguments:

• Specifications are costly to build, hard to write

• They may not exactly abstract what they should

• Real life shows that they often miss some points
and are over-simplifying

So the authors introduce Meta-Level Compilation (MC)
to allow checking programmer-written rules with an
extended-version of GCC, xg++ implementing the
metal language, which is high-level and state-machine
based. The technique is not new, and the authors men-
tion previous work aiming at similar objectives like
ctool and Open C++. The lack of data flow informa-
tion within these tools is however identified by the au-
thors as a key limitation which make them harder to use
and less powerful than Meta-Level Compilation. State-
machines in the metal language work by matching inter-
esting features (using C++-written patterns) in the ana-
lyzed code and then causing transitions between states.
Meta-Level Compilation can be used not only to find
bugs, but also for optimizing code: automatically detect-
ing if a shared variable is never written enables identifi-
cation of excessive locking usage; and the reverse might

be used to detect non-protected variables. Of course,
those kind of rules cannot be generic and are project-
specific. Metal-written rules are first compiled using the
mcc compiler, before being loaded into xg++. Sev-
eral checkers are proposed as usage examples: asser-
tions side-effects, compile-time assertions, correct us-
age of APIs (malloc/free, userspace pointer usage in ker-
nel code), null pointer dereference, etc.

Coverity, a widely known tool to analyze source code,
which has a partnership with the Department of Home-
land Security (USA) 1 and was used to check many
FLOSS projects, has its roots in the Stanford Checker
(which is the implementation of Engler et al. work de-
scribed in [9]). This checker is not available as free soft-
ware. Dan Carpenter committed Smatch2 to provide the
same functionality in a FLOSS compatible way. A cou-
ple of years later, the same author committed a new pa-
per, [10], which gives a feedback on both static analysis
and model checking after several experiences with both.
The paper consists mainly of real case studies in both
areas, not to incriminate one or the other technique but
to describe and compare. They first explain how they
used both approaches:

• Using classical explicit state model checkers, with
two approaches for the specifications problem: one
automating the extraction of slice of functionalities
translated into model-checking language, another
model-checking directly the C code.

• Using meta-level compilation approach, classified
as static analysis, which according to them re-
duces the work needed to find bugs. However, this
method is unsound: errors can be missed. Also,
they did not model the heap, tracked most variables
values nor do alias analysis. They did their best to
avoid the use of annotations in the code.

Regarding model-checking, they state the assumption
“model-checking will find more bugs” is false: when
checking an embedded system (FLASH), this technique
found fewer (four times) bugs than the static analy-
sis method, even though the model-checking approach
identified some bugs that the previous method was not
able to. The main reasons for the differences are: the
code needs to be executed and the environment has to

1http://scan.coverity.com/
2http://repo.or.cz/w/smatch.git

2011 Linux Symposium • 39

be modeled. The discussion section brings up several
interesting issues.

• They thought it would be hard to find many bugs in
a complex system, but it turned out false: a code-
base of at least one million lines of code not show-
ing bugs is more a tip that there is a bug in the bug
finder.

• It is easier to write code on how a property must be
checked than why the property was violated.

• Not being too general is easier to handle for check-
ing

• Hard to inspect errors may be left unfixed simply
because users ignore the warning and does not un-
derstand it (they give an example from commercial
PREfix tool)

• More analysis can result in useless analysis, be-
cause it will expose complex bugs.

• Another myth they destroy is that “all bugs mat-
ter”: more bugs reported does not imply more fixes
committed, regardless whether it is free software,
because no importance ordering is given.

From their point of view, model checking is less power-
ful, mainly because it needs a good model of the envi-
ronment (which is difficult, requiring weeks or months
of work), and it cannot analyze more efficiently such
large codebase than static analysis can do. However,
model-checking has several advantages over static anal-
ysis which all result in stronger correctness results.

4 Microsoft: From SLAM Project to SDV

Starting in 1999, as a result of a brainstorming in-
side the Software Productivity Tools group at Microsoft
Programmer Productivity Research Center[3], three
projects were launched aiming at improving the quality
of software, especially, but not limited to, drivers. All
these projects shared a unique goal: checking interface
usage. Only the approach to solve the problem is differ-
ent, and a brief presentation of the two that did not last
as long as SLAM is provided:

Vault A new programming language with pre/post con-
ditions on the types, thus enabling definition of

rules that the program must follow; it is now used
as part of MSIL byte-code for CLR virtual ma-
chine, and is available as a Visual Studio plugin:
[8].

ESP is closer to SLAM, but does not take the same
course for the implementation and the trade-offs of
the static analysis.

Regarding our topic, only SLAM is interesting, first be-
cause this project has been successful, and also because
of the lack of information available on ESP project. The
first major contribution to the problem of checking in-
terface usage is the ability to abstract C program as
Boolean programs[6, 5]. The Boolean program is cre-
ated from the C programs by taking the Control Flow
Graph, and pruning variables with Boolean variables.
Boolean programs are interesting as reachability and
termination is decidable. Building those is done us-
ing Counter-Example Guided Abstraction Refinement
(CEGAR) [5, 7, 2]. Along with their Boolean Pro-
gram model, the author contributes a model-checking
algorithm[5] to check this model.

The authors introduce an interface description language
SLIC[7] and present the CEGAR process articulated
over three tools: C2BP which transforms C programs
to boolean programs, Bebop allows model-checking of
boolean programs and Newton which checks path fea-
sibility between C program and boolean program. Be-
bop makes uses of Context-Free Language Reachability
results [32]. As of 2002-2003, the SLAM project was
working well and could be used as a basis for “Static
Driver Verifier” [3]: the goal is to have an easy-to-use
SLAM, to be distributed for use by driver developers.
Joint work with Drivers Teams led to a lot of new check-
ing rules being written not by SLAM developers. In
[4], the authors show that over the 470 rules, only 60
were written by checking “experts”: this validates the
widespread possibility for developers of interfaces to
provide checking rules. In the same paper, they also note
that the use of SDV and rules complexity has been deci-
sive in the new driver model design for latest Windows
releases: too complex rules meant complex checking,
and thus it has been decided to re-design the interface
to ease checks. Work to improve SLAM into SLAM2
has been done as stated in [2]: less false-positives (from
19.7% to 0.4% in the worst case reported), less timeouts
(CEGAR loop unable to finish, from 6% to 3.2% in the
worst case reported).

40 • Verifications around the Linux kernel

5 Linux SDV?

The Linux kernel has also been a basis for verification
work, because it has widespread diffusion and is easily
fixable. An overview of the work that has been done
and the projects evolving around this topic is proposed.
Engler et al. [10] already started some important work
toward checking the Linux kernel, which they continue
to do with their Coverity tool.

5.1 Saturn

In [31], the authors describe a generic framework aimed
at detecting errors in large codebase. Source code is
translated into boolean constraints that can be used to
check properties thanks to SAT-solving tools. The ad-
vantages of the method as claimed by the authors are
the following:

Precision no abstraction is being done

Flexibility boolean constraints does not put any re-
quirements on the language used

Compacity boolean formulas can be simplified when
doing intra-procedural analysis. For inter-
procedural, a summary of the function is compiled
and used to process the verification. It is required
as the authors aims at large code base and SAT is
NP-complete

SATURN processing can be parallelized, the authors
claiming that an 80-processor cluster reduces the pro-
cessing from 23 hours to 50 minutes, when analyzing
the Linux kernel. They also contribute experimental re-
sults of the running against the previous codebase: more
errors found than in previous literature’s work and fewer
false positives. Another interesting contribution is the
autoslicing, allowing to limit the codebase to relevant
parts regarding the property analyzed. They contribute
two case studies:

• Checking finite state properties, also known as
temporal safety properties (as in [5, 6, 7]), with an
example on verifying locks

• Checking for memory leaks (not only on the Linux
kernel, but also on samba, openssl, postfix, openssh
and binutils)

5.2 Model Checking Concurrent Linux Device
Drivers

The authors present[30] an approach to model-check
shared memory programs, thus enabling the auto-
mated verification of Linux device drivers. Their tool,
DDVerify, uses predicate abstraction and their tech-
nique introduces concurrent software verification with
predicate abstraction. They justify their approach of
targeting shared memory because the resulting bugs are
very hard to discover and understand. They also con-
tribute a concurrent model of the needed parts of the
Linux kernel API. DDVerify generates an annotated
version of the source code to be checked with a SAT-
solver (SatAbs), using assertions given by the user.
Dealing with concurrency implies being able to deal
with threads: it has implications on the state space re-
sulting of the model. To ensure finite space (to be able
to use the SMV checker), their tool uses a static and
bounded number of threads. Further work is needed to
allow the use of infinite dynamic number of threads and
the Boppo checker. To automate the process, they im-
plement a CEGAR loop as described in [5, 7, 2]. How-
ever, they conclude with two important facts:

• In their approach, the performance of the model-
checker is critical: most of the execution time is
spent on verifying the abstracted program. They
used three tools, Cadence SMV, Boppo and Bp

• Model-Checkers performances for Concurrent De-
vice Drivers needs to be improved significantly to
be able to cope with real world drivers

They also claim to have a better (more accurate)
model for the operating system than in SLAM or
BLAST projects. They provide results of their bench-
marks in two cases: sequential and concurrent, us-
ing a small benchmark driver, machwzd (less than 500
lines of code, using locks, IO and timers), and run-
ning on Intel Xeon 3GHz, 4GB RAM. The bp model-
checker executes in about one second, while Boppo
and SMV are around 30 seconds, in the sequential case.
When going concurrent, only SMV is available, and
runs around 400 seconds on average, with peaks at
1800 seconds. Despite poor performances, their tool
found one new bug related to memory regions usage
(request_region() function).

2011 Linux Symposium • 41

5.3 Coccinelle

Coccinelle is a French word for a kind of beetle that
eats bugs. The goal of the Coccinelle project is to kill
bugs before they are introduced. It started with [14] in
which the authors describe and analyze recent collateral
evolutions and contribute requirements of a helper tool:
those evolutions are API changes that impact potentially
a huge number of files in the whole kernel. They give
three examples:

• Elimination of the check_region() function,
which started in Linux 2.4.2 (released on February
2001) and that was still not completed by Linux
2.6.10 (released on December 2004).

• Addition of an extra argument to the
usb_submit_urb() function, started in
Linux 2.5.4 (released on February 2002) and that
was still not completed by Linux 2.6.10.

• New function for copying data from userspace to
kernel space video_usercopy(). Worse than
previous examples, this new method was intro-
duced in a driver for Linux 2.6.3 but the old one
remained in place, and it resulted in the bug never
being fixed, and the new method being removed as
of Linux 2.6.8.

Thanks to this study highlighting the defects of API
changes in the whole kernel, the authors contribute se-
mantic patches (classical patches with augmented in-
formation to describe the context, and being able to go
further in the manipulation of the code), which have to
comply with three requirements:

• Identify the code to modify

• Description of the new code

• Existing context impact

A more detailed description of the collateral evolution
problem is also available in [18, 20]. This research re-
port also contributes an interesting comparative study
of the evolution of APIs in the Linux kernel, from re-
leases 2.2 to 2.6, showing the huge increase of APIs
available inside the kernel. Focusing on the Semantic
Patches notion, the authors presents a detailed overview
of their contribution in [19]. They give a motivating

example with the changes that were done to the SCSI
stack. They also justify why they chose to base their
Semantic Patches approach on classical patches: it is
human readable, which is important for the acceptation
of the tool, yet it allows to be much more general.

In [15], the authors contribute design information on the
heart of the Coccinelle tool: basically, they are using
model-checking under the hood. Source code is parsed
into a model, and semantic patches are translated to a
CTL formula which can be used in a model-checking
algorithm against the previous model. However, Coc-
cinelle is able to change the source code after successful
matching of CTL formula. They contribute experimen-
tal results of runs of their tool, showing fast processing.
Much of the modifications have been automatically ap-
plied successfully, and for the remaining ones, changes
in the Semantic Patches were needed but proved to be
successful too. In [16, 21] the authors present a more
kernel developers-oriented explanation of the Semantic
Patches approach, with many collateral evolution exam-
ples addressed by Coccinelle.

In [17], the notion of “mega collateral evolution” is in-
troduced, as a very huge evolution, touching everywhere
in the Linux sources, and they propose an analysis of 23
out of 35 identified: number of files changed, impact
(lines of code), number of maintainers involved, dura-
tion of the changes, misses and errors. And they com-
pare the same collateral evolution being processes by
hand-written Semantic Patches applied by Coccinelle,
using criterion such as Sematic Patch size (lines of
code), average execution time, misses and percent ok.
The same analysis is introduced for “error-prone evolu-
tions,” i.e. evolutions that resulted in errors (mistakes,
conflicts). In both case, the semantic patches approach
is much more reliable, even if not perfect.

The major contribution at this point is real-life proof
of the effectiveness of Coccinelle. With [28], the au-
thors make another use of their code matcher and trans-
former, targeting at finding bugs using semantic patches.
The contribution not only finds bugs, but also, with ex-
amples, shows how to automatically workaround them
when it is possible. In [13] and in a more detailed ver-
sion of this work available in [12], three case studies are
presented: consistency of errors checking (with func-
tions returning NULL or ERR_PTR), detection of alloca-
tion and deallocation protocols, and bad interaction with
freeing memory. The authors also contribute a “proto-
col finding”, which allows to automatically discover the

42 • Verifications around the Linux kernel

correct usage of an API.

Another use of the bug finding aspect, but not limited
to the Linux kernel source code is given in [25] where
several open source software projects are analyzed with
Coccinelle. More recent contributions in [1] aim at help-
ing the creation of semantic patches: the idea is to let
the developer fix one driver as an example, and then in-
fer a semantic patch that will be applicable on all the
other drivers. The main contribution at this level is the
SPFIND algorithm, that is the heart of the tool.

Another use of the Coccinelle tool and its companion
is described in [22, 23], where Herodotos is introduced.
This contribution aims at following bugs found in soft-
ware over several versions, and the authors are able to
show life cycle of classes of bugs. An interesting ex-
ample is the notand class: misuse of boolean and bit
operators. As of post 2008 kernel, a large number of
these defects were dropped: this has been a target of the
authors since Linux version 2.6.24, showing that their
patches have improved the situation.

5.4 Undertaker

With Undertaker, the authors aim at another kind of
verification around the Linux kernel: configurability.
In [27], the authors introduce the LIFE (LInux Fea-
ture Explorer), and provide a much more detailed de-
scription of their work in [29]. In the first paper, they
contribute a first important element: variability model
and variability implementation. The model consists of
the Kconfig part of the Linux kernel, i.e. where con-
figurations options are defined and can be enabled or
disabled. The implementation concerns the usage of
those options inside the sourcecode. Contributions of
the LIFE are mainly on three parts: source2rsf, a tool
used to extract compilation information; kconfigextrac-
tor, a tool to generate a boolean formula-based model
of the configuration options defined by Kconfig; and
undertaker, a tool which analyzes the RSF files pre-
viously extracted. Once everything is setup, satisfiabil-
ity between variability model and variability implemen-
tation is checked, and thus consistency between both.
Later, in [29], the authors give more details about logic
behind all steps of the analysis. Also, they explain
why the current grep-based tool that checks for con-
figurability defects is not enough: it is obvious that
the checkkconfigsymbols.sh script is not being

used by kernel maintainers; running this tool exposes
issues which have been not fixed for several months.

The given example deals with CPU Hotplug capabili-
ties: a typo between Kconfig and usage in source code
lead to hotplug missing, for more than six months. Spec-
ulative reasons why maintainers do not use the script
are: too many false positives, huge processing time,
false negatives. To cope with the huge number of con-
figurable functionalities in the Linux kernel (8000 in
the first paper, 10000 in the second), the authors con-
tribute a model-slicing algorithm for Kconfig, otherwise
the boolean formulas become too complex and cannot
be treated. Detected defects can either be dead code
or undead code. Another contribution in this paper is
the study of introduced/fixed defects among several ker-
nel releases: they studied versions between 2.6.30 (rc1
and stable) and 2.6.36 (rc1 and stable). A huge peak
of “fixed defects” can be seen on the 2.6.36-rc1 release,
which the authors explain by the merge of the patches
they sent to maintainers to fix the issues they found.

5.5 Integrated Static Analysis for Linux Device
Driver

In this paper [24], the authors aim at porting the ver-
ifications techniques developed by Microsoft for SDV
(Static Driver Verifier) [2] to the Linux kernel project.
They come up with several contributions. First, they
propose an extension of the SLIC language [7] from Mi-
crosoft: SLICx. This is both needed because of the lack
of available SLIC tool and to fit their needs better:

• Reducing the set of possible types for state fields

• No more parallel assignments

• Allowing any C statement and expressions

For the same reason, lacking source code, they use
the CBMC model-checker. A second contribution is a
model for Linux, implementing life cycle for a device
driver, i.e. module_init() and module_exit().
As another contribution, they give an example of check-
ing with the RCU API. In their tool, the authors are
able to get further than previous tools such as CBMC or
SDV: absence of memory leaks, simulating preemption,
deadlocks, race conditions. Testing occurs by annotat-
ing drivers. They also propose some experimental re-
sults over their solution. A first result is that they argue

2011 Linux Symposium • 43

about modular analysis being faulty when dealing with
functions calls specifications. It is the classical issue
of modeling the whole environment in model-checking.
The verification process given is not automated, many
steps being manual.

6 Verification of a kernel: seL4

Work has been done to verify a (almost) full kernel:
seL4[11]. It is a secure version of the L4 micro-kernel.
They present pretty robust results with a formal proof
of a very large part of the micro-kernel, only the boot
code is not yet proven. Regarding our goal, this must be
looked scarcely: the codebase is “just” 8700 lines of C
and 600 lines of assembly language, and both are veri-
fied. However, the authors states that performance im-
pact is null or low enough to be discarded. The proof is
machine-assisted and machine-checked, but it requires
human intervention: implementation is strictly proven
against the specifications.

One contribution is a rapid kernel design and imple-
mentation, that helps designers balance between for-
mal methods and high performance, through a Haskell
prototyping phase that helps to prove the final C im-
plementation. Proof is contributed thanks to the Is-
abelle/HOL theorem prover, which requires human in-
teraction. The specification part is important: abstract
specifications (describing functionalities of the system),
and executable specifications (describing how the sys-
tem works from a low-level point of view). The C im-
plementation is included in the verification toolchain,
meaning the authors had to describe C semantics in a
model: in fact, they modeled a subset of the C lan-
guage (C99: types, memory model, structure padding,
unsafe pointer handling, pointer arithmetic); limitations
towards the full C99 language are: no use of & operator,
avoiding as much as possible references (to comply with
absence of ordering in expressions evaluation), func-
tions pointers are not allowed, nor goto or switch.

The authors consider, in their goal to prove security
properties, that both the compiler (GCC) and the hard-
ware (ARMv6-based) can be trusted; however GCC is
not trusted for predictable bit field compilation and op-
timization. The authors also contribute a model for the
machine, which is needed because assembly code has
to be handled and proved. Codebase size and proof
size are interesting figures: in Haskell/C, the number

of lines of code (LOC) is 8700, once translated in Is-
abelle’s language, it gives 15,000 LOC. And then the
proof is 5500 LOC long. The authors also contributes a
project-management view of their work, and one inter-
esting point is that their approach is not that bad: in fact,
they claim it is better than EAL6 Certification and that
it provides stronger guarantee.

7 Conclusion

In this paper we presented an overview of the state of the
art in the field of checking the Linux kernel and beyond.
We presented work that has been initiated by Engler et
al. on verifying Linux, OpenBSD and the FLASH em-
bedded system, and a comparative study of static analy-
sis versus model checking. We presented the work that
has been done and published by Microsoft around the
automated verification of the usage of APIs by device
drivers, which led to a powerful static analyzer tool be-
ing available in the latest Driver Development Kit. We
presented work done on the Linux kernel that shares
some aspects with the Microsoft approach, and also sev-
eral projects (Coccinelle, Undertaker) that are quite ma-
ture. We also presented a fully proven micro-kernel
analysis showing some methodology for complete cor-
rectness, but which would not scale to the size of the
Linux kernel (which is on the order of 500 times big-
ger). The “verification” topic toward Linux kernel is not
a new field, but we can observe that all the approaches in
the literature are static analysis. Critical analysis made
by Engler et al. [10] on Static Analysis versus Model-
Checking gives some enlightenment on the reasons.

However, an interesting way to handle the model-
checking approach would be to slice the Linux kernel
source code into several sub-parts that can be checked
independently: thus, the state explosion issue related to
model-checking could be avoided. Autoslicing as de-
scribed in [29] could be a good starting point. A first
step might be accomplished with the Atomic API avail-
able in the kernel: it is concise, critical for some parts
of the kernel, it mixes C and assembly language, and it
has strict usage rules. Plus, it lives inside the arch di-
rectory, which according to [22] is now the more error-
prone directory, before the drivers. Generally speak-
ing, this last paper shows that the effort should be em-
phasized on arch. Following the Engler’s Meta-Level
Compilation idea expressed in [9], it would also be in-
teresting to work inside GCC thanks to the recent avail-
ability of plugins: the MELT plugin[26] allows easier

44 • Verifications around the Linux kernel

manipulation of the GCC internals especially for pattern
matching operations.

References

[1] Jesper Andersen and Julia L. Lawall. Generic
patch inference. In 23rd IEEE/ACM International
Conference on Automated Software Engineering,
pages 337–346, L’Aquila, Italy, 2008.

[2] T. Ball, E. Bounimova, V. Levin, R. Kumar, and
J. Lichtenberg. The static driver verifier research
platform. In International Conference on Com-
puter Aided Verification, 2010.

[3] T. Ball, B. Cook, V. Levin, and S.K. Rajamani.
Slam and static driver verifier: Technology transfer
of formal methods inside microsoft. In Integrated
Formal Methods, pages 1–20. Springer, 2004.

[4] T. Ball, V. Levin, and S.K. Rajamani. A decade of
software model checking with slam. 2010.

[5] Thomas Ball and Sriram K. Rajamani. Boolean
programs: A model and process for software anal-
ysis. Technical report, Microsoft Research, Febru-
ary 2000.

[6] Thomas Ball and Sriram K. Rajamani. Checking
temporal properties of software with boolean pro-
grams. In In Proceedings of the Workshop on Ad-
vances in Verification, 2000.

[7] Thomas Ball and Sriram K. Rajamani. Automati-
cally validating temporal safety properties of inter-
faces. In SPIN ’01: Proceedings of the 8th interna-
tional SPIN workshop on Model checking of soft-
ware, pages 103–122, New York, NY, USA, 2001.
Springer-Verlag New York, Inc.

[8] Robert DeLine and Manuel FÃd’hndrich. The
fugue protocol checker: Is your software baroque?
Technical report, 2003.

[9] Dawson Engler, Benjamin Chelf, Andy Chou, and
Seth Hallem. Checking system rules using system-
specific, programmer-written compiler extensions.
pages 1–16, 2000.

[10] Dawson Engler and Madanlal Musuvathi. Static
analysis versus software model checking for bug
finding. In Bernhard Steffen and Giorgio Levi, ed-
itors, Verification, Model Checking, and Abstract

Interpretation, volume 2937 of Lecture Notes
in Computer Science, pages 405–427. Springer
Berlin / Heidelberg, 2004.

[11] Gerwin Klein, Kevin Elphinstone, Gernot Heiser,
June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, Thomas Sewell, Har-
vey Tuch, and Simon Winwood. sel4: formal ver-
ification of an os kernel. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating sys-
tems principles, SOSP ’09, pages 207–220, New
York, NY, USA, 2009. ACM.

[12] Julia L. Lawall, Julien Brunel, René Rydhof
Hansen, Henrik Stuart, and Gilles Muller. WYSI-
WIB: A declarative approach to finding proto-
cols and bugs in Linux code. Technical Report
08/1/INFO, Ecole des Mines de Nantes, Nantes,
France, 2008.

[13] Julia L. Lawall, Julien Brunel, Nicolas Palix,
René Rydhof Hansen, Henrik Stuart, and Gilles
Muller. WYSIWIB: A declarative approach to
finding protocols and bugs in Linux code. In The
39th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pages 43–
52, Estoril, Portugal, 2009.

[14] Julia L. Lawall, Gilles Muller, and Richard
Urunuela. Tarantula: Killing driver bugs before
they hatch. In The 4th AOSD Workshop on Aspects,
Components, and Patterns for Infrastructure Soft-
ware (ACP4IS), pages 13–18, Chicago, IL, 2005.

[15] Yoann Padioleau, René Rydhof Hansen, Julia L.
Lawall, and Gilles Muller. Semantic patches for
documenting and automating collateral evolutions
in linux device drivers. In PLOS 2006: Linguistic
Support for Modern Operating Systems, San Jose,
CA, 2006.

[16] Yoann Padioleau, René Rydhof Hansen, Julia L.
Lawall, and Gilles Muller. Towards documenting
and automating collateral evolutions in linux de-
vice drivers. Research Report 6090, INRIA, 01
2007.

[17] Yoann Padioleau, Julia L. Lawall, René Rydhof
Hansen, and Gilles Muller. Documenting and
automating collateral evolutions in linux device
drivers. In EuroSys 2008, pages 247–260, Glas-
gow, Scotland, 2008.

2011 Linux Symposium • 45

[18] Yoann Padioleau, Julia L. Lawall, and Gilles
Muller. Understanding collateral evolution in linux
device drivers (long version). Research report
5769, INRIA, Rennes, France, 2005.

[19] Yoann Padioleau, Julia L. Lawall, and Gilles
Muller. SmPL: A domain-specific language for
specifying collateral evolutions in Linux device
drivers. In International ERCIM Workshop on
Software Evolution (2006), Lille, France, 2006.

[20] Yoann Padioleau, Julia L. Lawall, and Gilles
Muller. Understanding collateral evolution in
Linux device drivers. In The first ACM SIGOPS
EuroSys conference (EuroSys 2006), pages 59–71,
Leuven, Belgium, 2006.

[21] Yoann Padioleau, Julia L. Lawall, and Gilles
Muller. Semantic patches, documenting and au-
tomating collateral evolutions in Linux device
drivers. In Ottawa Linux Symposium (OLS 2007),
Ottawa, Canada, 2007.

[22] Nicolas Palix, Julia Lawall, and Gilles Muller.
Herodotos: A Tool to Expose Bugs’ Lives. Re-
search Report RR-6984, INRIA, 2009.

[23] Nicolas Palix, Julia Lawall, and Gilles Muller.
Tracking code patterns over multiple software ver-
sions with herodotos. In AOSD ’10: Proceedings
of the 9th International Conference on Aspect-
Oriented Software Development, pages 169–180,
New York, NY, USA, 2010. ACM.

[24] H. Post and W. Küchlin. Integrated static analysis
for linux device driver verification. In Integrated
Formal Methods, pages 518–537. Springer, 2007.

[25] Sune Rievers. Finding bugs in open source soft-
ware using coccinelle, jan 2010.

[26] Basile Sarynkévitch. Extending the gcc compiler
with melt to suit your needs. In RMLL 2010, 2010.

[27] Julio Sincero, Reinhard Tartler, Christoph Eg-
ger, Wolfgang Schröder-Preikschat, and Daniel
Lohmann. Facing the Linux 8000 Feature Night-
mare. In ACM SIGOPS, editor, Proceedings of
ACM European Conference on Computer Systems
(EuroSys 2010), Best Posters and Demos Session,
2010.

[28] Henrik Stuart, René Rydhof Hansen, Julia L.
Lawall, Jesper Andersen, Yoann Padioleau, and
Gilles Muller. Towards easing the diagnosis of
bugs in OS code. In 4th Workshop on Program-
ming Languages and Operating Systems, pages 1–
5, Stevenson, Washington, 2007.

[29] Reinhard Tartler, Daniel Lohmann, Julio Sincero,
and Wolfgang Schröder-Preikschat. Feature Con-
sistency in Compile-Time Configurable System
Software. In European Chapter of ACM SIGOPS,
editor, Proceedings of the EuroSys 2011 Confer-
ence (EuroSys ’11), 2011.

[30] T. Witkowski, N. Blanc, D. Kroening, and
G. Weissenbacher. Model checking concurrent
linux device drivers. In Proceedings of the twenty-
second IEEE/ACM international conference on
Automated software engineering, pages 501–504.
ACM, 2007.

[31] Yichen Xie and Alex Aiken. Saturn: A scal-
able framework for error detection using boolean
satisfiability. ACM Trans. Program. Lang. Syst.,
29(3):16, 2007.

[32] Hao Yuan and Patrick Eugster. An efficient algo-
rithm for solving the dyck-cfl reachability prob-
lem on trees. In ESOP ’09: Proceedings of the
18th European Symposium on Programming Lan-
guages and Systems, pages 175–189, Berlin, Hei-
delberg, 2009. Springer-Verlag.

46 • Verifications around the Linux kernel

Faults in Patched Kernel

Alexandre Lissy
Mandriva

alissy@mandriva.com

Laboratoire d’Informatique de l’Université de Tours
alexandre.lissy@etu.univ-tours.fr

Stéphane Laurière
Mandriva

slauriere@mandriva.com

Patrick Martineau
Laboratoire d’Informatique de l’Université de Tours

patrick.martineau@univ-tours.fr

Abstract

Tools have been designed to detect for faults in the
Linux Kernel, such as Coccinelle, Sparse, or Under-
taker, and studies of their results over the vanilla tree
have been published. We are interested in a specific
point: since Linux distributions patch the kernel (as
other software) and since those patches might target less
common use cases, it may result in a lower quality assur-
ance level and fewer bugs found. So, we ask ourselves:
is there any difference between upstream and distribu-
tions’ kernel from a faults point of view ? We present
an existing tool, Undertaker, and detail a methodology
for reliably counting bugs in patched and non-patched
kernel source code, applied to vanilla and distributions’
kernels (Debian, Mandriva, openSUSE). We show that
the difference is negligible but in favor of patched ker-
nels.

1 Introduction

A survey of the number of “faults” in the Linux kernel
has been conducted in 2001 by [1]. In this paper, authors
showed the relatively large number of bugs in drivers
of the kernel: the drivers subdirectory of the kernel
accounts for 7 times the number of bugs found in source
files compared to the other directories. And this is not
a matter of code length, as the figure is given by the
following ratio:

r =
err_ratedrivers

err_ratenon−drivers

Ten years later, an updated version of the survey on
more recent kernels was contributed in [4]. One of the

major outcomes of this second paper is that it shows
drivers are less prone to errors: the first paper pointed
out methods of improvement in the kernel, and a large
effort has been conducted in this area to make things
better indeed. Now, the arch subdirectory is the one
where faults are most concentrated! No reason other
than “people and institutions focus on drivers quality” is
given to explain the improvement. This result also em-
phasizes the need to periodically check and follow the
status of bugs: basically, actions need a continuous as-
sessment of their usefulness. So the community (be it
either researchers, companies, etc.) needs feedback to
know where the effort is needed. Some effort in this
area is already proposed by Phoronix.com1: the web-
site regularly checks the status of the current versions
of the kernel using its Phoronix Test Suite, checking
mainly for regressions (performance, power consump-
tion, etc.). It should also be noted that the authors of [4]
have a tool, Heorodotos [3], which they use for track-
ing detected bugs life cycle: this is already a first step
towards the tracking of “where we need to work”. Our
motivations are further detailed in section 2, then the
tool used in section 3. The methodology is presented
and explained in section 4 and we present then discuss
results in section 5.

2 Motivations

As we just exposed, there have been several studies of
the fault density in the kernel, with several tools. Chou
et al. [1] used xgcc, itself introduced by [2], which
is able to find 12 types of errors in the source code of
Linux (and OpenBSD). The output has been inspected

1http://www.phoronix.com

• 47 •

48 • Faults in Patched Kernel

by hand to check for false positives, etc., and the kind
of errors checked for are: deadlock of spinlock, NULL
pointer dereference, large stack variable, NULL pointer
assumptions, array boundary checking, lock release and
no double-lock, use of already-free’d memory, no floats,
memory leak, user pointer dereference and correct size
allocation.

As stated in [4], the Linux kernel has evolved a lot since
this first study, and thus the authors propose to update
the results: one first work was to reuse the same check-
ers, by re-implementing them after explaining how they
understood what the original authors meant. To find the
faults corresponding to those checks, they used a tool
of their own, Coccinelle. They also used Herodotos to
track the faults among the versions of the kernel. One
common point of those two studies is that they only fol-
low the upstream Linux kernel, they have no interest in
forks or derivatives. This is the case of kernel used by
distributions: they backport features, they fix bugs, etc.,
and in our opinion, it is interesting to study whether,
from a faults point of view, there is a difference between
distribution’s kernels and the upstream one.

Another motivation is to study another type of faults,
those measured by Undertaker: a tool that checks for
configurations faults. Of course, in their papers [6, 5],
the authors show results but once again, only on up-
stream kernel. Following the same idea as previous au-
thors, we would like to have a clear point of view of the
status of our distribution’s kernel and where it needs fo-
cus for improvements: there is no obvious reasons that
it will be the same than upstream.

3 Undertaker: Finding Configurations Defects

Software configurability in the Linux kernel is a giant
and growing space: currently, more than 10000 features
are available. A vast majority of software allows for
compile-time configuration, which in the case of Linux
is handled as preprocessor macros. Many of the op-
tions have dependencies between themselves, and tools
(Kconfig) allow the user to manipulate the variability
model. These macros are then used in the C code to en-
able/disable some features. In [6, 5] the authors present
Undertaker, a tool that is able to analyze and check
for consistency between configurations models and their
use in the source code; not only because it can leave
dead code blocks, but also because of incorrect selec-
tion of code. Imagine a code path that must not be

followed in case of CONFIG_NOT_FOLLOW is set, but
source code uses #ifdef CONFIG_FOLLOW_NOT, this
will lead to inconsistencies. The authors link a real-life
case with CPU hotplug: this leads to the feature, hot-
plug of CPU, which has been broken for more than six
months before being fixed. Undertaker makes uses of
LIFE (LInux Feature Explorer) to extract configurations
options as a model from Kconfig files, making re-use of
Sparse (static analysis tool for Linux). Both configura-
tion and implementation models are then transformed to
Boolean formulas which can be checked thanks to SAT
solvers (Undertaker use PicoSAT). Thanks to this, they
identified, reported and fixed several issues: 14 were ac-
cepted and waiting to be applied to 2.6.34 and a total of
90 have been identified. Please note that we have not
been able to work with kernel prior to 2.6.30 due to a
bug in Undertaker.

4 Methodology

As stated before, our goal is to be able to check whether
quality hypothesis that are considered for upstream ker-
nel versions are also applicable to kernel source code
used to create a distribution’s package: it can differ in
a non-insignificant way. For example, Mandriva pack-
ages the Kerrighed kernel (Kerrighed is a SSI system
on top of Linux), so basically, it is a giant patch over
the upstream kernel. Several distributions also pack-
age XEN (which allows efficient virtualisation and para-
virtualisation) which is also itself a big patch over the
kernel. To measure the faults, we decided to use Under-
taker for several reasons:

• It is easy to use, so we can have results rapidly

• It aims at an interesting and newer problem com-
pared with other tools

However, as explained in the section 3, Undertaker only
treats the problem of configurability. Although the ker-
nel has a lot of configurable features, configurability is
not the only ground for errors, and so we would like to
continue and extend this study by integrating other tools
to have a better view of the error status for the whole
kernel. Using Undertaker is a preliminary step towards
wider experiments. Several kernel sources from dif-
ferent distributions (Mandriva, openSUSE and Debian)
were used to run the tool over as similar as possible ver-
sions. When it analyzes the kernel, Undertaker identifies
several kinds of issues:

2011 Linux Symposium • 49

• Dead code: no configuration item can enable this
code

• Undead code: no configuration item can dis-
able this code. Of course, only code between
#if. . .#endif is considered

The resulting issues can have different scopes: code is
either dead or undead globally, i.e. on all architectures,
or it can be dead or undead on several architectures but
good on at least one.

In our case, the dead or undead differentiation is not
very interesting, as it is a fault in both cases. How-
ever, the architecture scope becomes interesting: dis-
tributions often target several architectures so we limit
ourselves to globally dead or undead code. As in previ-
ous papers [1, 4, 6, 5] we consider the number of faults
per subdirectories, e.g., kernel/, drivers/, mm/, etc.
However, since we are interested in non-upstream ker-
nel, there is one more thing to consider: when analyz-
ing a patched kernel, how can we take into account the
differences brought by patches? We do not wish to ana-
lyze each kernel patch by hand. The number of lines of
ANSI C code present in each subdirectory analyzed by
Undertaker is counted, thanks to the sloccount tool, and
we consider the number of faults in a directory divided
by the number of ANSI C lines of code:

f aultRatedir =
Faultsindir

ANSI C LOCindir

This provides a fault rate per single line of code, which
gives an idea of the “quality” status (limiting ourselves
to what Undertaker is able to diagnose) in the kernel,
independent of the size of the code base. This allow us
to compare the impact quality of patches.

When two kernel versions are compared, for each direc-
tory, it is simply the difference between the first kernel’s
values and the second one. So, for a chart comparing
2.6.33.7 and 2.6.33.7-mdv1 (Figure 4), the computed
difference is as follows:

di f f = f aultrate2.6.33.7− f aultrate2.6.33.7−mdv1

Hence a positive difference means an improvement in
Mandriva’s kernel, whereas a negative difference sug-
gests new bugs introduced. Also, it should be noted
that the naming of kernel versions follows some dis-
tinct conventions for openSUSE and Mandriva: in the
first case, it uses the pattern rpm-kver where kver is

the version of the kernel; for Mandriva the pattern is
vkver-mdvX where kver is the version of the kernel
and X is the release number of the kernel package.

5 Results and discussion

Some preliminary results are now presented and dis-
cussed regarding our objectives. In section 5.1 a first run
of some “verification against upstream and literature”
is done, to check that the methodology gives compara-
ble results to what has already been done, especially in
[4, 6, 5]. Then some specific cases are studied: Debian
kernel in section 5.2, Mandriva kernel in section 5.3 and
openSUSE 11.2 kernel in section 5.4.

5.1 Verification with Upstream

First, the goal is to verify that the approach gives com-
parable results with [4], not because exact figures are
necessary (since measurements are not done over ex-
actly the same things and in the same way, it is mean-
ingless compare directly), but to check that it “reflects”
the same tendencies. Our results are present in Figure 1
and target kernel from 2.6.32 to 2.6.38. Similar data is
visible in [4, p. 13, Figure 9] where “fault rate per direc-
tory” is plotted for kernel 2.6.5 to 2.6.33. It is possible
to estimate the fault rate of the drivers directory at
0.3, and the fault rate of arch at 0.4, compared with [4,
p. 13, Figure 9]. In our results, values are respectively
of 0.57 and 0.76. This leads to the following ratios:

ratiococcinelle =
0.3
0.4

= 0.75

and
ratioundertaker =

0.57
0.76

= 0.75

Even if the values are not the same, what they indicate
is similar. Also, they lead to convergent interpretations:

• The overall fault rate is decreasing

• arch directory shows a higher fault rate than
drivers

5.2 Debian’s kernel

Starting with the Debian kernel, we focus on two 2.6.37
releases provided within the distribution: 2.6.37-1 and

50 • Faults in Patched Kernel

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

v2.6.32

v2.6.33

v2.6.34

v2.6.35

v2.6.37

v2.6.38

F
re

qu
en

cy
 p

er
 1

00
0

S
LO

C

Versions

Faults Occurrences per Directory, from v2.6.32 to v2.6.38

Documentation
arch

block
crypto
drivers

firmware
fs

include
init
ipc

kernel
lib

mm
net

samples
scripts

security
sound

tools
usr
virt

kdb
perfmon

Figure 1: Evolution of the fault rate in the Vanilla kernel, from 2.6.32 to 2.6.38

2.6.37-2. A first look at the chart given in Figure 2
shows that both releases do not present the same fault
rate: 2.6.37-2 has a higher fault rate in kernel direc-
tory than the 2.6.37-1 release. Taking a look at the dif-
ference between 2.6.37-1 and 2.6.37 from upstream, we
can see in Figure 3 that there is a general improvement.

5.3 Mandriva’s Kernel

For the Mandriva case, we have made a direct compari-
son of fault rate for each directory on only one version of
the kernel, 2.6.33.7, whose results are available in Fig-
ure 4. As stated before, this is computed by doing the
difference of fault rate between upstream and the distri-
bution’s kernel. From this chart, we can get two inter-
esting points: the number of faults is generally lower in
the patched kernel, and the fault rate is generally lower
too. But the differences in fault rate are very tight, and
even if they are in favor of patched versions, it can be
considered as negligible.

5.4 openSUSE’s Kernel

Looking in the openSUSE release gives another insight.
Figure 5 shows the status over all RPM released kernels
of the openSUSE 11.2 distribution, going from 2.6.30

2.6.33.7 2.6.33.7-mdv1
Directory Faults Rate Faults Rate
Documentation 2 0.213493 2 0.213061
arch 1240 0.772214 1241 0.772731
block 2 0.178380 2 0.178380
drivers 2558 0.570437 2552 0.567989
fs 50 0.078163 52 0.080378
include 92 0.371393 92 0.370956
kernel 9 0.089347 9 0.089326
mm 18 0.397263 18 0.396922
net 23 0.055458 23 0.055406
scripts 1 0.031829 1 0.031809
sound 115 0.272438 115 0.271721

Table 1: Mandriva Kernel 2.6.33.7 versus Upstream
2.6.33.7

2011 Linux Symposium • 51

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0.004

-1 -0.5
 0 0.5

 1

F
re

qu
en

cy
 (

di
ff)

 p
er

 1
00

0
S

LO
C

Faults Occurrences per Directory, between 2.6.37-1 and 2.6.37-2

Documentation
arch

block
crypto
drivers

firmware
fs

include
init
ipc

kernel
lib

mm
net

samples
scripts

security
sound

tools
usr
virt

kdb
perfmon

Figure 2: Fault rate differences between Debian 2.6.37-1 and 2.6.37-2

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

-1 -0.5
 0 0.5

 1

F
re

qu
en

cy
 (

di
ff)

 p
er

 1
00

0
S

LO
C

Faults Occurrences per Directory, between v2.6.37 and 2.6.37-2

Documentation
arch

block
crypto
drivers

firmware
fs

include
init
ipc

kernel
lib

mm
net

samples
scripts

security
sound

tools
usr
virt

kdb
perfmon

Figure 3: Vanilla 2.6.37 and Debian 2.6.37-2

52 • Faults in Patched Kernel

-0.0025

-0.002

-0.0015

-0.001

-0.0005

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

-1 -0.5
 0 0.5

 1

F
re

qu
en

cy
 (

di
ff)

 p
er

 1
00

0
S

LO
C

Faults Occurrences per Directory, between v2.6.33.7 and v2.6.33.7-mdv1

Documentation
arch

block
crypto
drivers

firmware
fs

include
init
ipc

kernel
lib

mm
net

samples
scripts

security
sound

tools
usr
virt

kdb
perfmon

Figure 4: Mandriva versus Vanilla, 2.6.33.7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

rpm
-2.6.30-8

rpm
-2.6.30.2-1

rpm
-2.6.31-1

rpm
-2.6.31-10

rpm
-2.6.31-3

rpm
-2.6.31-7

rpm
-2.6.31.12-0.1

rpm
-2.6.31.12-0.2

rpm
-2.6.31.14-0.1

rpm
-2.6.31.14-0.2

rpm
-2.6.31.14-0.4

rpm
-2.6.31.14-0.6

rpm
-2.6.31.14-0.8

rpm
-2.6.31.3-1

rpm
-2.6.31.5-0.1

rpm
-2.6.31.8-0.1

rpm
-2.6.32-0.1

rpm
-2.6.32-0.4

rpm
-2.6.32-0.6

rpm
-2.6.32-0.6.8

rpm
-2.6.32-3

rpm
-2.6.32.10-0.4

rpm
-2.6.32.11-0.3

rpm
-2.6.32.12-0.2

rpm
-2.6.32.12-0.3

rpm
-2.6.32.12-0.7

rpm
-2.6.32.13-0.4

rpm
-2.6.32.13-0.5

rpm
-2.6.32.19-0.2

rpm
-2.6.32.19-0.3

rpm
-2.6.32.23-0.3

rpm
-2.6.32.24-0.2

rpm
-2.6.32.27-0.2

rpm
-2.6.32.29-0.3

rpm
-2.6.32.3-0.3

rpm
-2.6.32.3-0.5

rpm
-2.6.32.36-0.5

rpm
-2.6.32.5-0.1

rpm
-2.6.32.7-0.2

rpm
-2.6.32.8-0.3

rpm
-2.6.32.9-0.5

rpm
-2.6.33-3

rpm
-2.6.33-5

rpm
-2.6.33-6

rpm
-2.6.34-12

rpm
-2.6.34-3

rpm
-2.6.34-6

rpm
-2.6.34-8

rpm
-2.6.34-9

rpm
-2.6.34.4-0.1

rpm
-2.6.34.7-0.2

rpm
-2.6.34.7-0.3

rpm
-2.6.34.7-0.4

rpm
-2.6.34.7-0.5

rpm
-2.6.34.7-0.7

rpm
-2.6.36-16

rpm
-2.6.36-18

rpm
-2.6.37-12

rpm
-2.6.37-20

rpm
-2.6.37-6

rpm
-2.6.37.1-1.2

F
re

qu
en

cy
 p

er
 1

00
0

S
LO

C

Versions

Faults Occurrences per Directory, from rpm-2.6.30-8 to rpm-2.6.37.1-1.2

Documentation
arch

block
crypto
drivers

firmware
fs

include
init
ipc

kernel
lib

mm
net

samples
scripts

security
sound

tools
usr
virt

kdb
perfmon

Figure 5: openSUSE Kernel, from 2.6.30 to 2.6.37

2011 Linux Symposium • 53

rpm-2.6.37-20 2.6.37
Directory Faults Rate Faults Rate
Documentation 2 0.179308 2 0.179308
arch 1145 0.633151 1133 0.637841
block 2 0.148566 2 0.148865
drivers 2261 0.432644 2256 0.436499
fs 36 0.052706 36 0.053648
include 81 0.292085 79 0.291239
kernel 11 0.096745 11 0.099146
mm 16 0.313535 16 0.321970
net 23 0.050789 22 0.048632
scripts 1 0.027578 1 0.027952
sound 118 0.245929 118 0.245929

Table 2: openSUSE 2.6.36-20 versus Vanilla 2.6.37

to 2.6.37 releases: thus, we can compare it roughly to
Figure 1 targeting upstream releases between 2.6.32 and
2.6.38. It can be seen that the evolution is quite similar
once again. Figure 2 show that the number of added
fault is similar to what has been observed in previous
cases, and that the fault rate is also lower.

5.5 Overall analysis

A general tendency can be drawn from these results:
distributions’ kernels, even if patched, shows a slightly
lower fault rate. It is interesting, not because it shows
that the packaged kernels are somewhat “better” than
upstream, but because it shows that they are not worse
and that patches do not have a real impact, regarding the
configurability faults measured by Undertaker. It should
be noted that the difference in fault rate is not important,
so there is an impact of patches in those distributions,
but it is negligible if considering its importance. As
shown in [4], the faults in Linux are decreasing over the
time thanks to the efforts being put on producing tools
to identify as much as possible of these faults, allowing
to fix them.

6 Conclusion

Our initial objective was to study whether, regarding the
Undertaker analyzing tool and its target, there were dif-
ferences between a distribution-patched kernel source
code and its upstream counterpart. We presented the
way Undertaker works, and we also explained how we
used it to measure fault rates. The methodology given
also explains the notion of fault rate we used. After

checking that we obtain comparable results with previ-
ous studies, confirming that Undertaker’s specifics can
be avoided and that the fault rate it computes gives a
similar idea of the quality status of the code base as Coc-
cinelle [4], we ran the process over some kernels from
different distributions: Debian, Mandriva and open-
SUSE. We have been able to show that, whatever distri-
bution we consider, there is a constant pattern: the com-
puted fault rate is often lower on distribution-patched
kernels, while the number of faults is often higher. How-
ever, the figures also give an important detail: if we look
at the deltas, the differences are always very low; for ex-
ample, in the arch directory of openSUSE’s 11.2 ker-
nel release 2.6.37-20, we have 1145 faults were iden-
tified, while 1133 were in the corresponding upstream
version, as illustrated by Table 2. Figures presented in
Table 1 are roughly the same for Mandriva’s 2.6.33.7
versus Vanilla 2.6.33.7. And regarding the number of
faults, the deltas are negligible.

Further work should target a more precise analysis of the
faults: it would be interesting to check whether the faults
identified and which are more present in distributions’
kernels are evenly distributed or whether they concen-
trate around hot spots. Another improvement would
be to integrate other detailed measures such as what is
done from Coccinelle in [4]: that would allow us to per-
form the same checks, i.e. whether there are hot spots
in patched-code, not limiting ourselves to the study of
configurability.

References

[1] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth
Hallem, and Dawson Engler. An empirical study of
operating system errors. pages 73–88, 2001.

[2] Dawson Engler, Benjamin Chelf, Andy Chou, and
Seth Hallem. Checking system rules using system-
specific, programmer-written compiler extensions.
pages 1–16, 2000.

[3] Nicolas Palix, Julia Lawall, and Gilles Muller.
Tracking code patterns over multiple software ver-
sions with herodotos. In AOSD ’10: Proceed-
ings of the 9th International Conference on Aspect-
Oriented Software Development, pages 169–180,
New York, NY, USA, 2010. ACM.

[4] Nicolas Palix, Suman Saha, Gaël Thomas,
Christophe Calvès, Julia Lawall, and Gilles Muller.

54 • Faults in Patched Kernel

Faults in Linux: Ten Years Later. Research Report
RR-7357, INRIA, 08 2010.

[5] Julio Sincero, Reinhard Tartler, Christoph Eg-
ger, Wolfgang Schröder-Preikschat, and Daniel
Lohmann. Facing the Linux 8000 Feature Night-
mare. In ACM SIGOPS, editor, Proceedings of
ACM European Conference on Computer Systems
(EuroSys 2010), Best Posters and Demos Session,
2010.

[6] Reinhard Tartler, Daniel Lohmann, Julio Sincero,
and Wolfgang Schröder-Preikschat. Feature Consis-
tency in Compile-Time Configurable System Soft-
ware. In European Chapter of ACM SIGOPS, ed-
itor, Proceedings of the EuroSys 2011 Conference
(EuroSys ’11), 2011.

Towards Co-existing of Linux and Real-Time OSes

Hitoshi Mitake, Tsung-Han Lin, Hiromasa Shimada, Yuki Kinebuchi, Ning Li, Tatsuo Nakajima
Department of Computer Science and Engineering, Waseda University

{mitake, johnny, yukikine, lining, tatsuo}@dcl.info.waseda.ac.jp

Abstract

The capability of real-time resource management in
the Linux kernel is dramatically improving due to the
effective contribution of the real-time Linux commu-
nity. However, to develop commercial products cost-
effectively, it must be possible to re-use existing real-
time applications from other real-time OSes whose OS
API differs significantly from the POSIX interface. A
virtual machine monitor that executes multiple oper-
ating systems simultaneously is a promising solution,
but existing virtual machine monitors such as Xen and
KVM are hard to used for embedded systems due to
their complexities and throughput oriented designs. In
this paper, we introduce a lightweight processor abstrac-
tion layer named SPUMONE. SPUMONE provides vir-
tual CPUs (vCPUs) for respective guest OSes, and
schedules them according to their priorities. In a typical
case, SPUMONE schedules Linux with a low priority
and an RTOS with a high priority. The important fea-
tures of SPUMONE are the exploitation of an interrupt
prioritizing mechanism and a vCPU migration mech-
anism that improves real-time capabilities in order to
make the virtualization layer more suitable for embed-
ded systems. We also discuss why the traditional virtual
machine monitor design is not appropriate for embed-
ded systems, and how the features of SPUMONE allow
us to design modern complex embedded systems with
less efforts.

1 Introduction

Modern real-time embedded systems like smart phones
become highly functional along with the enhancements
of CPUs targeting their market. But their functional fea-
tures introduced significant engineering cost. The main
difficulty in the development of such devices comes
from the conflicting requirement of them: low latency
and high throughput must be established in one system.
This requirement is hard to satisfy with existing OSes,

because all of them are categorized as either Real-Time
Operating System (RTOS) or General Purpose Oper-
ating System (GPOS). RTOSes, like eCos [2] or TOP-
PERS1 [3], are designed and developed for executing
real-time tasks such as processing wireless communica-
tion protocols. In the typical case, such a task runs pe-
riodically for short time. The feature of executing such
deadline-sensitive tasks imposes limitation on RTOSes.
For example, most RTOSes cannot change the num-
ber of tasks dynamically. On the other hand, GPOSes
such as Linux, are designed and developed for execut-
ing tasks which consist of significant amount of compu-
tation. Of course some of them in desktop computers
are latency sensitive, to offer a comfortable user experi-
ence, but missing a deadline is not fatal for them. The
contribution from the real-time Linux community has
significantly improved the real-time resource manage-
ment capability of Linux [7]. However, there is always
a tradeoff between satisfying real-time constraints and
achieving maximum throughput [8].

In order to develop a modern real-time embedded sys-
tem which satisfies conflicting requirements, combin-
ing multiple OSes on virtual machine monitors can be
an effective approach. A virtual machine monitor, e.g.
KVM [6], Xen [4] and VMware [5], is traditionally used
in the area of data center or desktop computing for ex-
ecuting multiple OS instances in one physical machine.
Their capability of executing multiple OSes is also at-
tractive for embedded systems because they make it pos-
sible to implement a system which has multiple OS per-
sonalities. If there is a virtualization layer which has a
capability of executing GPOS and RTOS in one phys-
ical machine, developing real-time embedded systems
can be simpler.

Armand and Gien [9] presented several requirements for
a virtualization layer to be suitable for embedded sys-
tems:

1TOPPERS is an open source RTOS that offers µITRON inter-
face, and it is used in many Japanese commercial products.

• 55 •

56 • Towards Co-existing of Linux and Real-Time OSes

1. It should execute an existing operating system and
its supported applications in a virtualized environ-
ment, such that modifications required to the op-
erating system are minimized (ideally none), and
performance overhead is as low as possible.

2. It should be straightforward to move from one ver-
sion of an operating system to another one; this
is especially important to keep up with frequent
Linux evolutions.

3. It should reuse native device drivers from their ex-
isting execution environments with no modifica-
tion.

4. It should support existing legacy often real-time
operating systems and their applications while
guaranteeing their deterministic real-time behavior.

Unfortunately, there is no open source virtualization
layer that satisfies all the above requirements. Virtual-
Logix2 VLX [9] is a virtualization layer designed for
combining RTOS and GPOS, but it is proprietary soft-
ware. OKL4 microvisor [12] is a microkernel based vir-
tualization technology for embedded systems, but per-
forms poorly as the nature of microkernels [9]. In addi-
tion, we found that there are fatal performance degra-
dation of guest OSes when RTOS and SMP GPOS
share a same physical CPU. This performance prob-
lem comes from the phenomenon called Lock Holder
Preemption(LHP) [11]. It is a general phenomenon of
virtualization layers, hence a solution for this problem
was already proposed. However these existing solu-
tions only focus on the throughput of guest OSes, there-
fore the virtualization layers that execute RTOSes can-
not adopt these solutions. To the best of our knowl-
edge, there is no virtualization layer that can execute
RTOS and GPOS on a multicore processor without per-
formance degradation caused by LHP, and is distributed
as open source software.

Our laboratory is developing an open source virtual-
ization layer for combining RTOS and Linux on em-
bedded systems that adopt multicore processors, named
SPUMONE (Software Processing Unit, Multiplexing
ONE into two or more). During the development of this
virtualization layer, we faced many difficulties specific
to embedded systems. They come from the limitation

2VirtualLogix, Inc. was acquired by Red Bend Software in Sep.
2010

of hardware resources, the requirement of engineering
cost, or scheduling RTOS and SMP GPOS on the same
CPU. Because of these difficulties, we believe that virtu-
alization layers for real-time embedded systems should
be developed as open source software for incorporating
various insights from a wide range of community.

This paper is structured as follows: in Section 2, the
detailed motivation of our project is described. Sec-
tion 3 describes the basic architecture of SPUMONE.
Section 4 and Section 5 are catalogs of the problems
we encountered. Section 4 describes the difficulties of
dealing with real-time virtualization layers which adopt
multicore processors. Section 5 describes the method
for isolating OSes spatially in embedded systems. Sec-
tion 6 shows related work and the differences between
SPUMONE and them. Finally Section 7 concludes
this paper and mentions about future directions of this
project.

2 Why Virtualization

This section presents three advantages of using virtu-
alization layers in embedded systems. The first ad-
vantage is that control processing can be implemented
as application software on RTOS. Embedded systems
usually include control processing like mechanical mo-
tor control, wireless communication control or chem-
ical control. Using software-based control techniques
enables us to adopt a more flexible control strategy, so
recent advanced embedded systems contain micropro-
cessors instead of hardware implemented controllers for
implementing flexible control strategies. On the other
hand, recent embedded systems need to process vari-
ous information. For example, applications which re-
quire significant computation, such as multimedia play-
ers and full featured web browsers, are crucial elements
of modern smart phones. Therefore, recent embedded
systems have to contain both control and information
processing functionalities. In traditional embedded sys-
tems, dedicated processors are assigned for respective
processing. A general purpose processor with sufficient
computational capability offers a possibility to combine
these multiple processing on a single processor. A vir-
tualization layer can host RTOS and GPOS on one sys-
tem, therefore this approach requires less hardware con-
trollers and reduces the cost of embedded systems hard-
ware.

The second advantage is that a virtualization layer
makes it possible to reuse existing software. Even if the

2011 Linux Symposium • 57

virtualization layer is based on the para-virtualization
technique (which requires the modification of guest
OSes), application programs running on the guest OSes
do not need to be modified. In a typical case of devel-
oping embedded systems, vendors have their own OSes
and applications running on them. The virtualization
layer can execute such in-house software with standard
OS platforms like Symbian or Android. If the in-house
software is developed against such a standard platform,
it should be modified when a standard platform is re-
placed. Actually, the standard platform is frequently re-
placed according to various business reasons. On the
other hand, if the in-house software is developed as ap-
plication programs that run on the vendor specific OSes,
porting application programs is not required even if a
standard platform is replaced.

The third advantage is the isolation of source code. For
example, proprietary device drivers can be mixed with
GPL code without license violation. This may solve var-
ious business issues when adopting Linux in embedded
systems.

3 Basic Architecture

3.1 User-Level Guest OS vs. Kernel Level Guest
OS

There are several traditional approaches to execute mul-
tiple operating systems on a single processor in order
to compose multiple functionalities. Microkernels ex-
ecute guest OS kernels at the user level. When using
microkernels, various privileged instructions, traps and
interrupts in the OS kernel need to be virtualized by re-
placing their code. In addition, since OS kernels exe-
cuted as user level tasks, application tasks need to com-
municate with the OS kernel via inter-process commu-
nication. Therefore, many parts of the OS need to be
modified.

VMMs are another approach to execute multiple OSes.
If a processor offers a hardware virtualization support,
all instructions that need to be virtualized trigger traps
to VMM. This makes it possible to use any OSes with-
out any modification. But if the hardware virtualization
support is incomplete, some instructions still need to
be complemented by replacing some code to virtualize
them.

Most of the processors used for the embedded systems
only have two protection levels. So when kernels are lo-
cated in the privileged level, they are hard to isolate. On
the other hand, if the kernels are located in the user level,
the kernels need to be modified significantly. Most of
embedded system industries prefer not to modify a large
amount of the source code of their OSes, so it is desir-
able to put them in the privileged level. Also, the virtu-
alization of MMU introduces significant overhead if the
virtualization is implemented by software. Therefore,
we need reorder mechanisms to reduce the engineering
cost, to ensure the reliability of the kernels and to exploit
some advanced characteristics of multicore processors.

The following three issues are most serious problems,
when a guest OS is implemented in the user level.

1. The user level OS implementation requires heavy
modification of the kernel.

2. Emulating an interrupt disabling instruction is very
expensive if the instruction cannot be replaced.

3. Emulating a device access instruction is very ex-
pensive if the instruction cannot be replaced.

In a typical RTOS, both the kernel and application code
are executed in the same address space. Embedded sys-
tems have dramatically increased their functionalities in
every new product. To reduce the development cost,
the old version of application code should be reused
and extended. The limitation of hardware resources is
always the most important issue to reduce the product
cost. Therefore, the application code sometimes uses
very ad-hoc programming styles. For example, appli-
cation code running on RTOS usually contains many
privileged instructions like interrupt disable/enable in-
structions to minimize the hardware resources. Also,
device drivers may be highly integrated into the appli-
cation code. Thus, it is very hard to modify these ap-
plications to execute at the user level without changing
a significant amount of application code, even if their
source code is available. Therefore, it is hard to execute
the application code and RTOS in the user level with-
out violating the requirements described in Section 1.
Therefore, executing RTOS is very hard if the proces-
sor does not implement the hardware virtualization sup-
port. Even if there is a proper hardware virtualization
support, we expect that the performance of RTOS and
its application code may be significantly degraded. Our

58 • Towards Co-existing of Linux and Real-Time OSes

approach chooses to execute both guest OS kernels and
a virtualization layer at the same privileged level. This
decision makes the modification of OS kernels minimal,
and there is no performance degradation by introducing
a virtualization layer. However, the following two issues
are very serious in the approach.

1. Instructions which disable interrupts have serious
impact on the task dispatching latency of RTOS.

2. There is no spatial protection mechanism among
OS kernels.

The first issue is serious because replacing interrupt dis-
able instructions is very hard for RTOS and its applica-
tion code as described above. The second issue is also
a big problem because executing guest OS kernels in
virtual address spaces requires significant modification
on them. SPUMONE proposes a technique presented in
Section 4 and Section 5 to overcome the problems.

3.2 SPUMONE: A Multicore Processor Based Vir-
tualization Layer for Embedded Systems

SPUMONE is a thin software layer for multiplexing a
single physical CPU (pCPU) core into multiple virtual
CPU (vCPU) cores [19, 20]. The current target pro-
cessor of SPUMONE is the SH4a architecture, which
is very similar to the MIPS architecture, and is adopted
in various Japanese embedded system products. Also,
standard Linux and various RTOSes support this proces-
sor. The latest version of SPUMONE runs on a single
and multicore SH4a chip. Currently, SMP Linux, TOP-
PERS [3], and the L4 [12] are running on SPUMONE
as a guest OS.

The basic abstraction of SPUMONE is vCPU as de-
picted in Figure 1. In this example, SPUMONE hosts
two guest OSes, Linux and RTOS. Linux has two vC-
PUs, vCPU0 and vCPU1. vCPU0 is executed by pCPU0
and vCPU1 is executed by pCPU1. RTOS has one
vCPU, vCPU2. This is executed by pCPU1. So both
of vCPU1 and vCPU2 are executed on pCPU1. Un-
like typical microkernels or VMMs, SPUMONE itself
and guest OS kernels are executed in the privileged
level as mentioned in Section 3.1. Since SPUMONE
provides an interface slightly different from the one of
the underlying processor, we simply modify the source

pCPU0

User space

pCPU1

Kernel space

RTOS

Time multiplexed vCPUs

Kernel mode thread

User mode thread

 with its address space

Figure 1: An Overview of SPUMONE

code of guest OS kernels, a method known as para-
virtualization. This means that some privileged instruc-
tions should be replaced to hypervisor calls, function
calls to invoke SPUMONE API, but the number of re-
placements is very small. Thus, it is very easy to port a
new guest OS or to upgrade the version of a guest OS
on SPUMONE.

To spatially protect multiple OSes, if it is necessary,
SPUMONE may assume that underlying processors
support the mechanisms to protect physical memories
used by respective OS like VIRTUS [24]. The approach
may be suitable for enhancing the reliability of guest
OSes on SPUMONE without significantly increasing
overhead. In section 5, we propose an alternative novel
approach to use a functionality of multicore processor
to realize the spatial protection among guest OSes. The
approach does not assume that the processor provides
an additional hardware support to spatially isolate guest
OSes.

SPUMONE does not virtualize peripheral devices be-
cause traditional approaches incur significant overhead
that most of embedded systems could not tolerate. In
SPUMONE, since device drivers are implemented in the
kernel level, they do not need to be modified when the
device is not shared by multiple OSes.

Multicore processor version of SPUMONE is designed
on the distributed model similar to the Multikernel ap-
proach [18]. A dedicated instance of SPUMONE is as-
signed to each physical core. Therefore, data structures
used in SPUMONE need not to be protected by using
synchronization mechanisms. This design is chosen in
order to eliminate the unpredictable overhead of syn-
chronization among multiple physical cores. This may
simplify the design of SPUMONE.

2011 Linux Symposium • 59

They communicate with each other via the specially al-
located shared memory area and the inter-core interrupt
(ICI) mechanism. First, a sender stores data on a specific
memory area, then it sends an interrupt to a receiver,
and the receiver copies or simply reads the data from
the shared memory area.

3.2.1 Interrupt/Trap Delivery

Interrupt virtualization is a key feature of SPUMONE.
Interrupts are intercepted by SPUMONE before they are
delivered to each guest OS. When SPUMONE receives
an interrupt, it looks up the interrupt destination table
to make a decision to which OS it should be delivered.
Traps are also delivered to SPUMONE first, then are
directly forwarded to the currently executing guest OS.

To allow interrupts to be intercepted by SPUMONE,
the interrupt entry point of the guest OSes should not
be registered to hardware directly. The entry point of
each guest OS must notify SPUMONE via a hypervisor
call to registering their real vector table. An interrupt
is first examined by the interrupt handler of SPUMONE
in which the destination vCPU is determined, and the
corresponding scheduler is invoked. When the interrupt
triggers OS switching, all the registers including MMU
state of the current OS are saved into the stack, then the
registers in the stack of the previous OS are restored.
Finally, the execution is switched to the entry point of
the destination OS. The processor initializes the inter-
rupt just as if the real interrupt occurred, so the source
code of the OS entry points does not need to be changed.

3.2.2 vCPU Scheduling

Multiple guest OSes run by multiplexing a physical
CPU. The execution states of the guest OSes are man-
aged by data structures that we call vCPUs. When
switching the execution of vCPUs, all the hardware reg-
isters are stored into the corresponding register table
of vCPU, and then restored from the table of the next
executing vCPU. The mechanism is similar to the pro-
cess implementation of a typical OS, however the vCPU
saves the entire processor state, including the privileged
control registers.

The scheduling algorithm of vCPUs is the fixed priority
preemptive scheduling. When RTOS and Linux share

the same pCPU, the vCPU owned by RTOS would gain
a higher priority than the vCPU owned by Linux in or-
der to maintain the real-time responsiveness of RTOS.
This means that Linux is executed only when the vCPU
of RTOS is in an idle state and has no real-time task
to be executed. The process scheduling is left up to
OSes so the scheduling model for each OS need not to
be changed. Idle RTOS resumes its execution when it
receives an interrupt. The interrupt to RTOS should pre-
empt Linux immediately, even if Linux has disabled the
execution of its interrupt handlers. The details of this
requirement and the solution for it is described in Sec-
tion 4.1.1.

3.2.3 Modifying Guest OS Kernels

Each guest OS is modified to be aware of the exis-
tence of the other guest OSes, because hardware re-
sources other than the processor are not multiplexed by
SPUMONE as described below. Thus those are exclu-
sively assigned to each OS by reconfiguring or by mod-
ifying their kernels. The following describes how the
guest OS kernels are modified in order to run on the top
of SPUMONE.

• Interrupt Vector Table Register Instruction: The in-
struction registering the address of a vector table is
replaced to notify the address to the interrupt man-
ager of SPUMONE. Typically this instruction is in-
voked once during the OS initialization.

• Bootstrap: In addition to the features supported by
the single-core SPUMONE, the multicore version
provides the virtual reset vector device, which is
responsible for resetting the program counter of the
vCPU that resides on a different pCPU.

• Physical Memory: A fixed size of physical mem-
ory area is assigned to each guest OS. The phys-
ical address for the OSes can be simply changed
by modifying the configuration files or their source
code. Virtualizing the physical memory would in-
crease the size of the virtualization layer and the
substantial performance overhead. In addition, un-
like the virtualization layer for enterprise systems,
embedded systems need to support a fixed number
of guest OSes. For these reasons we simply assign
a fixed amount of physical memory to each guest
OS.

60 • Towards Co-existing of Linux and Real-Time OSes

• Idle Instruction: On a real processor, the idle in-
struction suspends a processor until it receives an
interrupt. On a virtualized environment, this is
used to yield the use of real physical core to another
OS. We prevent the execution of this instruction by
replacing it with the hypervisor call of SPUMONE.
Typically this instruction is located in a specific
part of the kernel, which is fairly easy found and
modified.

• Peripheral Devices: Peripheral devices are as-
signed by SPUMONE to each OS exclusively. This
is done by modifying the configuration of each
OS not to share the same peripherals. We as-
sume that most of the devices can be assigned ex-
clusively to each OS. This assumption is reason-
able because, in embedded systems, multiple guest
OSes are usually assigned different functionalities
and use different physical devices. It usually con-
sists of RTOS and GPOS, where RTOS is used for
controlling special purpose peripherals such as a
radio transmitter and some digital signal proces-
sors, and GPOS is used for controlling generic de-
vices such as various human interaction devices
and storage devices. However some devices cannot
be assigned exclusively to each OS because both
systems need to share them. For instance, the pro-
cessor we used offers only one interrupt controller.
Usually a guest OS needs to clear some of its regis-
ters during its initialization. In the case of running
on SPUMONE, a guest OS booting after the first
one should be careful not to clear or overwrite the
settings of the guest OS executed first. For exam-
ple, we modified the Linux initialization code to
preserve the settings done by TOPPERS.

3.2.4 Dynamic Multicore Processor Management

As described in the previous section, SPUMONE en-
ables multiplexing of virtual CPUs on physical CPUs.
The mapping between pCPUs and vCPUs is dynami-
cally changed to balance the tradeoffs among real-time
constraints, performance and energy consumption. In
SPUMONE, a vCPU can be migrated to another core
according to the current situation. The mechanism is
called the vCPU migration mechanism. In SPUMONE,
all kernel images are located in the shared memory.
Therefore, the vCPU migration mechanism just moves
the register states to manage vCPUs, and the cost of the

Save power when the processor

utilization of all the OS is low

Linux

Let Linux dominate every core

Linux

Balance processor utilization between OSes

Linux

Exclude OS execution with

dedicated processors

Linux

RTOSRTOS

Figure 2: Dynamically Changing the Mapping Between
Virtual CPUs and Physical CPUs

migration can be reduced significantly. Actually, the
round trip time of the vCPU migration in the current
version of SPUMONE on the RP1 platform3 is about
50 µs when a vCPU is moved to anther pCPU and back
to the original pCPU.

There are several advantages of our approach. The first
advantage is to change the mapping between vCPUs
and pCPUs to reduce energy consumption. As shown
in Figure 2, we assume that a processor offers two p-
CPUs. Linux uses two vCPUs and the real-time OS uses
one vCPU. When the utilization of RTOS is high, two
vCPUs of Linux are mapped on one pCPU (Left Top).
When RTOS is stopped, each vCPU of Linux uses a dif-
ferent pCPU (Right Top). Also, one pCPU is used by
a vCPU of Linux and another pCPU is shared by Linux
and RTOS when the utilization of RTOS is low (Right
Below). Finally, when it is necessary to reduce energy
consumption, all vCPUs run on one pCPU (Left Below).
This approach enables us to use very aggressive policies
to balance real-time constraints, performance, and en-
ergy consumption.

3The RP1 platform is our current hardware platform that contains
a multicore processor. The processor has four SH4 CPUs and they
are communicated with a shared memory. The platform is developed
by Hitach and Renesas.

2011 Linux Symposium • 61

Configuration Time Overhead
Linux Only 68m 5.9s -

Linux and TOPPERS 69m 3.1s 1.4%

Figure 3: Linux kernel build time

OS(Linux version) Added LoC Removed LoC
Linux/SPUMONE(2.6.24.3) 161 8

RTLinux 3.2(2.6.9) 2798 1131
RTAI 3.6.2(2.6.19) 5920 163
OK Linux (2.6.24) 28149 -

Figure 4: The total number of modified LoC in *.c, *.h,
*.S and Makefile

3.2.5 Performance and Engineering Cost

Figure 3 shows the time required to build the Linux ker-
nel on native Linux and modified Linux executed on the
top of SPUMONE together with TOPPERS. TOPPERS
only receives the timer interrupts every 1ms, and exe-
cutes no other task. The result shows that SPUMONE
and TOPPERS impose the overhead of 1.4% to the
Linux performance. Note that the overhead includes the
cycles consumed by TOPPERS. The result shows that
the overhead of the existence of SPUMONE to the sys-
tem throughput is sufficiently small.

We evaluated the engineering cost of reusing RTOS and
GPOS by comparing the number of modified lines of
code (LoC) in each OS kernel. Figure 4 shows the LoC
added and removed from the original Linux kernels. We
did not count the lines of device drivers for inter-kernel
communication because the number of lines will differ
depending on how many protocols they support and how
complex they are. We did not include the LoC of util-
ity device drivers provided for communication between
Linux and RTOS or Linux and servers processes be-
cause it depends on how many protocols and how com-
plex those are implemented.

The table also shows the modified LoC for RTLinux,
RTAI and OK Linux, all of which are previous ap-
proaches to support multiple OS environments. Since
we could not find RTLinux, RTAI, OK Linux for the
SH4a processor architecture, we evaluated them devel-
oped for the Intel architecture. OK Linux is a Linux
kernel virtualized to run on the L4 microkernel. For OK
Linux, we only counted the code added to the archi-
tecture dependent directory arch/l4 and include/

asm-l4. The results show that our approach requires

0xf

0xe

0xd

0xc

0xb

0xa

0x9

0x8

0x7

0x6

0x5

0x4

0x3

0x2

0x1

0x0

0xf

0xe

0xd

0xc

0xb

0xa

0x9

0x8

0x7

0x6

0x5

0x4

0x3

0x2

0x1

0x0

(a) Without IPL separation (b) With IPL separation

Interrupt disable Interrupt disable

Interrup enable Interrup enable

Timer IPL

Serial IPL

Timer & Serial IPL

Linux RTOS

Linux

RTOS

Interrupt disable

Interrupt disable

Interrup enable

Interrup enable

Timer & Serial IPL

Serial IPL

Timer IPL

Figure 5: Separating Interrupt Priorities Between Guest
OSes

only small modifications to the Linux kernel. The result
shows that the strategy of SPUMONE, virtualizing pro-
cessors only, succeeds in reducing the number of mod-
ification of guest OSes and to satisfy the requirements
described in Section 1.

4 Real-Time Resource Management in
SPUMONE

4.1 Reducing RTOS Dispatch Latency

In order to minimize the dispatch latency of RTOS
tasks during concurrent activities of Linux on a sin-
gle device, we propose the following two techniques in
SPUMONE.

4.1.1 Interrupt Priority Level Separation

The first technique is to replace the interrupt enabling
and disabling instructions with the hypervisor calls.
A typical OS disables all interrupt sources when dis-
abling interrupts for the atomic execution. For example,
local_irq_enable() of Linux enables all interrupt
and local_irq_disable() disables all interrupt. On
the other hand, our approach leverages the interrupt pri-
ority mechanism of the processor. The SH4a processor
architecture provides 16 interrupt priority levels (IPLs).
We assign the higher half of the IPLs to RTOS and
the lower half to Linux as shown in Figure 5. When
Linux tries to block the interrupts, it modifies its inter-
rupt mask to the middle priority. RTOS may therefore
preempt Linux even if it is disabling the interrupts. On
the other hand, when RTOS is running, the interrupts for

62 • Towards Co-existing of Linux and Real-Time OSes

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120

S
am

pl
e

[n
um

]

Delay [us]

delay

Figure 6: Interrupt dispatch latency of TOPPERS with-
out IPL separation

Linux are blocked by the processor. These blocked in-
terrupts could be delivered immediately when Linux is
dispatched.

The instructions for enabling and disabling inter-
rupts are typically provided by the kernel internal
API like local_irq_enable() and local_irq_

disable(). They are typically coded as inline func-
tions or macros in the kernel source code. For Linux,
we replace local_irq_enable() with the hypervi-
sor call which enables entire level of interrupts and
local_irq_disable() with the other hypervisor call
which disables the lower priority interrupts. For RTOS,
we replace the API for interrupt enabling with the hy-
pervisor call enabling only high priority interrupts, and
the API for interrupt disabling with the other hypervisor
call disabling the entire level of interrupts. Therefore,
interrupts assigned to RTOS are immediately delivered
to RTOS, while interrupts assigned to Linux are blocked
during execution of the RTOS. Figure 5 shows the inter-
rupt priority levels assignment for each OS, which we
used in the evaluation environment.

Figures 6 and 7 show the task dispatch latency of TOP-
PERS under two configurations of SPUMONE. In Fig-
ure 6, the evaluation result of SPUMONE without the
IPL separation executing Linux and TOPPERS is de-
picted. Linux executes write() on the file stored on a
Compact Flash card repeatedly and TOPPERS measures
the task dispatch latency of the interrupts from time
management unit. In Figure 7, the result of SPUMONE
with the IPL separation is shown. The guest OSes and
their workloads are the same as the condition used in a
case when the IPL separation is not used.

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120

S
am

pl
e

[n
um

]

Delay [us]

delay

Figure 7: Interrupt dispatch latency of TOPPERS with
IPL separation

As these results show, the workload of Linux heavily in-
terference with the task dispatch latency of RTOS if the
IPL separation is not configured. Therefore we can say
that separating IPL is an effective method to guarantee
the low interrupt dispatch latency of RTOS.

However, the approach assumes that all activities in
TOPPERS are processed at the higher priority than the
activities of Linux. The current version of Linux is im-
proving real-time capabilities. So, in the near future,
some applications that requires to satisfy real-time con-
straints will be developed on Linux. In this case, the
approach described here cannot be used. Also, the ap-
proach increases the number of modifications of Linux.
It is desirable not to replace interrupt enable/disable in-
structions in terms of the engineering cost. Therefore,
we have developed an alternative method described in
the next section.

4.1.2 Reducing Task Dispatching Latency with
vCPU migration

The second technique is based on the vCPU migration
mechanism introduced in Section 3.2.4. The first tech-
nique, replacing API for interrupt enabling/disabling re-
quires slight but non-trivial modification of Linux. In
addition, the technique may not work correctly when
the device drivers or kernel modules are programmed
in a bad manner, which enable or disable interrupts
with a non-standard way. The second technique ex-
ploits the vCPU migration mechanism. Under this tech-
nique, SPUMONE migrates a vCPU, which is assigned

2011 Linux Symposium • 63

to Linux and shares the same pCPU with the vCPU of
RTOS, to another pCPU when it traps into kernel mode,
or when interrupts are received. In this way, only the
user level code of Linux is executed concurrently on the
shared pCPU, which will never change the priority lev-
els. Therefore, RTOS may preempt Linux immediately
without separating IPL used in the first technique.

4.2 Increasing the Throughput of SMP Linux

Generally speaking, porting OSes to virtualization lay-
ers produces semantic gap because the assumptions
which guest OSes rely on may not be preserved. For ex-
ample, OSes assume that they dominate CPU, memory,
and storage. In the ordinary environment where OSes
run directly on the real hardware, this assumption is
true. But when virtualization layers execute guest OSes,
this assumption is no longer held. CPU and memory are
shared by multiple OSes.

The semantic gap produced by virtualization layers can
cause some new problems. One of the typical prob-
lems is called the Lock Holder Preemption (LHP) prob-
lem [11].

The LHP problem occurs when the vCPU of the guest
OS is preempted by the virtualization layer during
the execution of critical sections protected by mutex
based on busy waiting (e.g. spinlock_t, rwlock_t
in Linux). Figure 8 depicts the typical scenario of
LHP in SPUMONE. On SPUMONE, the execution
of vCPU2 belonging to RTOS is started immediately
even if vCPU1 executing Linux is currently running
on the same processor, because the activities of RTOS
are scheduled at a higher priority than the activities in
Linux. Let us assume that the execution of the Linux
kernel is preempted while the kernel keeps a lock. In
this case, other vCPUs owned by Linux and running on
other pCPUs may wait to acquire the lock via busy wait-
ing.

4.2.1 Existing Solutions of LHP

This performance degradation problem caused by LHP
is a general one of every virtualization layer. So, there
are existing solutions for solving the problem. Uh-
lig, et al. pointed this problem [11]. They also intro-
duced the methods to avoid the problem. The method
is named as Delayed Preemption Mechanism (DPM).

DPM is suitable for a virtualization layer based on the
para-virtualization technology because it does not waste
CPU time and can be implemented with a less effort.
However, this solution increases the dispatch latency of
guest OSes, making it unsuitable for embedded systems
that need to satisfy real-time constraints.

VMware ESX employs a scheduling algorithm called
co-scheduling [15] in its vCPU scheduler [16]. This
solution wastes lots of CPU time. VMware ESX em-
ploys the technique because it is the full-virtualization
technique. Also, it does not assume to execute mul-
tiple vCPUs for a guest OS on one pCPU. Sukwong
and Kim introduced the improved co-scheduling algo-
rithm named balance scheduling and implemented it on
KVM [17].

Wells, et al. introduced a hardware based solution called
spin detection buffer (SDB) for detecting meaningless
spin of vCPUs produced by LHP [13]. They found that
the execution pattern can be distinguished when a CPU
is spinning before acquiring a lock. SDB inspects the
number of store instructions and counts the number of
updated memory address if a thread is executed in ker-
nel mode. If the number of counted addresses does not
exceed the threshold (they set it as 1024), SDB judges
the thread is spinning in vain. This hardware informa-
tion can be used by a virtualization layer to avoid the
LHP problem.

Friebel and Biemueller introduced a method for avoid-
ing LHP on Xen [14]. Respective threads in the guest
OSes count the number of spinning on a busy wait mu-
tex. When the count exceeds the threshold, the spinning
thread invokes the hypervisor call in order to switch to
another vCPU.

4.2.2 Solving LHP in SPUMONE

The methods described in Section 4.2.1 improve the
throughput of SMP Linux on traditional VMMs. But
all of them assume that there are no real-time activities.

In this section, we propose a new method for avoid-
ing LHP. In our approach, the vCPU of Linux, which
shares pCPU with the vCPU of RTOS, is migrated to
another pCPU when an interrupt for RTOS is received.
Then, it returns to the original pCPU when RTOS yields
pCPU and becomes idle. When two vCPUs for Linux
are executed on the same pCPU, they also cause the

64 • Towards Co-existing of Linux and Real-Time OSes

pCPU0

User space

pCPU1

Kernel space

RTOS

vCPU2 activated

pCPU0 pCPU1

RTOS

Interrupt from the device

allocated by RTOS

Figure 8: Typical example of Lock Holder Preemption in SPUMONE

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 10 20 30 40 50 60 70 80 90S
co

re
 o

f h
ac

kb
en

ch
 [s

ec
on

d]
 (

lo
w

er
 is

 b
et

te
r)

Time consumption by RTOS [%] (500ms periodic)

raw scheduler of SPUMONE
2 cores
3 cores
4 cores

ideal score
vCPU Migration

Figure 9: Result of hackbench on Various Configuration

LHP problem. But, in this case, we assume that the de-
layed preemption mechanism can be used since Linux
does not have real-time activities. The vCPU migration
mechanism is similar to the thread migration in normal
OSes, but in the case of SPUMONE, interrupt assign-
ments have to be reconfigured because peripherals de-
vices are not virtualized. In our evaluation environment,
timer interrupts and ICI should be taken into account.
Let us assume that vCPU0 is migrated from pCPU0
to pCPU1 while executing an activity on vCPU1. The
timer device raising interrupts periodically for vCPU0
on pCPU1 should be stopped before the vCPU migra-
tion. Then, the timer device on pCPU1 should be mul-
tiplexed for both vCPU0 and vCPU1. Also, ICI for
vCPU0 on pCPU0 should be forwarded to vCPU0.

Figure 9 shows the hackbench score on various config-
urations of SPUMONE. In this evaluation environment,
four pCPUs execute five vCPUs. Therefore two vCPU
share one pCPU. One vCPU belongs to TOPPERS and
four vCPUs belong to Linux. TOPPERS executes a task

which consumes CPU time in the 500ms period. Linux
executes hackbench for measuring its throughput. The
X axis means the CPU consumption rate of the task on
TOPPERS, and the Y axis means the score of hack-
bench. Three horizontal lines describe the score of hack-
bench under the case that Linux dominates pCPUs.

The line indicated as “ideal score” describes the score
which we expected at first. When RTOS consumes the
time of f (0 ≤ f < 1) on one pCPU, Linux should ex-
ploit the rest of CPU resources: 4− f (When f = 1,
which means RTOS never yields pCPU, the rest of CPU
resources is not equal to 3. Because this is the same as
the situation when 1 CPU stops execution suddenly from
the perspective of Linux). The line of the ideal score
is calculated as: I(f) = S1

4− f where f means the CPU
consumption rate of RTOS and S1 means the score of
Linux dominating one core. hackbench has enough par-
allelism, therefore we predicted that the score might be
linear according to the CPU consumption rate of RTOS.

The score actually measured is presented as the line
indicated as “raw scheduler of SPUMONE”. We no-
ticed that the rapid degradation of the performance is
caused by LHP. So we designed and implemented the
new method described above. The score measured when
using the new method is described as the line indicated
as “vCPU migration”. This score is still worse than the
ideal score, but it sufficiently utilizes the CPU resource
because it is better than or nearly equal to the case when
Linux dominates three cores.

Current score when using our new method is still worse
than the ideal score, so more optimization or better
vCPU scheduling policy is required. We are planning to
apply the method described in Section 4.1.2. In mod-
ern systems, mutexes based on busy wait mechanism
are only used in kernel space. Therefore if the vCPU

2011 Linux Symposium • 65

of Linux, shareing pCPU with the vCPU of RTOS, is
migrated to another pCPU when the thread invokes sys-
tem calls or the interrupts for Linux rises, LHP can be
avoided.

4.3 Real-Time Task Aware Scheduler

One of the ongoing projects of SPUMONE, we plan
to use these additional resources to further improve the
real-time capability of guest OSes, especially Linux, by
dynamically scheduling the vCPU of the guest OSes on
top of the SPUMONE. In the original design strategy
of SPUMONE, we gave a high priority to the vCPU of
RTOS which is higher than the priority of the vCPU of
Linux. But this is not always the case; there might ex-
ist some real-time processes that have quicker response
time requirements than the RTOS processes. In this sit-
uation, we can mark one of the vCPUs of Linux as rt-
vCPU and schedule it against vCPU of RTOS. When
the priority of this rt-vCPU is higher than that of the
vCPU of RTOS, it can gain the control of the pCPU, but
simultaneously, because we have some other pCPU in
multicore system, we can migrate the vCPU of RTOS
to another core and compete with other vCPUs, so the
overall performance will not be harmed too much. But
the overhead of this migration operation has to be care-
fully taken care of.

5 Offering Spatial Protection in SPUMONE

As described in Section 3, SPUMONE locates guest OS
kernels and SPUMONE in the same privileged level.
However, the Linux kernel might contain security holes
because of its huge source code, and there are possibili-
ties to infect the Linux kernel. For increasing the relia-
bility of the entire system, a virtualization layer should
offer mechanisms to protect a virtualization later and co-
existing RTOSes. In traditional approaches, strict mem-
ory isolation is used for the protection, but our approach
cannot rely on the traditional solution because it is too
expensive for typical embedded systems. SPUMONE
offers two mechanism to increase the reliability of the
entire system. In the following sections, we will explain
the mechanisms in detail.

5.1 Protecting SPUMONE and RTOS

In the virtualization environment of SPUMONE, guest
OS kernels are running side by side with SPUMONE

Processor

Figure 10: Separated Core-Local Memory and Its Ap-
plication for Security

in the most privileged level. This means that these ker-
nels and SPUMONE could be affected by one and an-
other. In order to further improve the security of the
system, we try to better protect these kernels without
implementing too much functionality in SPUMONE.
We did so by taking advantage of the distributed design
of SPUMONE in the multicore platform [21]. Multi-
core design of SPUMONE is different from traditional
VMMs in that each physical core has its own dedi-
cated virtualization layer instance, while the traditional
ones have only one instance across all available physi-
cal cores. We then simply install each SPUMONE in-
stance into the local memory area of each physical core.
Because the content of local memory is only accessi-
ble from its own physical core, the attacks or intrusions
from the other cores are therefore prohibited as shown
in Figure 10. This also means that the attacks will not
propagate. When one part of the system is broken and
tries to affect others, it will not make it. So the remain-
ing part of the systems can operate normally.

5.1.1 Core-Local Memory

Let us assume that two OS kernels running on top of
a dual-core processor where each core has an indepen-
dent core-local memory. If the following assumptions
are satisfied, an OS kernel is protected from others.

1. The size of an OS kernel is small enough to fit in
core-local memory.

2. Each core should be restricted to reset other core
where the reset cleans up the content of the core-
local memory.

66 • Towards Co-existing of Linux and Real-Time OSes

Processor

INVALID

Storage

INVALID

INVALID

0

1

2

3

4

5

6

7

Vulnable

OS Pages

execute

Compromise

Protected

OS Pages

INVALID

Boot

Loader1.

remap

Virtual Address Space

2.

3.

3. 4.

Figure 11: An Overview of Hash-Based Integrity Man-
agement

3. The boot image of an OS kernel should not be in-
fected, and a secure boot loader can load the kernel
image in the shared memory correctly.

4. Each core should be restricted to access I/O de-
vices. I/O devices that are managed by a core
should not be accessed from other cores.

5.1.2 Hash-Based Integrity Management

The problem of the solution presented in the previous
section is the size of core-local memory. Currently they
are a few hundred KBs. It is too small to load a mod-
ern RTOS. In order to virtually extend the size of a lo-
cal memory, we propose a hash-based integrity manage-
ment mechanism assisted by the core-local memory pro-
tection. The original kernel image is stored in the shared
main memory, and a subset of the kernel image is copied
to the core-local memory before execution by the core.
When a part of the kernel image is loaded in the core-
local memory, this part is verified every time to make
sure that it is not corrupted or infected.

We present how the hash-based integrity management
works in Figure 11. The page allocation in a core-local
memory and the calculation of cryptographic hash val-
ues are managed by the local memory (LMEM) man-
ager that resides permanently in the core-local memory.

An OS kernel image that can be protected from other
OS kernels is called a protected OS (pOS). An OS ker-
nel that may be infected by malicious activities is called
a vulnerable OS (vOS). pOS and vOS must run on dif-
ferent cores.

1. The boot loader loads the LMEM manager into the
core-local memory. The OS kernel images of pOS
and vOS are loaded at the same time into the main
memory. LMEM calculates the hash value of each
page of pOS, and stores it in a hash table also lo-
cated in the core-local memory. The manager loads
a memory page that contains the entry point of pOS
into the core-local memory. Then the other core
may start to execute vOS.

2. The pages of pOS are mapped in a virtual address
space, and a page table for managing the virtual
address space should be in the core-local mem-
ory. When the size of the page table is bigger
than the size of the core-local memory, LMEM can
swap out unused page tables to the shared mem-
ory. LMEM also manages the hash table for main-
taining the integrity of the swapped page tables.
LMEM manages page faults when the page table
does not contain a corresponding page table entry.

3. When LMEM handles a page fault, a correspond-
ing page is copied from the shared memory to the
core-local memory. LMEM calculates the hash
value of the page and compares it with the pre-
calculated value stored in the core-local memory.
A mismatch of the hash value means that the im-
age of pOS in the shared memory is corrupted. If
there is no mismatch, the page fault is correctly
completed and the execution of pOS is resumed.

4. When there is no space available in the core-local
memory, LMEM swaps out some pages to the
shared memory. LMEM checks whether the page
is updated or not, and if it is updated, LMEM re-
calculates the hash value of the page and updates
the hash table entries. The pages will be used for
loading other pages.

In this approach, the image of pOS in the shared mem-
ory may be corrupted by vOS. Our current policy is to
restart pOS by reloading a new undamaged kernel image
by a secure loader. We are also considering a technique
to protect a kernel image by using a memory error cor-
rection technique and an encryption technique.

2011 Linux Symposium • 67

6 Related Work

Virtualization technologies are already used in the area
of the desktop and data center computing today [4, 5, 6].
It is also becoming a strong technique for constructing
real-time embedded systems because of an enhancement
of processors targeting embedded systems market.

RTLinux [22] is a well known hard real-time solution
for Linux, but it is also known with its patent problems.
RTAI [23] is another real-time extension for Linux and
is distributed as free software, but it requires significant
modification of the source code of Linux.

KVM for ARM [10] is a KVM based lightweight para-
virtualization technology for ARM processors. This
might be a strong candidate of virtualization technology
for real-time embedded systems because it only requires
automated modification of the guest Linux.

OKL4 [12] is a hypervisor based on the micro-kernel
design. Armand and Gien introduced the poorness of its
performance come from the design of micro-kernel [9].
VirtualLogix VLX [9] is a practical designed VMM for
real-time embedded systems.

And in our best knowledge, none of them can handle
LHP on multicore processors while guaranteeing real-
time responsiveness when the guest OSes have asym-
metrical priorities and roles.

7 Conclusion and Future Directions

Before concluding our paper, we would like to share our
experiences with the difficulties to promote open source
software in Japanese embedded system industries.

We have been discussing various aspects of open source
software with embedded system industries for a long
time. We found that a lot of people in industries who
are working on open source software are aware of the
the merits. Especially, asking questions to communities
is very useful to find good solutions to problems. How-
ever, their bosses who were hardware engineers before
do not understand the merits because in their cases, the
solutions should be solved by themselves inside of their
industries. The cultural gaps between the generations
inside industries becomes one of the biggest obstruction
to work with open source communities.

Now, we already know that social networks have signifi-
cantly strong power on sharing knowledge. Open source

communities are kind of social networks to share knowl-
edge about open source software, and engineers who ask
questions to communities also need to answer question
of other people in the communities, but it sometimes too
difficult to make time for discussing open source com-
munities while they are working.

Also, it is not easy that embedded system industries con-
tribute their software on open source communities be-
cause they sometimes use the old version of software.
Because the modification of the old version is not easy to
be integrated into the current version of the open source
software.

In this paper, we introduced SPUMONE that is a virtu-
alization layer for multicore processor based embedded
systems. We described an overview of SPUMONE and
showed how SPUMONE reduces the RTOS dispatch la-
tency and protects SPUMONE and RTOS from mali-
cious attacks on the Linux kernel. Currently, we are
preparing to distribute SPUMONE as open source soft-
ware.

References

[1] Tatsuo Nakajima, Yuki Kinebuchi, Hiromasa Shi-
mada, Alexandre Courbot, Tsung-Han Lin. Tempo-
ral and Spatial Isolation in a Virtualization Layer
for Multi-core Processor based Information Appli-
ances. In Proceedings of the 16th Asia and South
Pacific Design Automation Conference, 2011.

[2] eCos. http://ecos.sourceware.org

[3] TOPPERS Project. http://www.toppers.
jp/en/index.html

[4] Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, Andrew Warfield. Xen and the art of virtual-
ization. In Proceedings of the nineteenth ACM sym-
posium on Operating systems principles, 2003.

[5] VMware. http://www.vmware.com

[6] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin
Qumranet, Anthony Liguori. kvm: the Kernel-
based Virtual Machine. In Proceedings of Ottawa
Linux Symposium, 2007.

[7] Ingo Molnar. RT-patch. http://www.kernel.
org/pub/linux/kernel/projects/rt/

68 • Towards Co-existing of Linux and Real-Time OSes

[8] Paul E McKenney. ’Real Time’ vs. ’Real Fast’:
How to Choose? In Proceedings of the Ottawa
Linux Symposium, 2008.

[9] François Armand and Michel Gien. A Practical
Look at Micro-Kernels and Virtual Machine Mon-
itors. In Proceedings of the 6th IEEE Conference on
Consumer Communications and Networking Con-
ference, 2009.

[10] Christoffer Dall and Jason Nieh. KVM for ARM.
In Proceedings of Ottawa Linux Symposium, 2010.

[11] Volkmar Uhlig, Joshua LeVasseur, Espen
Skoglund, and Uwe Dannowski. Towards Scalable
Multiprocessor Virtual Machines. In VM’04: Pro-
ceedings of the 3rd conference on Virtual Machine
Research And Technology Symposium

[12] Open Kernel Labs. OKL4 Microvisor.
http://www.ok-labs.com/products/
okl4-microvisor

[13] Philip M. Wells, Koushik Chakraborty, and
Gurindar S. Sohi. Hardware Support for Spin Man-
agement in Overcommitted Virtual Machines. In
Proc. of the 15th International Conference on
Parallel Architectures and Compilation Techniques
(PACT-2006), Sept. 2006, Seattle, WA

[14] Thomas Friebel and Sebastian Biemueller. How
to Deal with Lock Holder Preemption. http:
//www.amd64.org/fileadmin/user_
upload/pub/2008-Friebel-LHP-GI_OS.
pdf

[15] J. K. Ousterhout. Scheduling Techniques for Con-
current Systems. Proceedings of Third Interna-
tional Conference on Distributed Computing Sys-
tems, 1982

[16] VMware, Inc. VMware vSphere(TM) 4: The
CPU Scheduler. in VMware(R) ESX(TM) 4
http://www.vmware.com/files/pdf/
perf-vsphere-cpu_scheduler.pdf

[17] Orathai Sukwong and Hyong S. Kim. Is Co-
scheduling Too Expensive for SMP VMs? In Pro-
ceedings of the ACM European conference on Com-
puter systems, 2011.

[18] Andrew Baumann, Paul Barham, Pierre-Evariste
Dagand, Tim Harris Rebecca Isaacs, Simon Pe-
ter Timothy Roscoe, Adiran Schüpbach, Akhilesh

Singhania. The multikernel: a new OS architecture
for scalable multicore systems. In SOSP ’09: Pro-
ceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, 2009.

[19] Yuki Kinebuchi, Takushi Morita, Kazuo Maki-
jima, Midori Sugaya, Tatsuo Nakajima. Construct-
ing a Multi-OS Platform with Minimal Engineering
Cost. In proceedings of Analysis, Architectures and
Modelling of Embedded Systems, 2009.

[20] Tatsuo Nakajima, Yuki Kinebuchi, Alexandre
Courbot, Hiromasa Shimada, Tsung-Han Lin, Hi-
toshi Mitake. Composition kernel: a multi-core pro-
cessor virtualization layer for rich functional smart
products. In Proceedings of the 8th IFIP WG 10.2
international conference on Software technologies
for embedded and ubiquitous systems, 2010.

[21] Tsung-Han Lin, Yuki Kinebuchi, Alexandre Cour-
bot, Hiromasa Shimada, Takushi Morita, Hi-
toshi Mitake, Chen-Yi Lee and Tatsuo Naka-
jima. Hardware-assisted Reliability Enhancement
for Embedded Multicore Virtualization Design. In
the Proceedings of 14th IEEE International Sympo-
sium on Object/Component/Service-oriented Real-
time Distributed Computing, 2011.

[22] Victor Yodaiken. The RTLinux Manifesto. In the
Proceedings of the 5th Linux Expo, March 1999, in
Raleigh North Carolina

[23] P. Mantegazza, E. L. Dozio, S. Papacharalambous.
RTAI: Real Time Application Interface. In Linux
Journal, volume 2000. Specialized Systems Consul-
tants, Inc. Seattle, WA, USA, 2000.

[24] Hiroaki Inoue, Junji Sakai, Masato Edahiro. Pro-
cessor virtualization for secure mobile terminals. In
ACM Transactions on Design Automation of Elec-
tronic Systems, Volume 13 Issue 3, July 2008.

Comparing different approaches for Incremental Checkpointing: The
Showdown

Manav Vasavada, Frank Mueller
Department of Computer Science
North Carolina State University

Raleigh, NC 27695-7534
e-mail: mueller@cs.ncsu.edu

Paul H. Hargrove, Eric Roman
Future Technologies Group

Lawrence Berkeley National Laboratory
Berkeley, CA 94720

Abstract

The rapid increase in the number of cores and nodes
in high performance computing (HPC) has made petas-
cale computing a reality with exascale on the horizon.
Harnessing such computational power presents a chal-
lenge as system reliability deteriorates with the increase
of building components of a given single-unit reliability.
Today’s high-end HPC installations require applications
to perform checkpointing if they want to run at scale
so that failures during runs over hours or days can be
dealt with by restarting from the last checkpoint. Yet,
such checkpointing results in high overheads due to of-
ten simultaneous writes of all nodes to the parallel file
system (PFS), which reduces the productivity of such
systems in terms of throughput computing. Recent work
on checkpoint/restart (C/R) has shown that incremental
C/R techniques can reduce the amount of data written
at checkpoints and thus the overall C/R overhead and
impact on the PFS.

The contributions of this work are twofold. First, it
presents the design and implementation of two memory
management schemes that enable incremental check-
pointing. We describe unique approaches to incremen-
tal checkpointing that do not require kernel patching in
one case and only require minimal kernel extensions in
the other case. The work is carried out within the latest
Berkeley Labs Checkpoint Restart (BLCR) as part of an
upcoming release. Second, we evaluate the two schemes
in terms of their system overhead for single-node mi-
crobenchmarks and multi-node cluster workloads. In
short, this work is the final showdown between page
write bit (WB) protection and dirty bit (DB) page track-
ing as a hardware means to support incremental check-
pointing. Our results show savings of the DB approach
over WB approach in almost all the tests. Further, DB

has the potential of a significant reduction in kernel ac-
tivity, which is of utmost relevance for proactive fault
tolerance where an immanent fault can be circumvented
if DB-based live migrations moves a process away from
hardware about to fail.

1 Introduction

With the number of cores increasing manifold at a rapid
rate, high performance computing systems have scaled
up to thousands of nodes or processor cores. Also, with
the increase in the availability of off-the-shelf compo-
nents, parallel machines are no more a niche market.
Huge scientific applications and even non-scientific ap-
plications with highly parallel patterns exploit such ma-
chines, and hence provide faster time-to-solution. Even
with the high amount of processing power available,
such high-end applications experience execution times
in the order of hours or even days in some cases. Exam-
ples of such applications are general scientific applica-
tions, climate modeling, protein folding and 3D model-
ing. With the use of off-the-shelf components, the Mean
Time Between Failure (MTBF) has also been reduced
substantially [12], which indicates an increasing prob-
ability of hardware failure on such machines. After a
failure, the current process would need to be restarted
from the scratch. This approach would not only waste
CPU cycles and power in duplicated work but also delay
the results by a substantial amount of time. To address
these problems, fault tolerance is needed.

There have been many approaches to support fault
tolerance in HPC. One of the approaches is check-
point/restart (C/R). This approach involves checkpoint-
ing the application on each node at regular intervals of
time to non-local storage. Upon failure, the checkpoint
is simply shifted to a spare node and the checkpoint

• 69 •

70 • Comparing different approaches for Incremental Checkpointing: The Showdown

is restarted from the last checkpoint instead of restart-
ing the application from the scratch. Checkpointing in-
volves saving the state of the process at a point in time
and then using the same data at the time of restart. There
have been various frameworks for application as well as
system-level C/R.

The checkpoint restart framework which this paper re-
volves around is Berkeley Labs Checkpoint Restart
(BLCR) [6]. BLCR is a hybrid kernel/user implemen-
tation of C/R for Linux developed by the Future Tech-
nologies Group at Lawrence Berkeley National Labo-
ratory. It is a robust, production quality implementation
that checkpoints a wide range of applications without re-
quiring any changes made to the code. The checkpoint
process involves saving the process state including reg-
isters, virtual address space, open files, debug registers
etc., and using the data to restart the process. BLCR sup-
port has been tightly integrated into various MPI imple-
mentations like LAM/MPI, MVAPICH, OpenMPI and
others to enable checkpointing of parallel applications
that communicate through MPI.

Researchers at North Carolina State University (NCSU)
have been working on various extensions for BLCR.
One of the extensions for the BLCR was incremental
checkpointing. BLCR’s current naive approach check-
points the entire state of the process at every checkpoint
period. In most cases, in accordance with the 90/10 law,
the process might sit in a tight loop for the entire pe-
riod between two checkpoints and only modify a subset
of application state. In such cases, checkpointing the en-
tire process not only wastes memory but also time. With
large applications, write throughput to disk can rapidly
become the bottleneck for large checkpoints. Hence, re-
ducing write pressure on the time-critical path of exe-
cution through incremental checkpointing can become
quite important.

With the incremental checkpointing approach, the key
virtue is the detection of modified data. The most conve-
nient approach would be to detect modifications at page
granularity. However, there can be various methods to
detect modifications on a page. The previous approach
taken by researchers at NCSU was to propagate the dirty
bit in the page table entry to user level by using a kernel
patch [15].

Contributions:

This paper presents the design, implementation and

evaluation of two different approaches to incremental
checkpointing. Our contributions are as follows:

• We present an approach for the detection of mod-
ified data pages that does not require patching the
kernel as in previous work and can instead be used
on vanilla kernels.

• We compare and contrast the two approaches for
performance and establish the pros and cons of
each. This helps the users decide which approach
to select based on their constraints.

• We compare the performance of the two ap-
proaches against base checkpointing to assess the
benefits and limitations of each.

• We show that our lower overhead dirty-bit track-
ing has the potential of a significant reduction in
kernel activity. When utilized for proactive fault
tolerance, an immanent fault could more likely be
circumvented by dirty bit-based live migration than
by a write protection-based scheme due to these
overhead. As a result, a process could be migrated
from a node about to fail to healthy node with a
higher probability under dirty-but tracking than un-
der write protection.

2 Related Work

C/R techniques for MPI jobs frequently deployed
in HPC environments can be divided into two
categories: coordinated checkpointing, such as
LAM/MPI+BLCR [13, 6] and CoCheck [14], and
uncoordinated checkpointing, such as MPICH-V [4, 5].
Coordinated techniques commonly rely on a combi-
nation of operating system support to checkpoint a
process image (e.g. via the BLCR Linux module [6]) or
user-level runtime library support. Collective commu-
nication among MPI tasks is used for the coordinated
checkpoint negotiation [13]. Uncoordinated C/R
techniques generally rely on logging messages and their
temporal ordering for asynchronous non-coordinated
checkpointing, e.g. by pessimistic message logging as
in MPICH-V [4, 5]. The framework of OpenMPI [3, 10]
is designed to allow both coordinated and uncoordi-
nated types of protocols. However, conventional C/R
techniques checkpoint the entire process image, leading
to high checkpoint overhead, heavy I/O bandwidth
requirements and considerable hard drive pressure,

2011 Linux Symposium • 71

even though only a subset of the process image of all
MPI tasks changes between checkpoints. With our
incremental C/R mechanism, we mitigate the cost by
checkpointing only the modified pages.

Incremental Checkpointing: Recent studies focus on
incremental checkpointing [7, 9]. TICK (Transpar-
ent Incremental Checkpointer at Kernel Level) [7] is
a system-level checkpointer implemented as a kernel
thread. It supports incremental and full checkpoints.
However, it checkpoints only sequential applications
running on a single process that do not use inter-process
communication or dynamically loaded shared libraries.
In contrast, our solution transparently supports incre-
mental checkpoints for an entire MPI job with all its
processes. Pickpt [9] is a page-level incremental check-
pointing facility. It provides space-efficient techniques
for automatically removing useless checkpoints aiming
at minimizing the use of disk space. Yi et al. [17] de-
velop an adaptive page-level incremental checkpoint-
ing facility based on the dirty page count as a thresh-
old heuristic to determine whether to checkpoint now
or later, a feature complementary to our work that we
could adopt within our scheduler component. However,
Pickpt and Yis adaptive scheme are constrained to C/R
of a single process, just as TICK was, while we cover an
entire MPI job with all its processes and threads within
processes. Agarwal et al. [1] provide a different adap-
tive incremental checkpointing mechanism to reduce the
checkpoint file size by using a secure hash function to
uniquely identify changed blocks in memory. Their so-
lution not only appears to be specific to IBMs com-
pute node kernel on BG/L, it also requires hashes for
each memory page to be computed, which tends to be
more costly than OS-level dirty-bit support as caches
are thrashed when each memory location of a page has
to be read in their approach. A prerequisite of incre-
mental checkpointing is the availability of a mechanism
to track modified pages during each checkpoint. Two
fundamentally different approaches may be employed,
namely a page protection mechanism for the write bit
(WB) or a page table dirty bit (DB) approach. Different
implementation variants build on these schemes. One is
the bookkeeping and saving scheme that, based on the
DB scheme, copies pages into a buffer. Another solution
is to exploit page write protection, such as in Pickpt and
checkpointing for Grids under XtreemOS [11], to save
only modified pages as a new checkpoint. The page pro-
tection scheme has certain draw-backs. Some address
ranges, such as the stack, can only be write protected if

an alternate signal stack is employed, which adds calling
overhead and increases cache pressure.

We present two different approaches to incremental
checkpointing in this work. The first approach exploits
the write bit (WB) to detect modifications on a page
level. This approach does not require the kernel to be
patched (unlike Grid checkpointing under XtreemOS,
which required a patch [11]). This is different than the
prior work since it uses innovative approaches to han-
dle corner cases for detecting modifications on pages.
The second approach uses the dirty bit (DB) for track-
ing writes on page. This approach shadows the DB from
the kernel within the user level and captures the modifi-
cation status of the page. Both our approaches work for
entire MPI jobs.

3 Design

This section describes the design of incremental check-
pointing in BLCR. The main aim of the incremental
checkpointing facility is to integrate it seamlessly with
BLCR with minimal modifications to the original source
code. The enhanced code should also have a minimal
overhead while taking incremental checkpoints. When
incremental checkpointing is disabled, it should allow
BLCR to checkpoint without any additional complexity.
For this purpose, we have divided the checkpoints into
three categories.

• Default Checkpoint: checkpointing sans incremen-
tal code;

• Full Checkpoint: Fully checkpointing of the entire
process despite of any modifications;

• Incremental Checkpoint: Checkpointing of only
modified data pages of a process.

In the above list, Default and Full checkpoints would be
identical in their output but different in their initializa-
tion of various data structures, which is detailed later.

The main criteria of the design of incremental check-
pointing is to provide a modular approach. The most
critical task in incremental checkpointing is to detect the
modification of data pages in order to determine whether
it should be checkpointed (saved) or not. Currently, we
support two approaches. Based on previous work done
at NCSU, the first approach is called the dirty bit (DB)

72 • Comparing different approaches for Incremental Checkpointing: The Showdown

approach. The details of this approach are discussed be-
low. This approach requires users to patch their kernels
and recompile it. Another approach we designed avoids
the patching of the kernel. It instead uses the currently
existing mechanisms in the kernel to detect modifica-
tions to pages.

In addition to the above approaches, other solutions may
be designed in future depending on the features pro-
vided by the Linux kernel and the underlying hardware.
To efficiently support different algorithms with minimal
code modifications, we designed an interface object for
incremental checkpointing that unifies several of the es-
sential incremental methods. Algorithms simply "plug
in" their methods, which are subsequently called at ap-
propriate places. Hence, BLCR remains agnostic to the
underlying incremental implementation. This interface
needs to encompass all methods required for incremen-
tal checkpointing.

3.1 Incremental Interface

The incremental interface uses BLCR to call the incre-
mental checkpointing mechanism in a manner agnostic
to the underlying implementation. This enables various
incremental algorithms to be implemented without ma-
jor code changes in the main BLCR module. The inter-
face object is depicted in Figure 1.

int (*init)(cr_task_t *, void *);
int (*destroy)(cr_task_t *, void *);
int (*register_handlers)(cr_task_t *cr_task, struct vm_area_struct *map);
int (*page_modified)(struct mm_struct *mm, unsigned long addr, struct vm_area_struct *map);
int (*shvma_modified)(struct vm_area_struct *vma);
int (*clear_vma)(struct vm_area_struct *vma);
int (*clear_bits) (struct mm_struct *mm, unsigned long addr);

Figure 1: BLCR incremental object interface

With this object, existing BLCR code is converted to
function calls. If they are not defined, BLCR will be-
have as it would without any incremental checkpointing.
At the first checkpoint, this object would be created per
process and associated with a process request. The high
level design is depicted in Figure 2.

The initialization function allows a specific incremental
approach to set up the data structures (if any), initial-
ize pointers etc. Similarly, the destroy function lets the
specific module free up used memory and/or unregister
certain handlers. The detection of modified data pages
might utilize existing kernel handlers or hooks that need
to be registered. The register_handler function is used
for registering specific hooks. This function is utilized
here to register hooks for memory mapping and shared

�����������

�	
��������

������

������������

���������

���

����

�������

Û���������

���	�
������

Figure 2: BLCR incremental design

writes. The mmap hooks keep track of mapping and un-
mapping of the memory pages to ensure that the newly
mapped pages are not skipped as described in one of the
cases. The page_modified function is the heart of this
interface object. It returns a boolean value indicating
whether the page has been modified or not. Similarly,
shvma_modified returns a boolean for whether a shared
page has been modified or not. After each incremen-
tal checkpoint, clear_vma and clear_bits can be used to
reset the bits for the next checkpoint

3.2 Write Bit Approach

The WB approach is inspired by work by Mehnert-
Spahn et al. [11] and tracks the modified data pages.
However, they implemented their mechanism on Ker-
righad Linux/SSI through source code modifications.
One of the main criteria behind the design of this ap-
proach was to ensure that no modifications of kernel
code were required. Therefore, in addition to the WB,
additional mechanisms were utilized for incremental
checkpointing.

In this approach, the WB is cleared at each checkpoint.
At the next checkpoint, we check whether the WB is
set or not. If the page whose WB is cleared is written
to, the Linux kernel generates a page fault. Since the
segment permission for writing would be granted, the
kernel will simply set the write bit of the associated page
table entry and return. The WB serves as an indicator
that, if set, implies that the page was modified between
checkpoints. If it is not set, the page was not modified
between the checkpoints. However, this approach does
not work for a number of corner cases. We shall look at
those cases and discuss how they can be handled in the
following.

2011 Linux Symposium • 73

3.2.1 VM Area Changes

One of the major issues with the above WB approach
is its requirement to track changes in the virtual mem-
ory area. Many memory regions might be mapped or
unmapped between two successive checkpoints. Some
memory regions may be resized. We need to cover all
such cases in order to ensure correctness. We have as-
signed a data structure for each page that tracks the sta-
tus of the page. The structure and design of this track-
ing approach will be discussed in the next section. Map
tracking includes:

• A page is unmapped: If a page is unmapped be-
tween two successive checkpoints, then the corre-
sponding tracking structure for that page needs to
be invalidated or removed. To this end, we need to
be alerted when a page was unmapped while the
process runs. We used the close entry provided
in the vm_area structure, which is a hook called
when a virtual memory area is being “closed” or
unmapped. With that hook, we associate required
steps when a memory area is unmapped.

• New regions are mapped: This case describes the
instance in which new memory regions are added
between two checkpoints. For example, consider
an incremental checkpoint 1 written to disk. Be-
fore incremental checkpoint 2 is taken, page A is
mapped into the process address space. At the next
checkpoint, if page A was not modified, it will not
be checkpointed since the WB would not be set.
However, this would be incorrect. To handle this
case, we do not allocate the tracking structure for
newly mapped regions. Hence, at the next check-
point on detecting the missing tracking structure,
page A will be checkpointed regardless of the sta-
tus of the WB in its page table entry.

3.2.2 Corner Cases

One of the more serious cases is posed by the system
call mprotect. For a VM area protected against writes,
the kernel relies on the cleared write bit to raise page
faults and then checks the VM permissions. This case
can also give erroneous output. For example, assume
page A was modified by the user thus setting the WB.
Before the next incremental checkpoint, the user pro-
tects the page allowing only reads, effectively clearing

the WB. When the next checkpoint occurs, the check-
point mechanism fails to identify the modification on
the data page and, hence, discounts it as an unmodified
page. We have handled this case by using the DB. The
mprotect function, while setting permission bits, masks
the DB. Hence, if the page is modified then we can de-
tect it through the DB.

The other corner case is that of shared memory. In
BLCR only one of the processes will capture the shared
memory. However, we may miss the modification if the
process capturing the shared memory has not modified
the data page. To handle this, we reverse map the pro-
cesses through the cr_task structures and check for mod-
ifications in each process tracking structure for the page.
If even one of them is modified, then the shared page is
dirty and should be checkpointed.

3.2.3 Tracking Structure

The tracking structure for incremental checkpointing is
a virtual page table maintained by the BLCR module.
This is done for two purposes: (1) to track VM area
changes like unmapping, remapping, new mapping etc;
(2) to detect writes to shared memory. Only two bits
suffice to maintain the tracking state of the page. Ini-
tially, the design was to replicate a page table structure
in BLCR to maintain the state of each page. Since this
will have to be performed for the entire process, using
a long type variable would waste a significant amount
of memory. We have optimized this tracking structure
to use only 4 bits per page. This results in an almost
eight-fold reduction in memory usage as compared to
maintaining a properly mirrored page table.

3.3 Dirty Bit Approach

The second approach taken by previous work uses the
DB for detecting page modifications. It uses an exist-
ing Linux kernel patch to copy the PTE DB into user
level [15]. The problem with using the DB is that the
kernel uses the DB for its own purpose, which might in-
troduce an inconsistency if BLCR and the Linux kernel
were both using it simultaneously. The patch introduces
redundant bits by using free bits in the PTE and main-
taining a correct status of the dirty bit for a given page.
This approach requires the kernel to be patched. More
significantly, this approach prevents page faults from be-
ing raised at every write as in the WB approach but still
allows dirty page tracking.

74 • Comparing different approaches for Incremental Checkpointing: The Showdown

4 Framework

We conducted our performance evaluations on a local
cluster. This cluster has 18 compute nodes running Fe-
dora Core 12 Linux x86 64 (Linux kernel- 2.6.31.9-
174.fc12.x86_64) connected by a two Gigabit Ethernet
switches. Each node in the cluster is equipped with four
1.76GHz processing cores (2-way SMP with dual-core
AMD Opteron 265 processors) and 2 GB memory. A
large RAID5 array provides shared file service through
NFS over one Gigabit switch. Apart from the modifica-
tions for incremental checkpointing in BLCR, we also
instrumented the code for the BLCR library to mea-
sure the time across checkpoints. OpenMPI was used
as the MPI platform since BLCR is tightly integrated in
its fault tolerance module.

5 Experiments

We designed a set of experiments to assess the over-
heads and analyze the behavior of two different ap-
proaches of incremental checkpointing, namely (i) the
WB approach and (ii) the DB approach. The experi-
ments are aimed at analyzing the performance of vari-
ous test benchmarks for these two approaches in isola-
tion and measuring their impact on the performance of
application benchmarks.

Various NAS Parallel Benchmarks [2] (NPB) as well
as a microbenchmark have been used to evaluate the
performance of above two approaches. From the NPB
suite, we chose SP, CG, and LU as their runtimes are
long enough for checkpoints. In addition, we devised a
microbenchmark that scales from low to high memory
consumption in order to evaluate the performance of the
incremental approaches under varying memory utiliza-
tion.

5.1 Instrumentation Techniques

For getting precise measurement of time, the method of
instrumentation is quite important. The BLCR frame-
work has been modified to record timings of two levels.
Figure 3 depicts the block diagram of an application.
In the context of the NPB suite, this would be an MPI
program with cross-node communication via message
passing [8]. We can issue an ompi-checkpoint com-
mand so that the OpenMPI framework will engage in

a coordinated checkpoint [10]. To assess the perfor-
mance, we could simply measure the time across the
ompi-checkpointing call. However, this would required
modifications to OpenMPI. It would also include the
timing for the coordination of MPI processes due to an
implicit barrier, which would skew our results. Instead,
we modified the BLCR library. We measure the timing
across the do_checkpoint call in each of the processes.
The processes then output their time to a common file
(see Figure 3).

�����������

�	
��������

������

c���������

���	�
������

���������

�����

�

�

�

�

����������

����
�

�

�

�

������

����

������������

���������

Figure 3: BLCR library timer design

There is one small caveat with the above approach. Our
initial tests showed very low variations between the two
incremental approaches. After studying timings for var-
ious phases, it was found that most of the checkpoint
time was dominated by writes to the context file on the
file system. This overhead was dominating any other
time like, including the time to detect page modifica-
tions. Our approach thus was aimed at excluding the
write time from the total time. We wanted to only mea-
sure the time to detect page modifications. To this end,
we enhanced the BLCR kernel module to measure only
the modification commands. The design is as depicted
in Figure 4. We accrue the timing measurements for
modification detection across each page chunk. As a
post processing step, we calculate the maximum, mini-
mum and average of all checkpoint timings.

Automated checkpoint scripts enable regular check-
pointing of various MPI and non-MPI processes.

5.2 Memory Test

We have split the test suite into two parts. The first part,
the memory test, measures the difference between two
checkpointing approaches on a single machine. The sec-

2011 Linux Symposium • 75

�����������

D���������	

��	��	������������

�	�	����������������������	

������������������

���	����	�������������	

�	��

��	� ���	

!	�	�� ���	

��	�
�����

�����

�����������

�����

���	��

���	

�	����	����	

����� 	���	�

���	�����!���	

Figure 4: BLCR kernel module timer design

ond part of experiments measures the impact of perfor-
mance on multi-node MPI benchmarks as the number of
nodes and the memory consumption scales. We discuss
the first set of experiments in this section. We have de-
vised a microbenchmark for measuring the performance
difference between the two approaches of WB and DB.
This benchmark allocates a specified number of mem-
ory pages and, depending on the configuration specified,
alters a certain number of pages per checkpoint. This
allows a comparison of the performance under varying
memory utilization.

The experiment is conducted on a large data set. We
create a map of 200,000 memory pages within a sin-
gle process. We constrain the number of checkpoints
at 20 with a ratio of incremental to full checkpoints at
4:1. This means a full checkpoint is always followed by
four incremental checkpoints as such a hybrid scheme
was shown to be superior to only incremental check-
pointing [16]. We vary the number of modified pages
by large increments. The data points for this graph are
at 500, 5k, 25k, 50k, and 100k modified pages. The re-
sults are depicted in Figure 5.

Figure 5 indicates that the difference between the per-
formance of DB and WB is low when the set of mod-
ified pages is low. As the number of modified pages
increases, the difference also increases. When the mod-
ified data set reaches 100,000 pages, the difference is
almost twice that of WB. We can conclude from this
experiment that using the DB approach has significant
potential to improve performance.

To understand this result, let us explain the mechanism
first. BLCR iterates through every page and checks
for modified pages. For each page, the WB and DB

�

�

�

�

�

�

�

�

�

�

��� ���� ����� ����� ������

]
��

�
��
�
�
�
�
��
	�

�

����������������	

	
�������

�
�������

Figure 5: Micro benchmark Test

approach will use their own mechanisms for checking
modified pages. In the WB approach, BLCR has to
check its own data structure for mappings of the page
(mapped or not). It then fetches the PTE from the ad-
dress passed to it. After detecting whether a page has
been modified or not, the clear bit function clears the
WB in the PTE for the next round. For this, the WB
approach has to map the PTE again to access it. In
DB, on the other hand, the testing for modification and
clearing the bit on the PTE happens in a single sweep
within the test-and-clear function. In addition to it, the
DB approach does not have to manipulate any internal
data structures to keep track of mappings. These factors
make DB a much faster approach then WB in the above
experiment.

We devised a second case using alternate pages to pro-
vide insight into the performance difference of incre-
mental vs. default full checkpointing. In this case, al-
ternate pages from the process address space are mod-
ified and the performance is assessed. We provided a
fixed-size data set of 100k pages here. By writing to
ever other page, 50k pages will be modified between
checkpoints. We observed that incremental checkpoint-
ing takes significantly longer than full default check-
pointing. It seems counter intuitive that saving a smaller
data set for incremental checkpointing takes more time
than saving the full checkpoint data, yet the explana-
tion to this anomaly lies in the way BLCR saves a pro-
cess’ memory space. BLCR iterates through each vir-
tual memory area (VMA) structure to gather contiguous
chunks of pages before committing them to stable stor-
age. Upon a full checkpoint, the entire mapped space
becomes one chunk written to disk through a single
system call. When we modify alternate pages, we en-
counter an unmodified page after each modified page,
where the former is discarded by BLCR as it is unmod-

76 • Comparing different approaches for Incremental Checkpointing: The Showdown

ified. Since the chunk breaks there, BLCR will have
to issue a write to disk for each single modified page.
Therefore, we issue significantly more write calls in in-
cremental checkpointing than in full checkpointing. No-
tice that this deficiency is being addressed by aggregat-
ing non-contiguous chunks before committing them to
stable storage, but such an approach comes at the cost
of additional meta-data to describe the internal check
structure.

5.3 NAS Benchmarks

In this section, we analyze the performance of multi-
node MPI benchmarks for the WB and DB approaches.
We selected the MPI version of the NPB benchmark
site [2]. We constrained the selection of benchmarks
from the NPB set to those with sufficiently long run-
times to take a suitable number of checkpoints.

We devised a set of experiment using strong scaling
by increasing the number of processors. With such
increase in computing resources, we decrease the per-
node and overall runtime. However, this renders some
benchmarks unusable for our experiments as the run-
time was not sufficient to issue a checkpoint, particu-
larly for smaller input sizes (classes A and B) of the
NPB suite. Yet, using large input sizes (class D) under
NPB on fewer processors (1 to 4) is not practical either
due to excessively long checkpointing times. Hence, we
settled for input sizes of class C for the experiments.

Considering all benchmarks and assessing their run-
times, we selected three suitable benchmarks for our
tests: SP, CG and LU. We present the following experi-
ments and results for the same.

We assessed the performance for the SP benchmark on
4, 9, 16 and 36 processor. Notice that SP requires the
number of processors to be a perfect square. The exper-
iments were performed on class C inputs with a check-
point interval of 60 seconds over a varying number of
nodes. Figure 6 depicts the runtime spent inside the
Linux kernel portion of BLCR. We observe that the DB
approach incurs less overhead in the kernel than the WB
approach in all of the cases. We see a downwards slope
and a decrease in the difference between DB and WB
from 4 processors to 9 processors to 16 processors. The
reason for the decrease in time spent in the kernel is
that as we increase resources the application is more dis-
tributed among nodes. This implies less data per node to

checkpoint and, hence, less time spent on checkpointing
in the kernel.

In the case of 36 processors, we see a sudden spike in
kernel runtime. This anomaly is attributed to the fact we
only have 16 physical nodes but deploy the application
across 36 processes. Thus, multiple processes are vy-
ing for resources on the some nodes. The processes are
contending for cache, networking and disk. Hence, the
36-processor case (and any oversubscription case stud-
ied in the following) should only be considered by itself
and not in comparison to lower number of processes.

�

�����

������

������

������

������

� � �� ��

D
��

�
���
��
�
��
�
��
	

�
��

�����������

�

��	
���
��

��	
���
��

Figure 6: SP benchmark

�

���

���

���

���

����

����

� � �� ��

·
�
�
��
��
��
�
�
��
�	

��

�

����������
��
�

��	
���
��

��	
���
��

Figure 7: SP benchmark (Application time)

Figure 7 depicts the overall application time for the SP
benchmark for different numbers of nodes. We see that
the DB approach slightly outperforms the WB approach
in all cases. As the number of processes (and proces-
sors) increases from 4 over 9 to 16, we see a decrease
in total application time. Recall that the work gets dis-
tributed between various nodes as the number of pro-
cessors increases while the application time decreases.
This happens under both the configurations, WB and
DB. For 36 processes, the application time goes. Again,
we are oversubscribing with 36 processes on 16 physi-

2011 Linux Symposium • 77

cal nodes. This causes contention for memory, network-
ing and disk. The DB approach shows slightly higher
performance gains for this oversubscription case likely
due to mutual exclusion inside the kernel (kernel locks),
which impacts WB more due to more time spent in the
kernel.

The next NPB program tested was the CG benchmark
for class C inputs. We varied the number of nodes from
4 over 8 and 16 to 32 processors. The incremental to full
checkpoint ratio is kept at 4:1. Checkpoints are taken
every 10 seconds.

Figure 8 depicts the kernel runtime for CG. These re-
sults indicate considerable savings for DB over WB for
4 processors and smaller savings for 8 processors. At
16 processors, more savings materialize for DB. In con-
trast, the overhead of WB increases drastically. This
anomaly can be explained as follows. The total running
time of CG is low. Checkpoints were taken at an inter-
val of 10 seconds. Since the savings due to the DB ap-
proach exceed 10 seconds, the benchmark run under DB
resulted in fewer checkpoints, which further decreased
the application runtime. In contrast, WB ran past the
next checkpoint interval, which incurred one additional
checkpoint. Thus, we may gain by issuing fewer check-
points under DB due to the lower kernel overhead of the
latter.

�

�����

������

������

������

������

� � �� ��

·
��

�
��
�
��
�
��
�
��
	

�
��

����������

�

��	
���
��

��	
���
��

Figure 8: CG benchmark

Figure 9 depicts the total application time for CG. We
see considerably more savings of DB over WB in the
case of 16 nodes than for 4 or 8 nodes due to the lower
number of checkpoints for DB. In all other cases, DB
slightly outperforms WB. The higher overall runtime for
32 processes is caused by node oversubscription again.

Next, we assessed the performance under the LU bench-
mark for 4,8,16 and 32 processors under class C inputs.

�

��

���

���

���

���

���

���

� � �� ��

·
�
�
��
��
��
�
�
��
�	

��

�

����������
��
�

��	
���
��

��	
���
��

Figure 9: CG benchmark (Application time)

Checkpoints were taken every 45 seconds, and the in-
cremental to full checkpoint ratio was 4:1.

Figure 10 depicts the kernel time. As in the previous
experiment, there are significant savings in time spent
in the kernel. The total time decreases as the number
of nodes increases from 4 over 8 to 16. Under 32 pro-
cesses, we see an increase of total time relative to the
prior process counts due to node oversubscription. The
savings of the DB compared to WB are significant in all
cases. As in the previous savings, these savings in the
order of microseconds only materialize in minor overall
application runtime reductions as application runtime is
in the order of seconds. The results for total application
time for LU are depicted in Figure 11.

�

�����

�����

�����

�����

������

������

������

������

������

� � �� ��

D
��

�
��
�
��
�
��
�
��
	

�
��

����������

�

���	

��	�

���	

��	�

Figure 10: LU benchmark

In terms of overall runtime for LU, we see that DB is
at par or slightly outperforms WB. We also see that the
percent are quite low compared to the percent savings
for kernel runtime in the previous graph. As explained
before, this is due to the fact that the time spent in kernel
is measured in microseconds while application time is
measured in seconds.

78 • Comparing different approaches for Incremental Checkpointing: The Showdown

�

���

���

���

���

����

����

� � �� ��

D
�
�
��
��
��
�
�
��
�	

��

�

����������
��
�

���	

��	�

���	

��	�

Figure 11: LU benchmark (Application time)

In summary, we observe that the DB approach incurs
significantly less kernel overhead but only slightly less
overhead than WB approach for most test cases. Larger
savings are observed for longer-running applications as
a slight reduction in DB overhead may aggregate so that
fewer overall checkpoints are taken at the same check-
point interval.

6 Future Work

We have developed and evaluated two different ap-
proaches to incremental checkpointing. One (WB) re-
quired patching the Linux kernel to detect modifications
at page level while the other (DP) did not require any
patches. We have further quantitatively compared the
two approaches. We are currently investigating if patch-
ing of the kernel for DB can be omitted when swap
is turned off. This would alleviate the user from the
tedious kernel patching and recompilation of the ker-
nel. This approach is particularly promising for high-
performance computing under MPI as swap tends to be
disabled. We are currently DB usage within the ker-
nel beyond swap functionality to determine if utiliza-
tion of DB by the BLCR would create any side effects
for the kernel. We are also considering dynamic acti-
vation and deactivation of swap while a process is run-
ning. In that case, the DB functionality bit should be
gracefully handed over to the kernel without affecting
ongoing checkpoints. These issues are currently being
investigated and we aim to implement them in the fu-
ture. Furthermore, we are considering to integrate both
incremental checkpointing mechanisms, DB and WB,
with the latest BLCR release. The mechanism are al-
ready in the BLCR repository and the integration work
is under way.

7 Conclusion

In this paper, we outlined two different approaches to
incremental checkpointing and quantitatively compared
them. We conducted several experiments with the NPB
suite to determine the performance of the DB and WB
approaches in head-to-head comparison them. We make
the following observations from the experimental re-
sults. (i) The DB approach is faster significantly than
the WB approach than DB with respect to kernel ac-
tivity. (ii) DB also slightly outperforms WB for over-
all application in nearly all cases, and particularly for
long-running application where DB may result in fewer
checkpoints than WB. (iii) The WB approach does not
required kernel patching or kernel recompilation. (iv)
The difference in performance between the WB and the
DB approach increases with the amount of memory uti-
lization within a process. (v) The advantage of DB for
kernel activity could be significant for proactive fault
tolerance where an immanent fault can be circumvented
if DB-based live migrations moves a process away from
hardware about to fail.

8 Acknowledgement

This work was supported in part by NSF grants 0937908
and 0958311 as well as by subcontract LBL-6871849
from Lawrence Berkeley National Laboratory.

References

[1] Saurabh Agarwal, Rahul Garg, Meeta S. Gupta,
and Jose E. Moreira. Adaptive incremental check-
pointing for massively parallel systems. In ICS
’04: Proceedings of the 18th annual international
conference on Supercomputing, pages 277–286,
New York, NY, USA, 2004. ACM.

[2] D. H. Bailey, E. Barszcz, J. T. Barton, D. S.
Browning, R. L. Carter, D. Dagum, R. A. Fatoohi,
P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,
H. D. Simon, V. Venkatakrishnan, and S. K. Weer-
atunga. The NAS Parallel Benchmarks. The Inter-
national Journal of Supercomputer Applications,
5(3):63–73, Fall 1991.

[3] B. Barrett, J. M. Squyres, A. Lumsdaine, R. L.
Graham, and G. Bosilca. Analysis of the compo-
nent architecture overhead in Open MPI. In Euro-
pean PVM/MPI Users’ Group Meeting, Sorrento,
Italy, September 2005.

2011 Linux Symposium • 79

[4] G. Bosilca, A. Boutellier, and F. Cappello.
MPICH-V: Toward a scalable fault tolerant MPI
for volatile nodes. In Supercomputing, November
2002.

[5] Bouteiller Bouteiller, Franck Cappello, Thomas
Herault, Krawezik Krawezik, Pierre Lemarinier,
and Magniette Magniette. MPICH-V2: a fault tol-
erant MPI for volatile nodes based on pessimistic
sender based message logging. In Supercomput-
ing, 2003.

[6] J. Duell. The design and implementation of berke-
ley lab’s linux checkpoint/restart. Tr, Lawrence
Berkeley National Laboratory, 2000.

[7] Roberto Gioiosa, Jose Carlos Sancho, Song Jiang,
and Fabrizio Petrini. Transparent, incremental
checkpointing at kernel level: a foundation for
fault tolerance for parallel computers. In Super-
computing, 2005.

[8] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A
high-performance, portable implementation of the
MPI message passing interface standard. Parallel
Computing, 22(6):789–828, September 1996.

[9] Junyoung Heo, Sangho Yi, Yookun Cho, Jiman
Hong, and Sung Y. Shin. Space-efficient page-
level incremental checkpointing. In SAC ’05:
Proceedings of the 2005 ACM symposium on Ap-
plied computing, pages 1558–1562, New York,
NY, USA, 2005. ACM.

[10] Joshua Hursey, Jeffrey M. Squyres, and Andrew
Lumsdaine. A checkpoint and restart service spec-
ification for Open MPI. Technical report, Indiana
University, Computer Science Department, 2006.

[11] John Mehnert-Spahn, Eugen Feller, and Michael
Schoettner. Incremental checkpointing for grids.
In Linux Symposium, July 2009.

[12] Ian Philp. Software failures and the road to a
petaflop machine. In HPCRI: 1st Workshop on
High Performance Computing Reliability Issues,
in Proceedings of the 11th International Sympo-
sium on High Performance Computer Architecture
(HPCA-11). IEEE Computer Society, 2005.

[13] Sriram Sankaran, Jeffrey M. Squyres, Brian Bar-
rett, Andrew Lumsdaine, Jason Duell, Paul Har-
grove, and Eric Roman. The LAM/MPI check-

point/restart framework: System-initiated check-
pointing. In Proceedings, LACSI Symposium, Oc-
tober 2003.

[14] G. Stellner. CoCheck: checkpointing and process
migration for MPI. In IEEE, editor, Proceedings of
IPPS ’96. The 10th International Parallel Process-
ing Symposium: Honolulu, HI, USA, 15–19 April
1996, pages 526–531, 1109 Spring Street, Suite
300, Silver Spring, MD 20910, USA, 1996. IEEE
Computer Society Press.

[15] Luciano A. Stertz. Readable dirty-bits for ia64
linux. Internal requirement specification, Hewlett-
Packard, 2003.

[16] C. Wang, F. Mueller, C. Engelmann, and S. Scott.
Hybrid full/incremental checkpoint/restart for mpi
jobs in hpc environments. In International Confer-
ence on Parallel and Distributed Systems, Decem-
ber 2011.

[17] Sangho Yi, Junyoung Heo, Yookun Cho, and
Jiman Hong. Adaptive page-level incremental
checkpointing based on expected recovery time.
In SAC ’06: Proceedings of the 2006 ACM sym-
posium on Applied computing, pages 1472–1476,
New York, NY, USA, 2006. ACM.

80 • Comparing different approaches for Incremental Checkpointing: The Showdown

User-level scheduling on NUMA multicore systems under Linux

Sergey Blagodurov
Simon Fraser University

sergey_blagodurov@sfu.ca

Alexandra Fedorova
Simon Fraser University

alexandra_fedorova@sfu.ca

Abstract

The problem of scheduling on multicore systems re-
mains one of the hottest and the most challenging top-
ics in systems research. Introduction of non-uniform
memory access (NUMA) multicore architectures fur-
ther complicates this problem, as on NUMA systems
the scheduler needs not only consider the placement
of threads on cores, but also the placement of mem-
ory. Hardware performance counters and hardware-
supported instruction sampling, available on major CPU
models, can help tackle the scheduling problem as they
provide a wide variety of potentially useful information
characterizing system behavior. The challenge, how-
ever, is to determine what information from counters is
most useful for scheduling and how to properly obtain it
on user level.

In this paper we provide a brief overview of user-level
scheduling techniques in Linux, discuss the types of
hardware counter information that is most useful for
scheduling, and demonstrate how this information can
be used in an online user-level scheduler. The Clavis
scheduler, created as a result of this research , is released
as an open source project.

1 Introduction

In the era of increasingly multicore systems, memory
hierarchy is adopting non-uniform distributed architec-
tures. NUMA systems, which have better scalability po-
tential than their UMA counterparts, have several mem-
ory nodes distributed across the system. Every node is
physically adjacent to a subset of cores, but physical
address space of all nodes is globally visible, so cores
can access memory in a local as well as remote nodes.
Therefore, the time it takes to access data is not uni-
form and varies depending on the physical location of
the data. If a core sources data from a remote node,
performance may suffer because of remote latency over-
head and delays resulting from interconnect contention,

which occurs if lots of cores access large amounts of
data remotely [11]. These overheads can be mitigated
if the system takes care to co-locate the thread with its
data as often as possible [11, 24, 15, 23, 27, 9, 17, 22].
This can be accomplished via NUMA-aware scheduling
algorithms.

Recent introduction of multicore NUMA machines
into High-performance computing (HPC) clusters also
raised the question whether the necessary scheduling de-
cisions can be made at user-level, as cluster schedulers
are typically implemented at user level [25, 6]. User-
level control of thread and memory placement is also
useful for parallel programming runtime libraries [10,
20, 14, 16], which are subject to renewed attention be-
cause of proliferation of multicore processors.

The Clavis user level scheduler that we present in this
paper is a result of research reflected in several con-
ference and journal publications [11, 12, 28, 29]. It is
released as an open source [3]. Clavis can support var-
ious scheduling algorithms under Linux operating sys-
tem running on multicore and NUMA machines. It is
written in C so as to ease the integration with the default
OS scheduling facilities, if desired.

The rest of this paper is organized as follows: Section 2
provides an overview of NUMA-related Linux schedul-
ing techniques for both threads and memory. Section 3
describes the essential features that have to be provided
by an OS for a user level scheduler to be functional,
along with the ways to obtain them in Linux. Section 4
demonstrates how hardware performance counters and
instruction-based sampling can be used to dynamically
monitor the system workload at user level. Section 5 in-
troduces Clavis, which is built on top of these schedul-
ing and monitoring facilities.

• 81 •

82 • User-level scheduling on NUMA multicore systems under Linux

2 Default Linux scheduling on NUMA systems

Linux uses the principle local node first when allocat-
ing memory for the running thread.1 When a thread is
migrated to a new node, that node will receive newly
allocated memory of the thread (even if earlier alloca-
tions resulted on a different node). Figure 1 illustrates
Linux memory allocation strategy for two applications
from SPEC CPU 2006 suite: gcc and milc. Both appli-
cations were initially spawned at one of the cores local
to memory node 0 of a two-node NUMA system (AMD
Opteron 2350 Barcelona), and then in the middle of the
execution were migrated to the core local to the remote
memory node 1.

It is interesting to note in Figure 1 that the size of
thread’s memory on the old node remains constant af-
ter migration. This illustrates that Linux does not mi-
grate the memory along with the thread. Remote mem-
ory access latency, in this case, results in performance
degradation: 19% for milc and 12% for gcc. While gcc
allocates and uses memory on the new node after migra-
tion (as evident from the figure), milc relies exclusively
on the memory allocated before migration (and left on
the remote node). That is why, milc suffers more from
being placed away from its memory.

Linux Completely Fair Scheduler (CFS) tries to com-
pensate for the lack of memory migration by reducing
the number of thread migrations across nodes. This is
implemented via the abstraction of scheduling domains:
a distinct scheduling domain is associated with every
memory node on the system. The frequency of thread
migration across domains is controlled by masking cer-
tain events that typically cause migrations, such as con-
text switches [13, 5, 4]. With scheduling domains in
place, the system reduces the number of inter-domain
migrations, favouring migrations within a domain.

Thread affinity to its local scheduling domain does im-
prove memory locality, but could result in poor load bal-
ance and performance overhead. Furthermore, memory-
intensive applications (those that issue many requests to
DRAM) could end up on the same node, which results in
contention for that node’s memory controller and the as-
sociated last-level caches. Ideally, we need to: (a) iden-
tify memory intensive threads, (b) spread them across
memory domains, and (c) migrate memory along with

1From now on we assume 2.6.29 kernel, unless it is explicitly
stated otherwise.

the threads. Performance benefits of this scheduling pol-
icy were shown in previous work [11, 12, 28].

Section 3 describes how to obtain the necessary in-
formation to enforce these scheduling rules on user
level. Section 4 shows how to identify memory intensive
threads using hardware performance counters. Section 5
puts it all together and presents the user-level scheduling
application.

3 User-level scheduling and migration tech-
niques under Linux

Linux OS provides rich opportunities for scheduling at
user level. Information about the state of the system and
the workload, necessary to make a scheduling decision,
can be accessed via sysfs and procfs. Overall, schedul-
ing features available at user level can be separated into
two categories: those that provide information for mak-
ing the right decision – we call them monitoring fea-
tures, and those that let us enforce this decision – action
features. Monitoring features provide relevant informa-
tion about the hardware, such as the number of cores,
NUMA nodes, etc. They also help identify threads that
show high activity levels (e.g., CPU utilization, I/O traf-
fic) and for which user level scheduling actually matters.
Table 1 summarizes monitoring features and presents
ways to implement them at user level. Action features
provide mechanisms for binding threads to cores and
migrating memory. They are summarized in Table 2.

As can be seen from the tables, many features are
implemented via system calls and command-line tools
(for example, binding threads can be performed via
sched_setaffinity call or taskset tool). Us-
ing system calls in a user level scheduler is a preferred
option: unlike command-line tools they do not require
spawning a separate process and thus incur less over-
head and do not trigger recycling of PIDs. Some com-
mand line tools, however, have a special batch mode,
where a single instantiation remains alive until it is ex-
plicitly terminated and its output is periodically redi-
rected to a file or to stdout. In Clavis, we only use
system calls and command-line tools in batch mode.

4 Monitoring hardware performance counters

Performance counters are special hardware registers
available on most modern CPUs as part of Performance

2011 Linux Symposium • 83

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70 80 90 100

T
ot

al
 R

S
S

 (
M

B
)

Time (sec)

56 sec: gcc migrates from node 0 to node 1

node 0
node 1

(a) gcc

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

T
ot

al
 R

S
S

 (
M

B
)

Time (sec)

560 sec: milc migrates from node 0 to node 1

node 0
node 1

(b) milc

Figure 1: Memory allocation on Linux when the thread is migrated in the middle of its execution and then stays
on the core it has migrated on. New memory is always allocated on the new node, old memory stays where it was
allocated.

Monitoring Unit (PMU). These registers obtain the in-
formation about certain types of hardware events, such
as retired instructions, cache misses, bus transactions,
etc. PMU models from Intel and AMD offer hundreds
of possible events to monitor covering many aspects of
microarchitecture’s behaviour. Hardware performance
counters can track these events without slowing down
the kernel or applications. They also do not require the
profiled software to be modified or recompiled [18, 19].

On modern AMD and Intel processors, the PMU offers
two modes in which profiling can be performed. In the
first mode, the PMU is configured to profile only a small
set of particular events, but for many retired instruc-
tions.2 This mode of profiling is useful for obtaining
a high level profiling data about the program execution.
For example, a PMU configured in this mode is able
to track the last level cache (LLC) miss rate and trig-
ger an interrupt when a threshold number of events have
occurred (Section 4.1). This mode, however, does not
allow us to find out which particular instruction caused
a cache miss.

In the second mode, the PMU works in the opposite
way: it obtains detailed information about retired in-
structions, but the number of profiled instructions is very

2The exact number of events that can be tracked in parallel de-
pends on available counter registers inside the PMU and usually
varies between one and four. A special monitoring software like
perf or pfmon, however, can monitor more events than there are
actual physical registers via event multiplexing.

small. The instruction sampling rate is determined by a
sampling period, which is expressed in cycles and can
be controlled by end-users. On AMD processors with
Instruction-Based Sampling (IBS), execution of one in-
struction is monitored as it progresses through the pro-
cessor pipeline. As a result, various information about
it becomes available, such as instruction type, logical
and physical addresses of the data access, whether it
missed in the cache, the latency of servicing the miss,
etc. [19, 2] In Section 4.2 we provide an example of us-
ing IBS to obtain logical addresses of the tagged load
or store operations. These addresses can then be used
by the scheduler to migrate recently accessed mem-
ory pages after migration of a thread [11]. On In-
tel CPUs similar capabilities are available via Precise
Event-Based Sampling (PEBS).

4.1 Monitoring the LLC miss rate online

As an example of using hardware performance coun-
ters to monitor particular hardware events online, we
will show how to track LLC miss rate per core on an
AMD Opteron systems. Previous research showed that
LLC miss rate is a good metric to identify memory in-
tensive threads [21, 11, 12, 28]. Threads with a high
LLC miss rate will perform frequent memory requests
(hence the term memory-intensive) and so their perfor-
mance will strongly depend on the memory subsystem.
LLC misses have a latency of hundreds of cycles, but
can take even longer if the necessary data is located on

84 • User-level scheduling on NUMA multicore systems under Linux

Monitoring feature Description, how to get on user level
Information about core
layout and memory hi-
erarchy of the machine
(which caches are shared,
cache size, etc)

Directories with the necessary files for each core on the system are located at
/sys/devices/system/cpu/, including:
./cpu<ID>/cpufreq/cpuinfo_cur_freq - current frequency of the given core.
./cpu<ID>/cache/index<CID>/shared_cpu_list - cores that share a <CID>-th level
cache with the given core.
./cpu<ID>/cache/index<CID>/size - cache size.

Information about which
cores share every NUMA
memory node on the sys-
tem

Can be obtained via sysfs by parsing the contents of
/sys/devices/system/node/node<NID>/cpulist The same information is also avail-
able with the numactl package by issuing numactl --hardware from the
command line.

Information about which
core id the given thread is
currently running on

The latest data is stored in the 39-th column of the /proc/<PID>/task/<TID>/stat
file, available via proc pseudo fs.

Detection of multi-
threaded applications

For the purpose of scheduling, it is often necessary to identify, which threads belong
to the same multithreaded application. All threads of such program share a single
memory footprint and often benefit from co-scheduling together on the same shared
cache or memory node. In Linux, threads are mostly treated as separate processes.
To determine, which of them belong to the same application, the scheduler can read
/proc/<PID>/task/<TID>/status file, which contains TGID field common to all the
threads of the same application. The thread for which TID = PID = TGID is the
main thread of the application. If it terminates, all the rest of the threads are usually
terminated with it.

The amount of memory
stored on each NUMA
memory node for the
given application

The file /proc/<PID>/numa_maps contains the node breakdown information for each
memory range assigned to the application in number of memory pages (4K per page).
In case of multithreaded programs, the same information can also be obtained from
/proc/<PID>/task/<TID>/numa_maps.

Detection of compute
bound threads

These are the threads that consume a significant portion of machine’s computational
resources (more than 30% of a core usage in our implementation). The threads can
be detected by measuring the number of jiffies (a jiffy is the duration of one tick
of the system timer interrupt) during which the given thread was scheduled in user
or kernel mode. This information can be obtained via /proc/<PID>/task/<TID>/stat
file (columns 13th and 14th). The top command-line tool provides similar data, if
invoked with -H option that shows per-thread statistics (not aggregated for the entire
multithreaded application) and if its "K" field is enabled.

Detection of I/O bound
threads

These threads spend a significant portion of their execution time waiting for the data
from the storage to process. The iotop command-line tool provides the information
about read and write traffic from hard drive per specified interval of time for every
such thread on the system.

Detection of network
bound threads

Just like I/O bound, these threads are often waiting for the data, this time from the
network. The nethogs command-line tool is able to monitor the traffic on the given
network interface and break it down per process.

Detection of memory in-
tensive threads

Refer to Section 4.

Table 1: Scheduling features for monitoring as seen from user level.

2011 Linux Symposium • 85

Action
feature

Description, how to get on user level

Thread bind-
ing

To periodically rebind the workload threads, user level scheduler can use sched_setaffinity
system call that takes cpu mask and rebinds the given thread to the cores from the mask. The thread
will then run only on those cores as is determined by the default kernel scheduler (CFS). The same
action can be performed by the taskset command line tool.

Specifying
memory
policy per
thread

Detailed description is provided in the Linux Symposium paper by Bligh et al. also devoted to
running Linux on NUMA systems [13].

Memory mi-
gration

Memory of the application can be migrated between the nodes in several ways:
A coarse-grained migration is available via numa_migrate_pages system call or
migratepages command line tool. When used, they migrate all pages of the application with
the given PID from old-nodes to new-nodes (these 2 parameters are specified during invocation).
Fine-grained migration can be performed with numa_move_pages system call. This call allows
to specify logical addresses of the pages that have to be moved. The feature is useful if the
scheduler is able to detect what pages among those located on the given node are "hot" (will be
used by the thread after its migration to the remote node).
Automatic page migration. Linux kernel since 2.6.12 supports the cpusets mechanism and its
ability to migrate the memory of the applications confined to the cpuset along with their threads
to the new nodes if the parameters of a cpuset change. Schermerhorn et al. further extended
the cpuset functionality by adding an automatic page migration mechanism to it: if enabled, it
migrates the memory of a thread within the cpuset nodes whenever the thread migrates to a core
adjacent to a different node. The automatic memory migration can be either coarse-grained or fine-
grained, depending on configuration [26]. Automigration feature requires kernel modification (it
is implemented as a collection of kernel patches).

Table 2: Scheduling features for taking action as seen from user level.

the remote memory node. Accessing remote memory
node requires traversing the cross-chip interconnect, and
so LLC-miss latency would increase even further if the
interconnect has high traffic. As a result, an application
with higher LLC miss rate could suffer higher perfor-
mance overhead on NUMA systems than an application
which does not access memory often.

Many tools to gather hardware performance counter
data are available for Linux, including oprofile,
likwid, PAPI, etc. In this paper we focus on two
tools that we use in our research: perf and pfmon.
The choice of a tool depends on the Linux kernel ver-
sion. For Linux kernels prior to 2.6.30, pfmon [19] is
probably the best choice as it supports all the features es-
sential for user level scheduling, including detailed de-
scription of a processor’s PMU capabilities (what events
are available for tracking, the masks to use with each
event, etc), counter multiplexing and periodic output of
intermediate counter events (necessary for online mon-

itoring). Pfmon requires patching the kernel in order
for the user level tool to work. The support for pfmon
was discontinued since 2.6.30 in favour of the vanilla
kernel profiling interface PERF_EVENTS and a user-
level tool called perf [18]. Perf generally supports
the same functionality as pfmon (apart from a periodic
output of intermediate counter data, which we added).
PERF_EVENTS must be turned on during kernel com-
pilation for this tool to work.

The server we used has two AMD Opteron 2435 Istan-
bul CPUs, running at 2.6 GHz, each with six cores (12
total CPU cores). It is a NUMA system: each CPU has
an associated 8 GB memory block, for a total of 16 GB
main memory. Each CPU has 6 MB 48-way L3 cache
shared by six cores. Each core also has a private uni-
fied 512 KB 16-way L2 cache and a private 64 KB 2-
way L1 instruction and data caches. The client machine
was configured with a single 76 GB SCSI hard drive.
To track the LLC miss rate (number of LLC misses per

86 • User-level scheduling on NUMA multicore systems under Linux

instruction), the user-level scheduler must perform the
following steps:

1) Get the layout of core IDs spread among the nodes
of the server. On a two socket machine with 6 core
AMD Opteron 2435 processors, the core-related output
of numactl would look like:

numactl --hardware
available: 2 nodes (0-1)
node 0 cpus: 0 2 4 6 8 10
node 1 cpus: 1 3 5 7 9 11

2) Get the information about L3_CACHE_MISSES and
RETIRED_INSTRUCTIONS events provided by the
given PMU model (the event names can be obtained via
pfmon -L):

pfmon -i L3_CACHE_MISSES
Code : 0x4e1
Counters : [0 1 2 3]
Desc : L3 Cache Misses
Umask-00 : 0x01 : [READ_BLOCK_EXCLUSIVE] :
Read Block Exclusive (Data cache read)
Umask-01 : 0x02 : [READ_BLOCK_SHARED] :
Read Block Shared (Instruction cache read)
Umask-02 : 0x04 : [READ_BLOCK_MODIFY] :
Read Block Modify
Umask-03 : 0x00 : [CORE_0_SELECT] :
Core 0 Select
Umask-04 : 0x10 : [CORE_1_SELECT] :
Core 1 Select
<...>
Umask-08 : 0x50 : [CORE_5_SELECT] :
Core 5 Select
Umask-09 : 0xf0 : [ANY_CORE] :
Any core
Umask-10 : 0xf7 : [ALL] :
All sub-events selected

pfmon -i RETIRED_INSTRUCTIONS
Code : 0xc0
Counters : [0 1 2 3]
Desc : Retired Instructions

As seen from the output, L3_CACHE_MISSES has a
user mask to configure. The high 4 bits of the mask
byte specify the monitored core, while the lower ones
tell pfmon what events to profile. We would like to
collect all types of misses for the given core. Hence, all
three meaningful low bits should be set. We will con-
figure the "core bits" as necessary, so that, for example,
core 1 user mask will be 0x17.

While RETIRED_INSTRUCTIONS is a core-level
event and can be tracked from every core on the
system, L3_CACHE_MISSES is a Northbridge (NB),
node-level event [2]. Northbridge resources, includ-
ing memory controller, crossbar, HyperTransport and
LLC events are shared across all cores on the node. To
monitor them from user level on AMD Opteron CPUs,
the profiling application must start only one session per
node from a single core on the node (any core on the
node can be chosen for that purpose). Starting more than
one profiling instance per node for NB events will result
in a monitoring conflict and the profiling instance will
be terminated.

3) To get periodic updates on LLC misses and retired in-
structions for every core on the machine, the scheduler
needs to start two profiling sessions on each memory
node. One session will access a single core on the node
(let it be core 0 for the first node and core 1 for the sec-
ond) and periodically output misses for all cores on the
chip and instructions for this core by accessing NB miss
event and this core’s instruction event. Another instance
will access the rest of the cores from the node and col-
lect retired instruction counts from the other cores. The
two sessions for node 0 would then look like so:

pfmon --system-wide --print-interval=1000 \
--cpu-list=0 --kernel-level --user-level \
--switch-timeout=1 \
-e L3_CACHE_MISSES:0x07,L3_CACHE_MISSES:0x17,\
L3_CACHE_MISSES:0x27,L3_CACHE_MISSES:0x37 \
-e L3_CACHE_MISSES:0x47,L3_CACHE_MISSES:0x57,\
RETIRED_INSTRUCTIONS

pfmon --system-wide --print-interval=1000 \
--cpu-list=2,4,6,8,10 --kernel-level \
--user-level \
--events=RETIRED_INSTRUCTIONS

In the first session, there are two event sets to mon-
itor, each beginning with --events keyword. The
maximum number of events in each session is equal
to the number of available counters inside PMU (four,
according to pfmon -i output above). Pfmon will
use event multiplexing to switch between the measured
event sets with the frequency --switch-timeout
milliseconds. Monitoring is performed per core as is
designated by --system-wide option3 in kernel and

3Pfmon and perf can monitor the counters in two modes:
system-wide and per-thread. In per-thread mode, the user speci-
fies a command for which the counters are monitored. When the

2011 Linux Symposium • 87

user level for all events. Periodic updates will be given
at 1000 ms intervals.

The scheduler launches similar profiling sessions on the
rest of the system nodes, but replaces the core IDs as is
seen in numactl --hardware output.

4) At this point, scheduler has the updated information
about LLC misses and instructions for every core on the
system, thus it can calculate the miss rate for every core.
The data collected with perf and pfmon on each node
contains ”LLC missrate – core” pairs that characterize
the amount of memory intensiveness within each node
online. In order to make a scheduling decision, we need
to find out the id of the thread that is running on a given
core so the pair will turn into ”LLC missrate – thread
ID”. This can be done via procfs (see Table 1). While
it is possible to tell which threads are executing on the
same core, there is currently no way to attribute individ-
ual miss rate to every thread due to limitation of mea-
suring NB events on user level4. Fortunately, we did
not find this to be a show stopper in implementing the
user-level scheduler: the LLC miss rate as a metric of
memory intensiveness is only significant for compute
bound threads, and those threads are usually responsi-
ble for most activity on the core (launching a workload
with more than one compute-bound thread per core is
not typical).

The above steps also apply when using perf instead of
pfmon under the latest kernel versions (we used 2.6.36
kernel with perf). The only challenge is that perf
only includes several basic counters (cycles, instructions
retired and so on) into its symbolic interface by default.
The rest of the counters, including NB events and their
respective user masks have to be accessed by directly
addressing a special Performance Event-Select Register
(PerfEvtSeln) [1]. Below are the invocations of perf
with raw hardware event descriptors for the two sessions
on node 0:

perf stat -a -C 0 -d 1000 \

process running that command is moved to another core, the profil-
ing tool will switch the monitored core accordingly. In the system-
wide mode, the tool does not monitor a specific program, but instead
tracks all the processes that execute on a specific set of CPUs. A
system-wide session cannot co-exist with a per-thread session, but
a system wide session can run concurrently with other system wide
sessions as long as they do not monitor the same set of CPUs [8].
NB events can only be profiled in system-wide mode.

4We are currently working on kernel changes that will allow
measuring per-thread LLC at user level.

-e r4008307e1 -e r4008317e1 -e r4008327e1 \
-e r4008337e1 -e r4008347e1 -e r4008357e1 \
-e rc0

perf stat -a -C 2,4,6,8,10 -d 1000 -e rc0

As can be seen, the names or raw hardware events in
perf begin with an "r". Bits 0-7, 32-35 of the regis-
ter are dedicated to the event code. Bits 8-15 are for
the user mask. Bits 16-31 are reserved with the value
0x0083. If the event code is only 1 byte long (0xC0 for
RETIRED_INSTRUCTIONS), there is no need to spec-
ify the rest of the code bits and, hence, mention all the
reserved bytes in between.

4.2 Obtaining logical address of a memory access
with IBS

IBS is AMD’s profiling mechanism that enables the pro-
cessor to select a random instruction fetch or micro-op
after a programmed time interval has expired and record
specific performance information about the operation.
The IBS mechanism is split into two modules: instruc-
tion fetch performance and instruction execution perfor-
mance. Instruction fetch sampling provides information
about instruction TLB and instruction cache behavior
for fetched instructions. Instruction execution sampling
provides information about micro-op execution behav-
ior [2]. For the purpose of obtaining the address of the
load or store operation that missed in the cache, the in-
struction execution module has to be used as follows:

1) First of all, the register MSRC001_1033 (IbsOpCtl,
Execution Control Register) needs to be configured to
turn IBS on (bit 17) and set the sampling rate (bits
15:0). According to the register mnemonic, IbsOpCtl
is in MSR (Model Specific Registers) space with the
0xC0011033 offset. MSR registers can be accessed
from user level in several ways: (a) through x86-
defined RDMSR and WRMSR instructions, (b) through
command-line tools rdmsr and wrmsr available from
msr-tools package, (c) by reading or writing into
/dev/cpu/<CID>/msr file (MSR support option must be
turned on in the kernel for that)5.

5Although accessing MSR registers from user level is straight-
forward, they are not the only CPU registers that can be config-
ured that way. For example, turning a memory controller prefetcher
on/off can only be done via F2x11C register from PCI-defined con-
figuration space. For that, command line tools lspci and setpci
from pciutils package can be used under Linux [7].

88 • User-level scheduling on NUMA multicore systems under Linux

2) After IBS is configured, execution sampling engine
starts the counter and increments it on every cycle.
When the counter overflows, IBS tags a micro-op that
will be issued in the next cycle for profiling. When the
micro-op is retired, IBS sets the 18th bit of IbsOpCtl to
notify the software that new instruction execution data is
available to read from several MSR registers, including
MSRC001_1037 (IbsOpData3, Operation Data 3 Regis-
ter).

3) At that point, the user level scheduler determines if
the tagged operation was a load or store that missed
in the cache. For that, it checks the 7th bit of IbsOp-
Data3. If the bit was set by IBS, the data cache address
in MSRC001_1038 (IbsDcLinAd, IBS Data Cache Lin-
ear Address Register) is valid and ready to be read from.

4) After the scheduler gets the linear address, it needs to
clear the 18th bit of IbsOpCtl that was set during step
2, so IBS could start counting again towards the next
tagged micro-operation.

5 Clavis: an online user level scheduler for
Linux

Clavis is a user-level application that is designed to test
efficiency of scheduling algorithms on real multicore
systems6. It is able to monitor the workload execution
online, gather all the necessary information for making a
scheduling decision, pass it to the scheduling algorithm
and enforce the algorithm’s decision. Clavis is released
as an Open Source project [3]. It has three main phases
of execution:

• Preparation. During this phase, Clavis starts
the necessary monitoring programs in batch mode
(top, iotop, nethogs, perf or pfmon, etc.)
along with the threads that periodically read and
parse the output of those programs. In case the
workload is predetermined, which is useful for test-
ing, Clavis also analyzes a launch file with the
workload description and places the information
about the workload into its internal structures (see
below).

• Main loop. In each scheduler iteration, Clavis
monitors the workload, passes the collected infor-
mation to the scheduling algorithm and enforces

6The word clávis means "a key" in Latin. In the past, Clavis
greatly helped us to "unlock" the pros and cons of several scheduling
algorithms that we designed in the systems lab at SFU.

algorithm’s decision on migrating threads across
cores and migrating the memory. It also maintains
various log files that can be used later to analyze
each scheduling experiment. The main cycle of
execution ends if any of the following events oc-
cur: the timeout for the scheduler run has been
reached; all applications specified in the launch file
have been executed at least NR times, where NR is
a configuration parameter specified during invoca-
tion.

• Wrap-up. In this stage, the report about the sched-
uler’s work and the workload is prepared and saved
in the log files. The report includes average execu-
tion time of each monitored application, the total
number of pages that were migrated, the configu-
ration parameters used in this run and so on.

Clavis can either detect the applications to monitor on-
line or the workload can be described by the user in a
special launch file. In the first case, any thread on the
machine with high CPU utilization (30% as seen in the
top output), high disk read/write traffic (50 KB/sec) or
high network activity (1MB/sec on any interface) will be
detected and its respective process will be incorporated
into scheduler’s internal structures for future monitor-
ing. All the thresholds are configurable. Alternatively,
the user can create a launch file in which case the sched-
uler will start the applications specified in it and monitor
them throughout its execution. Launch file can contain
any number of records with the following syntax:

<label> <launch time> <invocation string>

***rundir <rundir>

***thread 0 [<CPU ID>] -or-

***numa thread 0 [<CPU ID>, <NODE ID>]
<...>

***thread N [<CPU ID>] -or-

***numa thread N [<CPU ID>, <NODE ID>]

Each record describes a single application, possibly
multithreaded. In the record, the user can specify a label
that will be assigned to the application, which will then
represent the application in the final report. If no label
is specified, or if the application was detected at run-
time, the binary name of the executable is used as a la-
bel. The launch time of the application since the start of
the scheduler is entered next. This field is ignored when
Clavis was started with "random" parameter, in which
case the scheduler randomizes workload start time. The

2011 Linux Symposium • 89

invocation string and run directory for each program are
mandatory fields. In case of multithreaded applications,
user can specify additional parameters that will be asso-
ciated with the program threads. Usually, they are core
and node IDs the given thread and its memory should be
pinned to. The user, however, can utilize these fields to
pass any data to the devised scheduling algorithm (e.g.
offline signatures for each program thread).

Clavis is a multithreaded application written in C. It has
the following file structure:

• signal-handling.c - implementation of the sched-
uler’s framework: monitoring, enforcing schedul-
ing decisions and gathering info for the logs.

• scheduler-algorithms.c - the user defined imple-
mentation of the scheduling algorithms is located
here. This file contains several examples of
scheduling algorithm implementations with differ-
ent complexity to start with.

• scheduler-tools.c - a collection of small helpful
functions that are used throughout the scheduler
work.

• scheduler.h - a single header file.

Possible modes of Clavis execution will depend on the
number of implemented scheduling algorithms. Clavis
supports two additional modes on top of that: (1) a sim-
ple binding of the workload to the cores and/or nodes
specified in the launch file with the subsequent log-
ging and monitoring of its execution; (2) monitoring the
workload execution under the default OS scheduler. Ta-
ble 3 lists the log files that Clavis maintains throughout
its execution. The source code of the scheduler, sam-
ples of the log files, algorithm implementation examples
and the user level tools modified to work with Clavis are
available for download from [3].

6 Conclusion

In this paper we discussed facilities for implement-
ing user-level schedulers for NUMA multicore systems
available in Linux. Various information about the mul-
ticore machine layout and the workload is exported to
user space and updated in a timely manner by the kernel.
Programs are also allowed to change workload thread

schedule and its memory placement as necessary. Hard-
ware performance counters, available on all major pro-
cessor models, are capable of providing additional pro-
filing information without slowing down the workload
under consideration. The Clavis scheduler introduced
in this paper is an Open Source application written in
C that leverages opportunities for user level scheduling
provided by Linux to test the efficiency of scheduling
algorithms on NUMA multicore systems.

References

[1] AMD64 Architecture Programmer’s Manual
Volume 2: System Programming. [Online]
Available: http://support.amd.com/us/
Processor_TechDocs/24593.pdf.

[2] BIOS and Kernel Developer’s Guide (BKDG) for
AMD Family 10h Processors. [Online] Available:
http://mirror.leaseweb.com/
NetBSD/misc/cegger/hw_manuals/
amd/bkdg_f10_pub_31116.pdf.

[3] Clavis: a user level scheduler for Linux. [Online]
Available:
http://clavis.sourceforge.net/.

[4] Linux load balancing mechanisms. [Online]
Available: http://nthur.lib.nthu.edu.
tw/bitstream/987654321/6898/13/
432012.pdf.

[5] Linux scheduling domains. [Online] Available:
http://lwn.net/Articles/80911/.

[6] Maui scheduler administrator’s guide. [Online]
Available: http://www.
clusterresources.com/products/
maui/docs/mauiadmin.shtml.

[7] PCI/PCI Express Configuration Space Access.
[Online] Available: http://developer.
amd.com/Assets/pci%20-%20pci%
20express%20configuration%
20space%20access.pdf.

[8] Pfmon user guide. [Online] Available:
http://perfmon2.sourceforge.net/
pfmon_usersguide.html.

[9] VMware ESX Server 2 NUMA Support. White
paper. [Online] Available: http://www.
vmware.com/pdf/esx2_NUMA.pdf.

90 • User-level scheduling on NUMA multicore systems under Linux

Log filename Content description
scheduler.log The main log of the scheduler, contains information messages about the changes in the

workload (start/termination of the eligible programs and threads), migration of the memory
to/from nodes, the information about a scheduling decision made by the algorithm along
with the metrics the algorithm based its decision on, etc. The final report is also stored here
upon program or scheduler termination.

mould.log Information about what core each workload thread has spent the run on and for how long it
was there. The log format:

<time mark since the start of the scheduler (in scheduler iterations)>:
<program label>
sAppRun[<program ID in scheduler>].aiTIDs[<thread ID in scheduler>]
(\#<run number>) was at <core ID>-th core for <N> intervals

numa.log Contains the updated information about node location of the program’s memory footprint
in the format:

<time mark>: <label> sAppRun[<progID>].aiTIDs[<threadID>] (\#<run number>)
<number of pages on the 0-th node>
<...>
<number of pages on the last node> for <N> intervals

vector.log This log contains the updated data about the resources consumed by each program that is
detected online or launched by the scheduler. The log format is:

<time mark>: <PID> <label> CPU <core utilization in %>
MISS RATE <LLC miss rate> MEM <Memory utilization in %>
TRAFFIC SNT <Network traffic sent> RCVD <Network traffic received>
IO WRITE <Disk traffic wrote> READ <Disk traffic read>

systemwide.log The updated information about the monitored hardware counters is dumped here in every
scheduling iteration.

time.log Number of seconds every program was running along with the time it has spent on user and
kernel level.

Table 3: Log files maintained by Clavis during its run.

[10] Micah J. Best, Shane Mottishaw, Craig Mustard,
Mark Roth, Alexandra Fedorova, and Andrew
Brownsword. Synchronization via Scheduling:
Managing Shared State in Video Games. In
HotPar, 2010.

[11] Sergey Blagodurov, Sergey Zhuravlev,
Mohammad Dashti, and Alexandra Fedorova. A
Case for NUMA-Aware Contention Management
on Multicore Systems. In USENIX ATC, 2011.

[12] Sergey Blagodurov, Sergey Zhuravlev, and
Alexandra Fedorova. Contention-Aware
Scheduling on Multicore Systems. ACM Trans.
Comput. Syst., 28, December 2010.

[13] Martin J. Bligh, Matt Dobson, Darren Hart, and
Gerrit Huizenga. Linux on NUMA Systems.
[Online] Available:
http://www.linuxinsight.com/
files/ols2004/bligh-reprint.pdf,
2004.

[14] Robert D. Blumofe, Christopher F. Joerg,
Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An
Efficient Multithreaded Runtime System. In
Journal of parallel and distributed computing,
pages 207–216, 1995.

[15] Timothy Brecht. On the Importance of Parallel

2011 Linux Symposium • 91

Application Placement in NUMA
Multiprocessors. In USENIX SEDMS, 1993.

[16] Barbara Chapman, Gabriele Jost, and Ruud
van der Pas. Using OpenMP: Portable Shared
Memory Parallel Programming (Scientific and
Engineering Computation). The MIT Press, 2007.

[17] Julita Corbalan, Xavier Martorell, and Jesus
Labarta. Evaluation of the Memory Page
Migration Influence in the System Performance:
the Case of the SGI O2000. In Proceedings of
Supercomputing, 2003.

[18] Arnaldo Carvalho de Melo. Performance counters
on Linux, the new tools. [Online] Available:
http://linuxplumbersconf.org/
2009/slides/
Arnaldo-Carvalho-de-Melo-perf.
pdf.

[19] Stéphane Eranian. What Can Performance
Counters Do for Memory Subsystem Analysis?
In MSPC. ACM, 2008.

[20] Wooyoung Kim and Michael Voss. Multicore
Desktop Programming with Intel Threading
Building Blocks. IEEE Softw., 28:23–31, January
2011.

[21] Rob Knauerhase, Paul Brett, Barbara Hohlt, Tong
Li, and Scott Hahn. Using OS Observations to
Improve Performance in Multicore Systems.
IEEE Micro, 28(3), 2008.

[22] Orran Krieger, Marc Auslander, Bryan
Rosenburg, Robert W. Wisniewski, Jimi Xenidis,
Dilma Da Silva, Michal Ostrowski, Jonathan
Appavoo, Maria Butrico, Mark Mergen, Amos
Waterland, and Volkmar Uhlig. K42: Building a
Complete Operating System. In EuroSys, 2006.

[23] Richard P. LaRowe, Jr., Carla Schlatter Ellis, and
Mark A. Holliday. Evaluation of NUMA Memory
Management Through Modeling and
Measurements. IEEE Transactions on Parallel
and Distributed Systems, 3, 1991.

[24] Tong Li, Dan Baumberger, David A. Koufaty, and
Scott Hahn. Efficient Operating System
Scheduling for Performance-Asymmetric
Multi-core Architectures. In SC, 2007.

[25] David Jackson Quinn, David Jackson, Quinn
Snell, and Mark Clement. Core Algorithms of the
Maui Scheduler. In JSSPP, 2001.

[26] Lee T. Schermerhorn. Automatic Page Migration
for Linux. [Online] Available:
http://lca2007.linux.org.au/talk/
197.html, 2007.

[27] David Tam, Reza Azimi, and Michael Stumm.
Thread Clustering: Sharing-Aware Scheduling on
SMP-CMP-SMT Multiprocessors. In EuroSys,
2007.

[28] Sergey Zhuravlev, Sergey Blagodurov, and
Alexandra Fedorova. Addressing Contention on
Multicore Processors via Scheduling. In ASPLOS,
2010.

[29] Sergey Zhuravlev, Sergey Blagodurov, and
Alexandra Fedorova. AKULA: a Toolset for
Experimenting and Developing Thread Placement
Algorithms on Multicore Systems. In PACT,
2010.

92 • User-level scheduling on NUMA multicore systems under Linux

Management of Virtual Large-scale High-performance Computing
Systems

Geoffroy Vallée
Oak Ridge National Laboratory

valleegr@ornl.gov

Thomas Naughton
Oak Ridge National Laboratory

naughtont@ornl.gov

Stephen L. Scott
Tennessee Tech University and Oak Ridge National Laboratory

sscott@tntech.edu

Abstract

Linux is widely used on high-performance computing
(HPC) systems, from commodity clusters to Cray su-
percomputers (which run the Cray Linux Environment).
These platforms primarily differ in their system config-
uration: some only use SSH to access compute nodes,
whereas others employ full resource management sys-
tems (e.g., Torque and ALPS on Cray XT systems). Fur-
thermore, the latest improvements in system-level virtu-
alization techniques, such as hardware support, virtual
machine migration for system resilience purposes, and
reduction of virtualization overheads, enable the usage
of virtual machines on HPC platforms.

Currently, tools for the management of virtual machines
in the context of HPC systems are still quite basic, and
often tightly coupled to the target platform. In this docu-
ment, we present a new system tool for the management
of virtual machines in the context of large-scale HPC
systems, including a run-time system and the support for
all major virtualization solutions. The proposed solution
is based on two key aspects. First, Virtual System Envi-
ronments (VSE), introduced in a previous study, provide
a flexible method to define the software environment
that will be used within virtual machines. Secondly, we
propose a new system run-time for the management and
deployment of VSEs on HPC systems, which supports a
wide range of system configurations. For instance, this
generic run-time can interact with resource managers
such as Torque for the management of virtual machines.

Finally, the proposed solution provides appropriate ab-
stractions to enable use with a variety of virtualization
solutions on different Linux HPC platforms, to include
Xen, KVM and the HPC oriented Palacios.

1 Introduction

Virtual machines are widely used for server virtualiza-
tion aiming at consolidating physical resources and, ul-
timately, increase the resource usage. As a result, many
tools are available for the definition, deployment, and
management of virtual machines (VMs) on servers or
a small set of servers. Furthermore, over the past few
years, two new trends appeared and were the focus of
many research efforts: the deployment of cloud infras-
tructures, and the deployment of “virtual clusters”. In
fact, it has been shown that virtual clusters are an inter-
esting solution for high-performance computing (HPC).

Even if these computational platforms are very different
in nature, they are most of time running the Linux ker-
nel, even if the Linux distribution on top of it can be very
different and/or customized. For instance, most servers
in the business world are running Linux, in the context
of server consolidation, many VMs are Linux based. In
the context of HPC, the trend is even more clear since
more than 90% of HPC systems on the Top500 list [5]
are Linux based.

This document is focused on the HPC context, for which
it is preferable to have a few VMs running on the nodes
of the HPC platforms (typically one VM per core),
rather than running many virtual machines on a given
core (over-subscription). This is mainly because in the
context of HPC, input/output (I/O) operations are crit-

1The submitted manuscript has been authored by a contractor
of the U.S. Government under Contract No. DE-AC05-00OR22725.
Accordingly, the U.S. Government retains a non-exclusive, royalty-
free license to publish or reproduce the published form of this con-
tribution, or allow others to do so, for U.S. Government purposes.

• 93 •

94 • Management of Virtual Large-scale High-performance Computing Systems

ical (because they are involved in communication be-
tween the execution entities of a parallel application).

To the best of our knowledge, all ongoing efforts for the
design and development of tools that aims at managing
a large number of VMs are focusing on the “many VMs
on a few nodes” paradigm rather than the “a few VMs on
many nodes” paradigm. As a result, existing solutions
are not adapted for the management of many VMs on
HPC systems and ultimately the execution of parallel
applications within these VMs.

In this document, we present the architecture of a new
system-level solution for the deployment and manage-
ment of many VMs that are used for the execution of
large-scale parallel applications on HPC platforms. Be-
cause the primary target of the proposed system is large-
scale HPC systems, the following characteristics are
critical for its design:

• Scalable bootstrapping: the bootstrapping on
many VMs running on many nodes of HPC sys-
tems is a challenging tasks, from the staging of
both the VM image and the application, to the ini-
tialization of the VMs and the launch of parallel
applications within the running VMs. Based on the
large number of nodes and VMs, it is necessary to
implement some advanced methods for startup of
VMs and applications, with linear approaches be-
ing too expensive.

• Portability: HPC systems may have very differ-
ent hardware configurations, as well as very differ-
ent software configurations. Furthermore, different
virtualization solutions will most certainly be de-
ployed on different HPC systems. As a result, the
proposed solution must support all major virtual-
ization solutions, and abstract the underlying virtu-
alization solution away from the users (so they can
easily run their applications on various virtualized
HPC platforms).

• Customization: one of the benefits of system-level
virtualization is to allow users to define their own
execution environments within the VMs (typically
software configuration). Tools are already avail-
able for the specification and deployment of cus-
tomized environments that will perfectly match the
requirements of parallel applications. The pro-
posed tool must support such customization capa-
bilities.

• Fault tolerance: because the system is composed
of many distributed hardware components, the
probability of a failure during the execution of a
parallel application at scale increases accordingly.
As a result, even if the goal of this study is not
to provide fault tolerance mechanisms for parallel
applications, we have to ensure that the proposed
system and its overall infrastructure will tolerate
failures to some extent, at least to allow users to
cleanly terminate the execution of their applica-
tions. For that, it is necessary to detect failures,
and guarantee communications even in the con-
text of link failures.

To address these challenges, the proposed solution is
based on three different abstractions:

1. a set of tools and methods for the specification
and instantiation of customized execution environ-
ments,

2. a control infrastructure that will be used for the
management of VMs (startup, monitoring, termi-
nation), as well as the control of the execution
of the parallel application; this “run-time” system
must be scalable and fault tolerant,

3. a tool for the abstraction of the underlying virtu-
alization solution so the user will not have to deal
with technical details specific to the virtualization
solution deployed on a given HPC system, which
means that this abstraction must support all major
virtualization solutions.

The remainder of this document is organized as follows:
Section 2 presents how users can specify a customized
execution environment for their applications that will be
used for the deployment of VMs on HPC systems. Sec-
tion 3 presents the control infrastructure used to control
and orchestrate many VMs used in the context of the ex-
ecution of a large-scale parallel applications. Section 4
presents the abstraction layer used to allow the user to
implicitly switch between different virtualization solu-
tions. Finally, Section 6 concludes.

2 Customization of Execution Environments

Based on the 36th edition of the Top500 list (September
2010), 91% of the 500 most powerful HPC systems are

2011 Linux Symposium • 95

based on Linux. However, the software configuration
of these systems vary greatly, from customized kernels
and Linux distributions to out-of-the-box Linux distri-
butions and the kernel they provide by default. Further-
more, each of the HPC systems have a well-defined set
of available software, including scientific libraries and
tools. So far, the users had to modify their application
to fit the configuration of the target HPC platforms, lead-
ing to wasted resources and redundant effort (scientists
should focus on the science gathered in their applica-
tions and not on modifications because of technical de-
tails of the HPC system).

An approach to address this challenge is to allow the
users to define their execution environments based on
the requirements of their applications. In a previous
work, we introduced the concept of Virtual System En-
vironment (VSE) [6] that enables the description of the
software requirements of a given applications. We also
proposed a set of tools for the instantiation of a VSE on
a given HPC platform.

As a result, it is possible to specify the “static” require-
ments of the scientific application; requirements that are
not specific to a given run of the application on a given
platform. For instance, the user can specify require-
ments such as the Linux distribution to be used (e.g.,
Red Hat Enterprise Linux), the version of the Linux
kernel, a set of scientific libraries. The specification
is translated into terms of “packages” available from
repositories. During the instantiation of a VSE on a
given HPC platform, the list of packages is used to cre-
ate a new image, which can then be used to setup a VM.
Note that the tools associated with the VSE ensure that
the image can be deployed independently of the virtual-
ization solution that is ultimately used. For instance, the
users do not have to know whether KVM or Xen will
be used as the virtualization solution, the provided tools
create a VM image that is agnostic to the different virtu-
alization solutions. Note that the tool that abstracts the
virtualization solution (presented in Section 4) ensures
that the image is correctly “loaded” based on the target
virtualization solution.

3 Control Infrastructure

The previous section presents how a user can customize
the execution environment for their applications. This
task can typically be done off-line and is independent
from the target HPC system. Once on the HPC systems,

the users must deploy the required VMs and start the
application execution. A typical way to see the execu-
tion of a parallel application is the concept of job: a
job is the combination of the application and an allo-
cation for its execution (typically a set of nodes). Un-
fortunately, HPC systems can be used with very differ-
ent configurations: some provide tools that assign an
allocation to a given job (based on the number of re-
quested nodes, the job manager allocates nodes to the
job); while some other systems allow direct access to
compute nodes (e.g., via SSH). This heterogeneity di-
rectly impacts how VMs will be deployed.

Furthermore, because we target large-scale HPC sys-
tems, it is not efficient to setup VMs and start the ap-
plication execution in a linear fashion, more advanced
startup methods are required.

Finally, even if failures occur during the execution of a
parallel application running within VMs, we must con-
tinue to keep control on the running VMs. In the context
of this study, our goal is not to provide fault tolerance
capabilities for the VMs or even for the application, but
to guarantee that even if compute nodes or VMs fail, it
will still be possible to control remaining VMs and let
the user decide the best solution (e.g., cleanly terminate
VMs that are still alive and therefore, terminate the job).

3.1 Architecture Overview

In order to deploy VMs on compute nodes and control
the execution of applications within these VMs, we need
to have control on each compute node of the job allo-
cation. Furthermore, in order to separate the system as-
pects (such as resource allocation) from the job manage-
ment, the proposed architecture is based on the concept
of agents, and five different types of agents have been
defined: root agents (typically system agents), session
agents (specific to a job), and tool agents (specific to a
“tool”, a tool being a self-contained part of a job, e.g.,
one of the binaries of a job when the parallel application
is composed of different sub-applications).

• Root agent: agent in charge of resource allocation
and release. Thus, this agent is a privileged agent.
Only one root agent is on each compute node and is
used to deploy other agents (both session and tool
agents). Root agents are not specific to a job.

96 • Management of Virtual Large-scale High-performance Computing Systems

• Session agent: agent in charge of instantiating a
job on allocated compute nodes. This is not a priv-
ileged agent and it acts on behalf of a user. A sin-
gle session agent is deployed on compute nodes of
a given job allocation.

• Tool agent: agent that instantiates the job itself;
multiple tool agents can be deployed on compute
nodes of a job allocation, and all tool agents act on
behalf of the users. In the context of this paper,
the tool agents are used to manage VMs. For that,
we developed a specific tool agent that can be used
to drive the tool that implements the abstraction of
the underlying virtualization solution (presented in
Section 4). For instance, the dedicated tool agent
can instantiate a VM, pause it, or terminate it.

• Controller agent: agent in charge of creating an
internal representation of a job and of coordinat-
ing the deployment of the different agents and the
creation of communication channels between the
agents. The communication channels are orga-
nized based on topologies (e.g., trees, meshes) that
describe how the controllers, the root agents, the
session agents, and the tool agents can commu-
nicate. In this example, root agents are running
on different compute nodes, and both session and
tool agents, that are children of a given root agent,
actually run on the same compute nodes. Fig-
ure 1 presents an example of a tree-based topology.
Topologies are also used to set routing tables up
(which are then used to send messages from one
agent to another), and to stage files, including the
VM image.

• Front-end agent: agent that runs on the user’s ma-
chine or on the HPC system login node. The front-
end provides a MPI-like user interface to submit a
job where the user specifies the VSE specification
file and the number of nodes required.

3.2 Scalable Bootstrapping

To efficiently startup agents, we define a boot topology
(the initial implementation is based on a binary tree but
any k-ary tree could be used). This tree allows us to start
the different agents in parallel, and provides good scal-
ability. This approach is used in various HPC specific
run-times and has proven to be efficient.

If failures occur during the bootstrapping phase, the dif-
ferent agents are designed and implemented to automat-
ically terminate. This is implemented using a handshake
mechanism with the agent’s parent within the boot-
strapping topology, as well as timers. Typically, if the
handshake does not succeed within a window of time,
we assume a failure and the agent terminates. On the
other hand, if the handshake succeeds, the bootstrapping
phase is assumed successful; the agent’s state switch to
running, and the parent assumes that the agent is running
and reachable. As such, the failure detection is then in
charge of detecting and reporting agent failures.

3.3 Fault Tolerance

For fault tolerance purposes, we provide two capabil-
ities: failure detection and a fault tolerant topology.
These two capabilities ensure that even if a node fails
or if an agent fails, it will still be able to send/receive
messages between agents that are still alive. This allows
the user to decide the best policy to apply in the context
of failure, for instance, triggering the clean termination
of remaining agents and ultimately VMs.

3.3.1 Fault Detection

A key point to tolerate failures is to first detect failures.
By detecting failures, it is possible to update routing ta-
bles and eventually re-establish failed communication
channels to ensure that we can still control live agents.
For this context, we propose a set of detectors. For in-
stance, a mesh-based detector establishes connections
between root agents and reports an error if the connec-
tion is closed. Another detector establishes connections
between root agents based on a mesh topology and per-
form periodic ping-pong probes. If the ping-pong fails,
a failure is reported. Finally, we provide a signal-based
detector that can be used on compute nodes to detect the
failure of any local session or tool agent (by catching the
SIGCHLD signal).

3.3.2 Communication Fault Tolerance

Since our boot topology is a tree-based topology, the
failure of any agent will prevent communications be-
tween different parts of the tree, leading to unreachable
agents. To address this issue, we setup a topology based

2011 Linux Symposium • 97

Figure 1: Example of Topology

on a binomial graph (BMG) [1] that provides redundant
communication links between agents. As a result, even
if a communication channel is closed because of a fail-
ure, it is possible to find another route to reach the des-
tination.

4 Abstraction of the Underlying Virtualization
Solution

Many tools are available for the management of virtual
machines, such as libvirt [3], However, these tools, to
the best of our knowledge, try to represent the union
of all the capabilities of all the virtualization solutions,
leading to overly complex tools. In the context of our
study, we only require a lightweight tool that provides a
simple API, typically start, stop, pause, un-pause a given
VM (we may support migration in a future version of
the system). For that, we propose the V2M tool from
a previous study [7]. This tool abstracts the underlying
virtualization solution via the implementation of plug-
ins. Each plug-in is in charge of translating manage-
ment tasks to commands that are specific to the underly-
ing virtualization solution. The tool is also in charge of
making sure that the VM image is correctly setup to be
used with the target virtualization solution.

V2M is based on the concept of profiles, which specify
how to deploy a VM based on VSE image. This profile

is automatically created based on job data such as the
allocation specification.

5 Use Case: the Palacios Virtualization Solu-
tion

Palacios is a virtualization solution specifically designed
for HPC [2, 4]. For that, Palacios is focusing on mini-
mizing its resource footprint and optimizing I/O (since
efficient I/O is critical for HPC applications). Figure 2
presents an overview of the architecture for Palacios.

Palacios proved to be very scalable and is therefore a
good candidate for experimentation at scale. In other
terms, by selecting Palacios, we can setup an experi-
mental configuration that is scalable and fault tolerant.

To support Palacios, a new V2M plug-in is created in
order to interface with our infrastructure; no other mod-
ifications or extensions are required.

6 Conclusion

In this document we present the architecture for a new
system-level infrastructure for the management of many
virtual machines to support the execution of parallel ap-
plications on large-scale high-performance computing

98 • Management of Virtual Large-scale High-performance Computing Systems

Figure 2: Overview of the Architecture of the Palacios Virtualization Solution

systems. The proposed architecture focuses on scala-
bility and fault tolerance. Furthermore, the proposed
solution abstract the underlying virtualization solution
and can therefore be used with most of the current vir-
tualization solutions such as Xen or KVM. Finally, our
solution enables the customization of the execution en-
vironment that is deployed inside the virtual machines,
which ultimately allows scientists to focus on science
rather than technical details associated with the config-
uration and execution of their application on elaborate
high-performance computing systems.

To implement these capabilities, we propose three dis-
tinct abstractions: the concept of VSE for the customiza-
tion of the execution environment; a scalable and fault
tolerant control infrastructure for the coordination of the
VMs running across the compute nodes, and finally an
abstraction of the underlying virtualization solution.

The implementation of the proposed architecture is still
ongoing but initial experimentation shows that the de-
sign of the control infrastructure is scalable and main-
tains connectivity between the different nodes involved
in the execution of a given application even in the event
of failures.

Finally, Palacios, a virtualization solution designed for
high-performance computing, is able to scale to a few
thousand VMs, and we are working with the Palacios
development team to perform experiments at scale using
our tool on some of the world’s larger HPC systems.

Acknowledgments

We would like to thank the Application Performance
Tools group from ORNL, and especially Richard L. Gra-
ham, for their support on the development of the control
infrastructure.

References

[1] Thara Angskun, George Bosilca, and Jack Don-
garra. Binomial graph: A scalable and fault-tolerant
logical network topology. In International Sympo-
sium on Parallel and Distributed Processing and
Applications, pages 471–482.

[2] John Lange, Kevin Pedretti, Trammell Hud-
son, Peter Dinda, Zheng Cui, Lei Xia, Patrick
Bridges, Steven Jaconette, Mike Levenhagen, Ron
Brightwell, and Patrick Widener. Palacios and kit-
ten: High performance operating systems for scal-
able virtualized and native supercomputing.

[3] The virtualization api. http://libvirt.org/.

[4] Palacios – an os independent embeddable vmm. http:
//v3vee.org/palacios/.

[5] Top 500 supercomputer sites. http://top500.
org/.

[6] Geoffroy Vallée, Thomas Naughton, Hong Ong, Anand
Tikotekar, Christian Engelmann, Wesley Bland, Ferrol

2011 Linux Symposium • 99

Aderholdt, and Stephen L. Scott. Virtual system environ-
ments. In Systems and Virtualization Management. Stan-
dards and New Technologies, volume 18 of Communica-
tions in Computer and Information Science, pages 72–
83. Springer Berlin Heidelberg, October 21-22, 2008.

[7] Geoffroy Vallée, Thomas Naughton, and Stephen L.
Scott. System management software for virtual environ-
ments. In Proceedings of ACM Conference on Comput-
ing Frontiers 2007, Ischia, Italy, May 7-9, 2007.

100 • Management of Virtual Large-scale High-performance Computing Systems

The Easy-Portable Method of Illegal Memory Access Errors Detection
for Embedded Computing Systems

Ekaterina Gorelkina
SRC Moscow, Samsung Electronics
e.gorelkina@samsung.com

Sergey Grekhov
SRC Moscow, Samsung Electronics

grekhov.s@samsung.com

Alexey Gerenkov
SRC Moscow, Samsung Electronics
a.gerenkov@samsung.com

Abstract

Nowadays applications on embedded systems become
more and more complex and require more effective fa-
cilities for debugging, particularly, for detecting mem-
ory access errors. Existing tools usually have strong de-
pendence on the architecture of processors that makes
its usage difficult due to big variety of types of CPUs. In
this paper an easy-portable solution of problem of heap
memory overflow errors detection is suggested. The
proposed technique uses substitution of standard allo-
cation functions for creating additional memory regions
(so called red zones) for detecting overflows and inter-
cepting of page faulting mechanism for tracking mem-
ory accesses. Tests have shown that this approach al-
lows detecting illegal memory access errors in heap with
sufficient precision. Besides, it has a small processor-
dependent part that makes this method easy-portable for
embedded systems which have big variety of types of
processors.

1 Introduction

Currently software programs running on modern em-
bedded computing systems have quite complicated be-
havior in sense of memory manipulation that make the
process of debugging very time consuming. In order
to simplify debugging procedure, various helper utili-
ties were designed. The most known are Valgrind [1]
and using MALLOC_CHECK_ environment variable for
GNU C library [2].

Valgrind replaces the standard C memory allocator with
a custom implementation and inserts extra instrumen-
tation code around almost all instructions, which en-
ables to detect read and write errors when a program

access memory outside of an allocated block by a small
amount. This approach has a strong dependency on the
type of processor of computing system. This makes us-
age of Valgrind on different computing systems quite
difficult due to relatively complicated porting procedure.

Recent versions of GNU C library are tunable via envi-
ronment variables. Setting variable MALLOC_CHECK_
to values 1, 2 or 3 allows detecting simple memory er-
rors like double free or overrun of a single byte. The
drawback of this approach is low precision of error de-
tection and performance degradation which is caused by
using less efficient implementations of allocating func-
tions.

In contrast to [1] and [2], the proposed method solves
the problem of memory errors detection with suffi-
cient precision and has a small processor-dependent part
which minimizes the time porting of this method on var-
ious processor architectures (that is especially valuable
for embedded systems). It also does not require program
re-compilation. As a result, this method can detect heap
object overflow problem for wide range of processors of
embedded computing systems. Testing results also have
shown the low execution overhead of suggested tech-
nique in comparison to Valgrind tool.

2 General Description on Idea

Suggested method relates to detection of typical mem-
ory errors: heap object overflow, heap object underflow,
access to un-allocated memory.

The basic idea of the method is to intercept memory al-
location requests, add special region (red zone) to each
heap object, protect allocated memory for reading and

• 101 •

102 • The Easy-Portable Method of Illegal Memory Access Errors Detection for Embedded Computing Systems

Program

Interception
library (supports
allocation API)

memory allocation

requests

Red
zone Object

Red
zone Object

Red
zone Object

protected

Figure 1: Allocation requests of considering program are in-
tercepted by a special library which allocates each object with
red zone and protect them both from reading and writing

writing and use mechanism of handling incorrect mem-
ory accesses in address space (here and after page fault-
ing mechanism) in order to track accesses to the memory
and detect the erroneous ones. The principal scheme of
two main parts of this idea - intercepting allocation func-
tions and intercepting page faulting mechanism - are il-
lustrated in Figure 1 and Figure 2 respectively.

The description of Figure 1 is following. During pro-
gram execution it requests and releases dynamically al-
located memory. The special interception library han-
dles these requests and processes them by making allo-
cations, adding a special region (red zone) and protect-
ing both of them from reading and writing. These red
zones are used for detecting typical overflow errors (as
it will be explained further in details).

The description of Figure 2 is following. After allocat-
ing necessary memory program tries to access some of
created objects. Since all of them are protected from
reading and writing, such attempt will generate page
fault exception. It is a special event which occurs when
specified memory can not be read or written. The pa-
rameters of this event include the address of access and
the type of access (read/write). Thus, such accesses can
be classified into valid and invalid by comparing the ad-
dress of access with addresses of allocated heap objects.

After handling page fault exception the protection of the
accessed object should be annulled and the program ex-
ecution should be resumed (if memory access was valid)
or stopped (if memory access was erroneous).

Red
zone Object

Red
zone Object

Red
zone Object

Program

Interceptor
of page
faulting

mechanism

protected

Page fault
exceptions

Message: valid/
erroneous

memory access

Figure 2: Considering program accesses protected objects
or its red zone and generate page fault exception; analyzing
parameters of this exception allows detecting overflow errors

2.1 Interception of Allocation and De-allocation
Requests

As it was mentioned earlier, at run-time all memory
allocation requests are intercepted by a special library.
Herewith, it is allocated a memory region of requested
size plus additional memory region (red zone).

Figure 3 demonstrates the difference between original
and intercepted allocation request. In the first case the
allocation request is processed by allocation library and
object is created. In the second case the allocation re-
quest is processed by interception library. The result of
processing is the requested object plus red zone (a spe-
cial memory region for detecting errors). Herewith, both
allocated object and red zone are protected from reading
and writing.

If program uses, for example, malloc() and free() func-
tions from standard GNU C library for allocating mem-
ory, then invocation of these function can be substituted
in Linux by special_malloc() and special_
free() using LD_PRELOAD environment variable.
These special functions create/release heap objects with
additionally allocated red zone and protect them from
reading and writing using mprotect() function.

Since, in general case, memory can be protected only
page by page, object will be allocated within one or

2011 Linux Symposium • 103

Red
zone Object

Object

Program Allocation
library

Allocation
request

Interception
library

(supports
allocation API)

Original allocation request and its result

Program Allocation
request

Intercepted allocation request and its result

protected memory

Figure 3: The difference between original allocation request
and intercepted allocation request: in the second case the red
zones are added to allocated objects and both regions are pro-
tected from reading and writing

more virtually continuous memory pages. It can be eas-
ily seen that when size of heap object is multiple of page
size then the size of corresponding red zone will be zero
(in this situation it will be impossible to detect illegal
access). This issue can be resolved the following way.
Let’s denote the size of one memory page in computing
system as P and the size of the requested allocation as
S. Then N - the number of pages required for special
allocation - should satisfy the two following conditions:
N ∗P ≥ S + P/4 and (N− 1) ∗P < S + P/4. The addi-
tional component P/4 prevents the situation when S is a
multiple of P and red zone size is zero. Thus, the final
formula for calculating N is following:

N = (S +P/4)/P+ sign[(S +P/4)modP] (1)

where all mathematical operations are integer-value,
sign means the function which return 0 is arguments is 0
or 1 if argument is greater than 0, and modP means func-
tion which return the residue of division of argument by
P.

Another issue when processing allocation request is the
alignment of returned memory. By default, the malloc()
function from GNU C library returns the align address
of allocated memory. This is caused by specific require-
ments of returned address to be suitable for any kind

Red
zone Object

Interception
library

(supports
allocation API)

Program Allocation
request

protected memory

Red
zone

start address
is aligned

size <
required_alignment

Figure 4: Due to restrictions for malloc() return value there
can be two red zones: before and after specially allocated
heap object

of variable. Thus, in fact, the address of each specially
created heap object should be aligned (for example, to
4 bytes on ARM processor) and there will be two red
zones: before and after the heap object. The size of sec-
ond red zone (after heap object) varies on the size of
heap object and required alignment (see Figure 4).

As it was mentioned in chapter II, heap object is unpro-
tected after processing page fault exception and detect-
ing a valid memory access. Moreover, the application
execution is resumed. Thus, if application accessed un-
protected red zone, then it is impossible to detect mem-
ory access by intercepting page faulting mechanism.
The solution of this problem is following. After the al-
location of red zones, they should be filled with identi-
cal values - stamps - which are used for detecting write
accesses. If application wrote to red zone then most
probably the stamps are changed. Checking the consis-
tency of stamp before freeing the memory enhances the
precision of overflow detection. This procedure can be
implemented during the processing of intercepted of de-
allocation requests. Let us note that this solution can not
detect read accesses to unprotected memory. This issue
is unresolved within the scope of proposed method.

2.2 About Interception of Page Faulting Mecha-
nism

Page faulting mechanism is a part of operating sys-
tem. The typical approach for intercepting of its func-
tions is using dynamic instrumentation tools. Well-
known Systemtap dynamic instrumentation tool based

104 • The Easy-Portable Method of Illegal Memory Access Errors Detection for Embedded Computing Systems

on Kprobe [3] allows creating handlers for intercepted
kernel functions, however it can not track the calls of
do_page_fault() function because of restrictions
of Kprobe. Another well-known tool LTTng [4] uses
static instrumentation and, thus, requires kernel recom-
pilation that can be quite inconvenient in case of em-
bedded systems. Therefore authors used dynamic in-
strumentation tool SWAP [5] developed in Samsung Re-
search Center in Moscow.

This tool allows at runtime obtaining arguments of in-
terception kernel functions and performing custom ac-
tions before executing the body of intercepted func-
tion. Particularly, it is possible to intercept do_page_
fault() function and obtain the address of accessed
memory and the type of access (read o write).

Let us note that page fault exceptions occur in normal
situations and are needed for valid system functioning.
Therefore, the procedure of processing of accesses to
protected heap objects should not damage the original
handling of page faults in kernel.

The interception mechanism can be implemented as a
kernel module. The information about allocated heap
objects can be transferred from the interception library
via /proc or /dev filesystem.

2.3 Handling Accesses to Protected Heap Objects

According to the general idea of the method, the page
faulting mechanism should be intercepted for detecting
access to allocated and protected heap objects, obtain-
ing the parameters of this access (address and type) and
classifying this access as valid or erroneous. As it was
written in previous chapter, the do_page_fault()
function can be intercepted and custom actions can be
performed before executing its body. These actions re-
lates to classifying of detected memory access and re-
suming or stopping execution of considering application
depending on the classification results.

The algorithm of classification is following.

Step 1. If address of accessed memory is inside allo-
cated heap object, then: previously unprotected object
is protected (if it exists); protection of this object is an-
nulled; program execution is resumed (see Figure ??);
otherwise go to step Step 2

Step 2. If address of accessed memory is inside red zone
of allocated heap object, then protection of this object

Program

Red
zone Object

Red
zone

Object

Red
zone Object

Red
zone

Object

protected unprotected

unprotected protected

memory access

Figure 5: Step 1 of Algorithm 1: if address of accessed mem-
ory is inside a valid heap object then unprotect it and its red
zones

and unprotected remains unchanged, message about in-
correct memory access is reported, and program execu-
tion is stopped (see Figure 6); otherwise go to step Step
3.

Step 3. If address of accessed memory is outside of any
allocated heap object and red zones but inside a valid
allocated memory region (for example, stack, read-only
data or executable code) then protection of heap objects
remains the same and program execution is resumed
(see Figure 7); otherwise go to step Step 4.

Step 4. If address of accessed memory is outside of any
allocated heap object and corresponding red zone and
any valid memory region, then error message about ac-
cess to unallocated memory is created, and program ex-
ecution is stopped (see Figure 8)

The error message created on Steps 2 and 4 of Al-
gorithm 1 consists of the address of illegally accessed
memory and the type of access, the title of the binary
object that made illegal access, the address of instruc-
tion which caused the error (within the binary). This in-
formation can be used for creating a user-friendly report
about occurred memory access problem: debug infor-
mation together with mentioned content of error mes-
sage allows displaying the line of the source code which
produced error.

2011 Linux Symposium • 105

Program

Red
zone Object

Red
zone

Object

Red
zone Object

Red
zone

Object

protectedunprotected

unprotected protected

ERROR MSG

memory access

Figure 6: Step 2 of Algorithm 1: if address of accessed mem-
ory is inside a red zone then keep current objects’ protection,
report about error and stop execution of the program

Program

Red
zone Object

Red
zone

Object

Red
zone Object

Red
zone

Object

protectedunprotected

unprotected protected

memory access
Stack

Stack

Figure 7: Step 3 of Algorithm 1: if address of accessed mem-
ory is outside of heap, but inside a valid memory region (e.g.
stack) then keep current heap objects’ protection and resume
program execution

Program

Red
zone Object

Red
zone

Object

Red
zone Object

Red
zone

Object

protectedunprotected

unprotected protected

memory
access

Unallocated
memory

Unallocated
memory

ERROR MSG

Figure 8: Step 4 of Algorithm 1: if address of accessed mem-
ory is outside of heap and any valid memory region then keep
current heap objects’ protection, report about error and stop
program execution

3 Method Advantages and Drawbacks

The first main advantages of suggested method of mem-
ory overflow errors detection is its fast portability to var-
ious processor architectures. As it can be seen from
previous chapters, the processor-dependent part of the
method includes only obtaining of address of accessed
memory by interception of page faulting mechanism.
Thus, in comparison to the methods which use inter-
preting of binary instructions, the suggested technique
can be easily moved across various processors. This is
especially valuable for developer of embedded systems.

Since the suggested method uses dynamic instrumen-
tation engine SWAP, the two following advantages are
obtained:

• developer should not recompile erroneous applica-
tion before starting the search of memory errors

• suggested method does not need debug information
for the program running on embedded system.

As it can be seen from the method description, the pro-
gram which produces memory errors runs on embedded

106 • The Easy-Portable Method of Illegal Memory Access Errors Detection for Embedded Computing Systems

system and is not changed during memory errors detec-
tion.

However, there exist several drawbacks. Firstly, method
can not track accesses to the unprotected red zone with
help of page faulting mechanism. Thus, read operation
which accesses the unprotected red zone will be never
detected. The write operation which accesses the un-
protected red zone can be partially detected by using
stamps. At the same time, this disadvantage has a pos-
itive aspect. Since memory accesses made within the
unprotected object are not tracked, the execution of the
program is going faster. This is also valuable for em-
bedded systems.

Two more drawbacks are common for most of tools of
overflow detection:

• it is impossible to detect the out-of-bounds situa-
tion when application accesses a valid memory re-
gion.

• it is impossible to detect the out-of-bounds situa-
tion within the allocated structure or class

4 Testing Results

The environment of all tests was following:

• Nvidia Tegra board, ARM-based, kernel 2.6.29

• Beagle board, ARM-based, kernel 2.6.33

During testing it was discovered that both target boards
have similar behavior and produce identical results for
test applications. Thus, authors provide testing results
without specifying the particular environment implying
that they are equal for both embedded devices.

The proposed method was tested on artificial test ap-
plications. The test applications have similar structure:
three heap objects of size 4092, 4096 and 4100 respec-
tively are allocated. During each separate test some par-
ticular out-of-bounds situations are created. For exam-
ple, access the first object, and after that access the red
zone of the next object. The following Table 1 provides
the results of testing in comparison to Valgrind.

As it can be seen, the accuracy of suggested method is
worse in comparison to Valgrind. However, it is still
quite high and method can be used for debugging.

Tool Total
number
of tests

Passed tests
(accuracy)

Valgrind 192 144 (75%)
Proposed method 192 114 (59%)

Table 1: The accuracy of detecting errors for artificial test
applications

Test environment Time of execution
(seconds/degradation
degree)

Test application without
memory checking tool

0.0025 / Not available

Test application with
memory checking tool
based on proposed
method

0.466 / 186.4

Test application with
memory checking tool
Valgrind

2.1283 / 851.32

Table 2: Time of execution of test application with and with-
out memory checking tools

The goal of the next test was to measure the overall
degradation in performance when executing test appli-
cation with memory checking tools. The test application
allocates 5 arrays of 256 bytes and accesses sequentially
each of them in the cycle. The average degradation of
performance of test application is shown in Table 2.

It can be seen from the table, the method proposed in
this article shows better performance. This advantage
compensates the worse accuracy of error detection.

The following Table 3 provides information about
architecture-dependent code of implementation of pro-
posed method in comparison to Valgrind.

Tool Total number
of lines
of code

Total number
of architecture-
dependent
code (fraction)

Valgrind > 900000 > 170000 (19 %)
Proposed
method

> 180000 > 5000 (3 %)

Table 3: The amount of code dependent on the architecture
of CPU.

2011 Linux Symposium • 107

Tool Result of detection
Valgrind Detected, up to specifying the line of

source code which produced the error
Proposed
method

Detected, up to specifying the line of
source code which produced the error

Table 4: Detecting memory access error for bug in glib-2.15

It can be seen that Valgrind has bigger processor-
dependent part that makes the procedure of its porting
more difficult. In comparison the method proposed in
the article has smaller part which depends on type of
CPU, thus it is easier to be ported on embedded systems
with different processors.

The last test consisted of detecting an error for the bug
from glib-2.15 library bug tracking system (see [6] for
more details). The erroneous behavior of library was
produced when insufficient amount of memory was al-
located for saving binary data encoded to base64 text
form. As a result, accessing beyond the end of array
caused segmentation fault exception. The error was
fully detected by the proposed method with indication
the line of the source code which produced the error.
Table 4 shows the results of testing for Valgrind and pro-
posed method.

Both tools produced identical results by detecting the
error and specifying the line of code which produced
this error.

5 Conclusion

In this paper authors proposed a method for heap over-
flow memory errors detection which is easy-portable on
various processors’ architectures of computing systems.
The method shows sufficiently good results in memory
overflow errors detection. Despite of some of its draw-
backs, it can be efficiently used on embedded systems.

6 Acknowledgments

Authors would like to thank Jaehoon Jeong, senior en-
gineer of System S/W Group in Samsung Electronics,
and Hyunju Ahn, senior engineer of System S/W Group
in Samsung Electronics, for fruitful and extensive dis-
cussion on the proposed approach and Mikhail P. Levin,
the head of Advanced Software Group of Samsung Re-
search Center in Moscow, for assistance in preparation
of the article.

References

[1] Valgrind project (http://valgrind.org/)

[2] Malloc manual page (http:
//www.kernel.org/doc/man-pages/
online/pages/man3/malloc.3.html)

[3] Systemtap tool
(http://sourceware.org/systemtap/)

[4] Alexey A. Gerenkov, Ekaterina A. Gorelkina,
Sergey S. Grekhov, Sergey Yu. Dianov, Jaehoon
Jeong, Oleksiy Kokachev, Leonid V. Komkov,
Sang Bae Lee, Mikhail P. Levin, System-wide
analyzer of performance: Performance analysis of
multi-core computing systems with limited
resources, IEEE EUROCON 2009, pp. 1299-1304

[5] Mathieu Desnoyers, Michel R. Dagenais, LTTng:
Filling the Gap Between Kernel Instrumentation
and a Widely Usable Kernel Tracer, LFCS’2009

[6] Red Hat bug tracking system
(https://bugzilla.redhat.com/
show_bug.cgi?id=474770)

108 • The Easy-Portable Method of Illegal Memory Access Errors Detection for Embedded Computing Systems

Recovering System Metrics from Kernel Trace

Francis Giraldeau
École Polytechnique de Montréal
francis.giraldeau@polymtl.ca

Julien Desfossez
École Polytechnique de Montréal
julien.desfossez@polymtl.ca

David Goulet
École Polytechnique de Montréal
david.goulet@polymtl.ca

Michel Dagenais
École Polytechnique de Montréal
michel.dagenais@polymtl.ca

Mathieu Desnoyers
EfficiOS Inc.

mathieu.desnoyers@efficios.com

Abstract

Important Linux kernel subsystems are statically instru-
mented with tracepoints, which enables the gathering
of detailed information about a running system, such as
process scheduling, system calls and memory manage-
ment. Each time a tracepoint is encountered, an event is
generated and can be recorded to disk for offline anal-
ysis. Kernel tracing provides system-wide instrumenta-
tion that has low performance impact, suitable for trac-
ing online systems in order to debug hard-to-reproduce
errors or analyze the performance.

Despite these benefits, a kernel trace may be difficult to
analyze due to the large number of events. Moreover,
trace events expose low-level behavior of the kernel that
requires deep understanding of kernel internals to ana-
lyze. In many cases, the meaning of an event may de-
pend on previous events. To get valuable information
from a kernel trace, fast and reliable analysis tools are
required.

In this paper, we present required trace analysis to pro-
vide familiar and meaningful metrics to system admin-
istrators and software developers, including CPU, disk,
file and network usage. We present an open source pro-
totype implementation that performs these analysis with
the LTTng tracer. It leverages kernel traces for perfor-
mance optimization and debugging.

1 Introduction

Tracing addresses the problem of runtime software ob-
servation. A trace is an execution log of a software, that

consists essentially of an ordered list of events. An event
is generated when a certain path of the code is executed,
commonly called tracepoint. Each event consists of a
timestamp, a type and some arbitrary payload.

Tracepoints can be embedded statically in software or
dynamically inserted. Dynamic tracing allows custom
tracepoints to be defined without source code modifica-
tion. While this approach is flexible, static tracepoints
are generally faster. In addition, tracing can be per-
formed at the kernel and user-space level. In this pa-
per, we focus on the static instrumentation of the Linux
kernel provided by the Linux Trace Toolkit next genera-
tion (LTTng) [1]. Unlike a debugger, tracing a program
does not interrupt it. As such, performance of the tracer
is critical to minimize disturbance of the running soft-
ware. LTTng offers this level of performance, allowing
to trace the kernel very efficiently.

Runtime information on a system can also be obtained
by recording metrics periodically from files under the
/proc directory. Utilities like top and ps use this in-
terface, parse their content and format them for display.
This technique provides statistics about the system at a
sampling frequency based determined by the interface.
In contrast, kernel tracing records all events according to
time. Instead of pooling metric values, they can be re-
covered at arbitrary resolution afterwards from the trace.

This paper is organized as follows. The kernel tracing
infrastructure is presented in section 2. This presenta-
tion applies to the latest stable release of LTTng 0.249,
which is used throughout the paper. In section 3, we
present available tracepoints in the Linux kernel, their

• 109 •

110 • Recovering System Metrics from Kernel Trace

meaning and how we can recover metrics by processing
them. A prototype that performs such analysis is pre-
sented in section 4. Finally, future work for LTTng 2.0
is discussed in section 5.

2 LTTng kernel tracer

The tracer is based on static tracepoints in the kernel
source code. Each time a tracepoint is encountered
and is enabled, an event is added to an in-memory ring
buffer. There are three operating modes for subsequent
data processing.

The normal mode is suitable for offline analysis. When
a buffer is full, a signal is sent to a transport daemon,
which then syncs buffers to disk before they get over-
written. On average, disk throughput must be higher
than event output. If all buffers are full, which can
happen if disk bandwidth is lower than event genera-
tion throughput, then events are dropped. The number
of such lost events is kept in the trace. Lost events
can compromise further trace analysis. To avoid lost
events, buffer size can be increased at trace start, but
not while tracing, because buffers are allocated at trace
setup. Hence, enough space must be reserved according
to disk speed and maximum expected event throughput.

In cases where high throughput is expected and only the
most recent data is desired, the flight recorder mode is
well suited. In this mode, the ring buffer is overwritten
until a condition occurs, and then the most recent events
are written to disk. No event will be lost in this mode,
but the actual trace duration depends on the buffer size.

The final supported mode is live reading. In this mode,
buffers are flushed to disk regularly, before each read,
to ensure consistency between different trace streams
within a bounded delay (e.g. 1 second). This applies
even for buffers that are only partially filled. The flush
guarantees the consistency of the trace, avoiding the
possibility of reception of older events out-of-order,
which would otherwise appear to the analysis module
out of chronological order.

LTTng uses per-CPU buffers to avoid data access syn-
chronization between CPUs in multi-core architectures,
and allows scalable tracing for large number of cores.
Events are grouped in channels. Each channel repre-
sents an event stream and has its own buffers. Hence,
the total number of allocated buffers is (P×C), where P

is the number of processors and C the number of chan-
nels.

The Linux kernel is instrumented with over 150 tra-
cepoints at key sites within each subsystem. Each
tracepoint is compiled conditionally by the CONFIG_

MARKERS configuration option. This option depends
on CONFIG_TRACEPOINTS, which enables other kernel
built-in instrumentation. Once tracepoints are compiled,
they can be later activated to record a trace. A tracepoint
compiled in, but not activated, reduces to a no-op in-
struction, hence the performance impact is undetectable.
Kernel tracing is highly optimized, but the overall per-
formance impact is proportional to the number of events
generated per unit of time. Benchmarks show that each
event requires 119 ns to process on 2 GHz Intel Xeon
processor in cache-hot condition [3].

Another aspect to observe is the impact of compiled tra-
cepoints on the kernel size. For each tracepoint, a new
function and static data is added, and thus increases the
kernel size. For kernel 2.6.38, compiling tracepoints re-
sults in an increase of about 122 kB of the vmlinuz im-
age, or 1%. This includes LTTng tracepoints and other
built-in kernel tracepoints.

2.1 Trace format

An event is composed of a timestamp, an event type and
an arbitrary payload. The timestamp is mandatory to
sort events according to time. The event type is used to
determine the format of the payload.

The timestamp uses the hardware cycle counter and is
converted to nanoseconds since the boot of the system.
Special care is taken to guarantee that the time always
increases monotonically between cores. The time is rep-
resented with 27 bit time delta, while the event id is five
bits wide, for a total event header size of 32 bits. If
no event occurs and the time delta overflows, which oc-
cur in the order of 100 ms on recent CPUs, an extended
header is written. The timestamp is extended to 64 bits,
while 16 bits are reserved for the event type.

The payload is an ordered set of fields, where the size
and format are defined by the event type. Fields can
be any standard C basic type, as well as variable size
strings. The size of a field may differ from the actual
type used in the code in order to compress the data. For
example, an integer enum value can be recorded in the
trace as a byte if the actual value is always less than 255,
thus saving space.

2011 Linux Symposium • 111

2.2 Trace reading

The library liblttvtraceread is provided to read
events from a trace for further processing. The library
opens all files from the trace at the same time and returns
events in total order. It provides a merged view of the
trace, which abstracts the complexity of handling per-
CPU and per-channel files. The library provides conve-
nient functions to seek at a particular time in the trace
performed by a binary search. The library handles en-
dianness transformations automatically if necessary. It
parses each event in the trace and returns the timestamp,
event type and an array of parsed fields.

3 Recovering metrics

System metrics include CPU usage, memory allocation,
file operations and I/O operations, such as network and
block devices. The trace contains a comprehensive set
of data from which system metrics can be measured and
accounted to a process. This section presents events and
algorithms used to perform these computations.

3.1 Trace metadata

The Trace metadata channel is used to declare the
trace event types. It contains two pre-defined events
types, core_marker_format and core_marker_id

that are implicit and fixed. The purpose of core_

marker_format is to list available channels and event
types in the trace, along with the format of each field in
their payload. Meanwhile core_marker_id lists event
IDs and their corresponding channel and event name.
This event inventory enables selection of the correct for-
mat to parse the payload of a particular event.

3.2 System state dump

The state dump consists of information about the system
as it was at the beginning of the trace. The available
information in the state dump is listed in Table 1. Events
in the state dump can be split in two categories, static
and variable.

Static information is invariant for the duration of the
trace. This information may be referenced by other
events. For example, the system call table enables sys-
tem call IDs to be resolved to a meaningful name. This

is necessary because system call IDs may differ from
one system to another.

Variable information is the initial inventory of resources,
which may be modified by later events. For example,
the state dump contains the list of active processes at the
beginning of the trace. This list is modified by fork and
exit events, that add and remove processes respectively.

In addition, the special event statedump_end indi-
cates the end of the state dump and metadata.

3.3 Process recovery

As presented in Section 3.2, the state dump includes
the initial process list. This list includes the process
id, thread id, thread group id, parent process id and
a flag to indicate a kernel thread. While tracing, the
event kernel.process_fork indicates a new pro-
cess, while kernel.process_exit means a process
terminated. The executable name can be deduced from
the field filename of the fs.exec event. Until this
event occurs, the executable name is the same as the par-
ent process or the previously known name.

An additional step is required to link an event to a pro-
cess. Since the process id is not saved on a per-event
basis, this information must be recovered from the trace
itself. The corresponding CPU on which an event occurs
is known from the trace file id. The relation with the pro-
cess id running on a given CPU can be established from
the kernel.sched_schedule events. This event type
contains two integers, prev_pid and next_pid. Each
event occurring on a given CPU following a scheduling
event can be related to the process next_pid, assuming
no scheduling event is dropped.

3.4 CPU usage

CPU usage is a basic system metric for understanding
the behavior of a system. To recover CPU usage per
process on the system, we use scheduling events. A pro-
cess has only two states, which are scheduled or idle. If
no process runs on a given CPU, the kernel schedules
the special thread swapper and we consider the CPU
as idle. The total CPU time used by a process is the sum
of intervals for which it was scheduled.

To chart the CPU usage according to time, we first di-
vide the trace into fixed intervals to match the desired

112 • Recovering System Metrics from Kernel Trace

State channel Type Description
fd_state.file_descriptor Variable File name and PID of opened fd
irq_state.idt_table Static Interrupts descriptor table for processor exceptions
irq_state.interrupt Variable Hardware IRQ ids, names and addresses
module_state.list_module Variable List of loaded kernel modules
netif_state.network_ipv4_interface Variable List of IPv4 interface names and IP addresses
netif_state.network_ipv6_interface Variable Same as IPv4, but for IPv6 network interfaces
softirq_state.softirq_vec Static List of SoftIRQ ids, names and addresses
swap_state.statedump_swap_files Variable Swap block devices
syscall_state.sys_call_table Static List of system call ids, names and addresses
task_state.process_state Variable List of active processes information
vm_state.vm_map Variable List of all memory mappings by process

Table 1: Available events in state dump

Figure 1: Average CPU usage recovery

resolution. Then the CPU usage of one interval is ob-
tained by summing all overlapping scheduled intervals,
as shown in Figure 1.

3.5 Memory usage

Tracepoints related to memory management provide in-
formation at the page level. The events page_alloc

and page_free are encountered when a memory page
related to a process is allocated or freed at the kernel
level. The system memory usage at the beginning of the
trace is given by the event vm_state.vm_map in meta-
data. Separate tracepoints report huge page operations.
Thus the system memory usage on the system at a given
time can be obtained by replaying subsequent page allo-
cation and free events.

Note that the physical memory usage observed at the
kernel level can differ from memory operations per-
formed by the application. This behavior is intended
to reduce the number of system calls that shrink or grow
the heap and the stack of a process. The GNU libc may
not release memory to the operating system after a call
to free() to speedup subsequent allocations.

3.6 File operations

File operations are performed, for instance, through
open, read, write and close system calls by user-
space applications. These system calls are instrumented
to compute file usage statistics, such as the number of
bytes read or written, and to track opened files by a pro-
cess. These events occur only if the system call suc-
ceeds. File operation events are recorded for files ac-
cessed through a file system as well as via network sock-
ets.

The fs.open event contains the filename requested by
the application and the associated file descriptor. All
subsequent operations performed on this file descriptor
by fs.read and fs.write contain the file descriptor
and the byte count of the operation.

Tracing network operations on sockets is similar to files
on a file system. Socket file descriptors are created upon
net.socket and net.accept events, and byte trans-
fer count is reported by net.socket_sendmsg and
net.socket_recvmsg or fs.write and fs.read,
depending on the system call involved.

3.7 Low-level network events

Low-level network events provide TCP and UDP pack-
ets fields, like ports and addresses involved in the com-
munication. These extended network events are not en-
abled by default. To enable them, ltt-armall must be
called with the switch -n.

Various metrics can be recovered directly from the pay-
load of these events. The information provided by ex-
tended network events is a subset of what is available

2011 Linux Symposium • 113

with tcpdump. Recording this information at the kernel
level has the advantage of precise timestamps relative to
system events. A network packet is always sent before
being received, thus providing a convenient way to cor-
relate traces from multiple systems without a common
clock source. Average trace synchronization accuracy of
68.8 µs with TCP on standard 100 Mbit/s Ethernet has
been achieved by using the Convex Hull algorithm [5].

3.8 Block Input/Output

In addition to file operations, underlying block device
activity can be traced. Actions of block I/O scheduler,
such as front and back merge requests, are recorded.
Once the queue is ready, the event fs_issue_rq is
emitted with the related sector involved. Each issue
event is followed by the event fs_complete_rq when
the request is completed. The delay between the issue
and complete event indicates the latency of the disk op-
eration.

Global disk offset can be observed with block level
events. Disk offset is the difference between two con-
secutive sector requests to the device. For mechani-
cal disks, high average offset between requests degrade
throughput. Such bad performance is sometimes dif-
ficult to understand when it results from multiple pro-
cesses performing independant operations on physically
distant areas of the disk. The disk offset can be com-
puted from fs_issue_rq event. The sector number
from this event corresponds to the hardware sector. To
relate this request to an inode, the bio_remap event is
required. It contains the inode, the target device, the
block requested at the file system level and the result of
block remap, which is the hardware sector global to the
device. Disk offset can thus be accounted on per inode
basis.

4 LTTng kernel trace analyzer

We implemented a prototype of CPU usage computation
to demonstrate the usefulness of the analysis. The soft-
ware is coded in Java and uses the liblttvtraceread
JNI interface. The system traced has two cores and runs
Linux 2.6.36 with LTTng 0.249. The system is loaded
with three cpuburn processes, started with one second
interval between each. Figure 2 shows the trace loaded
in the graphical interface.

The interface is divided in two parts. The top half con-
tains the chart view of CPU usage according to time.
The bottom half lists processes sorted according to total
CPU usage. The chart has interactive features. Selecting
an interval on the chart updates the process list statistics,
while selecting a specific process displays its CPU us-
age. In Figure 2, the first cpuburn process is selected,
and we can observe the CPU saturation occurring in this
workload once these processes are started.

5 Future work

The goal of the LTTng project is to provide the commu-
nity with the best tracing environment for Linux. We
first present upcoming enhancements to the tracing in-
frastructure and future development of analysis tools.

5.1 Tracing infrastructure

The current stable version of LTTng requires the ker-
nel to be patched. Those patches are being converted
to modules to work with vanilla kernel. The mainline
kernel is already well instrumented. By default, those
tracepoints will be available. Using stock kernels re-
duces the complexity of distributing LTTng, and helps
towards making tracing ubiquitous.

The Common Trace Format (CTF) will be used to record
the trace [2]. CTF has the ability to describe arbitrary
sequence of binary objects. This new format will make
it easier to define custom tracepoints in an extensible
fashion.

Kernel tracing requires root privileges for security rea-
sons. Enhancements to tracing tools will allow kernel
tracing as normal user based on group membership, sim-
plifying system administration. In addition, the unified
git-like utility command-line tool lttng will control
both kernel and user-space tracing on per-session basis.
The live tracing mode will support reading data directly
in memory, without flushing it to disk.

As presented in section 3.3, recovery of the PID of
an event requires all scheduling events to be recorded.
Omitting the PID from recorded events reduces the trace
size, but increases analysis complexity. In some situa-
tions, appending a context to each event may be desir-
able to simplify event analysis, tolerate missing schedul-
ing events, or to get values of performance counters

114 • Recovering System Metrics from Kernel Trace

Figure 2: LTTng trace analyzer prototype

when specific events occur. The next release will al-
low such event context to be added as a tracing option.
Available context information includes, among others,
the PID, the nice value, and CPU Performance Monitor-
ing Unit (PMU) counters.

5.2 Trace analyzer

Analysis tools will require updates according to these
changes to the tracing infrastructure. One purpose of
the existing LTTng kernel patch is to extend the kernel
instrumentation. Those tracepoints may not be available
anymore with a vanilla kernel and the modules-based
LTTng. We plan to propose additional tracepoints up-
stream to perform useful analysis for system adminis-
trators and software developers. For example, system
calls are instrumented with entry and exit tracepoints,
but arguments are not interpreted. Some of them may be
pointers to structures, but saving an address is not useful
for system metric recovery. Dereferencing the pointer
and saving appropriate fields is required for many trace-
points.

Our current prototype implementation only includes the
CPU usage. Our goal is to implement other presented
metrics. System metrics computation can be integrated
to the Eclipse LTTng plugin, part of the Eclipse Linux
Tools project [6]. For this purpose, an open source na-
tive CTF Java reading library is being developed. Also,
a command line tool similar to top is being developed
to provide lightweight and live system metrics display
from tracing data.

Further trace analysis are being developed to understand
global performance behavior. Previous work has been

done on critical path analysis of an application [4]. Our
goal is to extend this analysis in two ways. First, com-
puting the resource usage allows to get the cost of the
critical path of an application. Secondly, analyzing com-
munication paths between processes allows to recover
links between distributed process. By combining those
two analysis, we could provide a global view of the pro-
cessing path of a client request made in a distributed
application.

6 Conclusion

We showed that tracing can provide highly valuable
data on a running system. This data can help to under-
stand system-wide performance behavior. We presented
the tracing infrastructure provided by LTTng and tech-
niques to extract system metrics from raw events. Fu-
ture developments to LTTng demonstrate the commit-
ment to provide a state of the art tracing environment
for the Linux community.

References

[1] Linux trace toolkit next generation.
http://lttng.org.

[2] Mathieu Desnoyers. Common trace format specification
v1.7. git://git.efficios.com/ctf.git.

[3] Mathieu Desnoyers. Low-Impact Operating System
Tracing. 2009.

[4] P.M. Fournier and M.R. Dagenais. Analyzing blocking
to debug performance problems on multi-core systems.
ACM SIGOPS Operating Systems Review, 44(2):77–87,
2010.

2011 Linux Symposium • 115

[5] B. Poirier, R. Roy, and M. Dagenais. Accurate offline
synchronization of distributed traces using kernel-level
events. ACM SIGOPS Operating Systems Review,
44(3):75–87, 2010.

[6] D. Toupin. Using tracing to diagnose or monitor
systems. Software, IEEE, 28(1):87–91, 2011.

116 • Recovering System Metrics from Kernel Trace

State of the kernel

John C. Masters
Red Hat Inc.

jcm@redhat.com

Abstract

Slides from the talk follow.

• 117 •

118 • State of the kernel

State of the kernel
Linux Symposium 2011

Jon Masters <jcm@redhat.com>

Jon Masters <jcm@redhat.com>2

About Jon Masters

● Playing with Linux since 1995

● One of the first commercial Linux-on-FPGA projects

● Author of Professional Linux Programming, lead on
Building Embedded Linux Systems 2nd edition,
currently writing “Porting Linux” for Pearson.

● Fedora ARM project (working on armv7hl)

● Red Hat Enterprise stuff (kABI, Real Time, etc.)

● module-init-tools, http://www.kernelpodcast.org/

Jon Masters <jcm@redhat.com>3

Overview

● 20 years of Linux

● Year in review

● Current status

● Future predictions

● Questions

Jon Masters <jcm@redhat.com>4

20 years of Linux

Jon Masters <jcm@redhat.com>5

20 years of Linux – In the beginning...

● Back in 1991...

“I'm doing a (free) operating system (just a hobby, won't be big and
professional like gnu) for 386(486) AT clones. This has been brewing
since April, and is starting to get ready. I'd like any feedback on things
people like/dislike in minix, as my OS resembles it somewhat (same
physical layout of the file-system (due to practical reasons) among
other things).” -- Linus Torvalds on this thing called “Linux”

Jon Masters <jcm@redhat.com>6

20 years of Linux - Today

● 24 supported architectures with more over time

● Plus sub-architectures, platforms, etc.
● Roughly 10K changesets per 80 day release cycle

● Approximately 1,100-1,200 developers per release

● Cost to redevelop the kernel is at least $3 Billion (US)

Source: http://linuxcost.blogspot.com/

2011 Linux Symposium • 119

Jon Masters <jcm@redhat.com>7

20 years of Linux – the early releases

“the best thing I ever did”

-- Linus Torvalds on switching to the GPL

● Linux 0.01 had 10,239 lines of source code
● ...initially licensed under non-commercial terms

● Linux 0.12 switched to the GNU GPL

● Linux 0.95 ran the X Window System

● Linux 1.0 had 176,250 lines of source code

Jon Masters <jcm@redhat.com>8

20 years of Linux – 1.x to 2.x (portability)

● “We thank you for using Linux '95”

-- Linus Torvalds announces Linux 1.2 in a spoof on Windows 95

● Linux 1.0 supported only the Intel 80386
● Support for ELF added pre-1.2 (replacing a.out)

● Linux 1.2 added support for Alpha, SPARC, MIPS

● Linux 1.3 supported Mach via MkLinux (DR1)
● Apple gave away 20,000 CDs at MacWorld Boston

Jon Masters <jcm@redhat.com>9

20 years of Linux – Linux 2.x series

“Some people have told me they don't think a fat penguin really embodies the
grace of Linux, which just tells me they have never seen a angry penguin
charging at them in excess of 100mph. They'd be a lot more careful about
what they say if they had.”

-- Linus Torvalds announcing Linux 2.0

● Linux 2.0.0 released in June 1996 (2.0.1 follows)
● A.B.C numbering convention introduced
● SMP support introduced (“Big Kernel Lock”)
● Linux distros switch back to glibc(2)
● kernel.org registered in 1997

Jon Masters <jcm@redhat.com>10

20 years of Linux – Linux 2.x series

“Some people have told me they don't think a fat penguin really embodies the
grace of Linux, which just tells me they have never seen a angry penguin
charging at them in excess of 100mph. They'd be a lot more careful about
what they say if they had.”

-- Linus Torvalds announcing Linux 2.0

● Linux 2.2.0 released in January 1999
● 1.8 millions lines of source code
● Adds support for M68K, and PowerPC

● The latter supports PCI systems with OpenFirmware

Jon Masters <jcm@redhat.com>11

20 years of Linux – Linux 2.x series

“In a move unanimously hailed by the trade press and industry
analysts as being a sure sign of incipient braindamage, Linus Torvalds
(also known as the "father of Linux" or, more commonly, as "mush-for-
brains") decided that enough is enough, and that things don't get
better from having the same people test it over and over again. In
short, 2.4.0 is out there.”

● -- Linus Torvalds announces 2.4.0

● Linux 2.4.0 supports ISA, PNP, PCMCIA (PC Card),
and something new called USB

● Later adds LVM, RAID, and ext3

● VM replaced in 2.4.10 (Andrea Arcangeli)

Jon Masters <jcm@redhat.com>12

20 years of Linux – Linux 2.x series

● Linux 2.6 released in December 2003
● Has almost 6 million lines of source code
● Features major scalability improvements
● Adds support for NPTL (replaces LinuxThreads)
● Adds support for ALSA, kernel pre-emption, SELinux...
● Adopts changes to development model going forward
● Dave Jones releases “Post Halloween” document

120 • State of the kernel

Jon Masters <jcm@redhat.com>13

20 years of Linux – Linux 2.x series

● Linux 2.6 is not joined by a 2.7 development cycle
● Linus introduces the “merge window” concept
● Switches to git for development in 2005

● Little incident with BitKeeper over Andrew Trigell's work
● Writes git in a matter of a few weeks
● Majority of kernel developers now use git trees

● The linux-next tree is introduced in 2008
● Stephen Rothwell consolidates various “-next” trees into

nightly composes for testing/integration work

Jon Masters <jcm@redhat.com>14

20 years of Linux – Linux 3.0

● “I decided to just bite the bullet, and call the next version 3.0. It
will get released close enough to the 20-year mark, which is
excuse enough for me, although honestly, the real reason is just
that I can no longer comfortably count as high as 40.”

● -- Linus Torvalds rationalizing the 3.0 numbering

● Linux 3.0 on track for 20th anniversary of Linux

● Contains no earth-shattering changes of any kind

● Actually has an even shorter merge window

Jon Masters <jcm@redhat.com>15

Year in Review

Jon Masters <jcm@redhat.com>16

June 2010 – 2.6.35-rc2,rc3

● MT event slots in the input layer (SYN_MT_REPORT)

● Microblaze stack unwinding and KGB support

● PowerPC perf-events hw_breakpoints

● “Really lazy” FPU (Avi Kivity)

● LMB (memblock) patches for x86 (Yinghai Lu)

● David Howells proposes xstat and fxstat syscalls

● Azul systems “pluggable memory management” (Java)

● Hans Verkuil announces V4L1 removal in 2.6.37

Jon Masters <jcm@redhat.com>17

July 2010 – 2.6.35-rc4,rc5

● Greg Kroah-Hartman proposes removing
CONFIG_SYSFS_DEPRECATED (FC6/RHEL5)

● CHECKSUM netfilter target explicitly fills in checksums
in packets missing them (for offload support) (DHCP)

● Zcache “the next generation” of compcache
● Page cache compression layered on cleancache

Jon Masters <jcm@redhat.com>18

August 2010 – 2.6.35,2.6.36-rc1,rc2,rc3

● Linux 2.6.35 released on August 2 (~10K changesets)
● Receive Packet Steering/Receive Flow Steering
● KDB on top of KGDB
● Memory Compaction
● Later a “flag version” for embedded uses

● AppArmor security module merged

● LIRC finally merged into the kernel

● New OOM killer is merged

● Barriers removed from the block layer

● Opportunistic spinning mutex fix (owner change)

2011 Linux Symposium • 121

Jon Masters <jcm@redhat.com>19

September 2010 – 2.6.36-rc4,rc5,rc6

● Linux 2.4.37.10 released with EOL (Sep 2011->EOY)

● Pre-fetch in list operations removed (Andi Kleen)

● Dynamic dirty throttling (balance_dirty_pages)

● Horrible security bugs!
● execve allows arbitrary program arguments

● Limit ¼ stack limit but stack may not have a limit

● Ptrace allows to call a compat syscall but does not zero
out upper part of %rax (for %eax) so arbitrary exec.

● compat_alloc_user_space does not use access_ok
● Broadcom releases Open Source brcm80211

Jon Masters <jcm@redhat.com>20

October 2010 – 2.6.36-rc7,rc8,2.6.36

● Linux 2.6.36 released on October 20
● Tile architecture support (see lightening talk)
● Concurrency-managed workqueues
● Thread pool manager (kworker) concept
● New OOM killer (backward compatible knobs)
● AppArmor (pathname vs. security labels)

● Jump labels added to the kernel (NOP on non-exec)

● Little endian PowerPC support

● Russel King changes ARM to block concurrent
mappings of different memory types (ioremap())

Jon Masters <jcm@redhat.com>21

November 2010 – 2.6.37-rc1,rc2,rc3,rc4

● Kernel Summit held in Cambridge, MA

● Mike Galbraith posts “miracle” “patch that does
wonders” (automatic cgroups for same tty/session)

● ...and the internet goes wild
● YAFFS2 filesystem finally pulled into staging!

● Stephen Rostedt posts “ktest.pl” quick testing script

● pstore (persistent store) support for kernel crash data
using the ACPI ERST (Error Record Serialization
Table) backed with e.g. flash storage

● “trace” command announced by Thomas Gleixner

Jon Masters <jcm@redhat.com>22

December 2010 – 2.6.37-rc5,rc7,rc8

● Greg K-H announced there will be only one stable
kernel at a time (except for 2.6.32,2.6.38...)

● yield_to system call from Rik van Riel (vCPU handoff)

Jon Masters <jcm@redhat.com>23

January 2011 – 2.6.37,2.6.38-rc1,rc2

● Linux 2.6.37 released on January 4th

● BKL finally removed in most cases
● Jump labels allow disabled tracepoints to be skipped
● Fanotify support is finally enabled

● Transparent Huge Pages were merged!

● Various deprecated bits moved to staging
● (helps to kill the BKL)
● Appletalk, autofs3, smbfs, etc.

Jon Masters <jcm@redhat.com>24

February 2011 – 2.6.38-rc3,rc4,rc5,rc6

● Thomas Gleixner continues on his genirq cleanups

● ARM Device Tree support from Grant Likely
● Helps with ongoing ARM tree re-conciliation
● Allows an fdt blob to describe a platform fully
● Grant, myself, and others working on standardization

122 • State of the kernel

Jon Masters <jcm@redhat.com>25

March 2011 – 2.6.38-rc7,rc8,2.6.38,2.6.39-rc1

● Linux 2.6.38 released on March 14thg

● Automatic process grouping (wonder patch)

● Transparent Huge Pages

● B.A.T.M.A.N. (mesh networking)

● Transcendent memory and zcache added to staging

● pstore filesystem merged

● APM support to be removed in 2.6.40

Jon Masters <jcm@redhat.com>26

April 2011 – 2.6.39-rc2,rc3,rc4,rc5

● SkyNet takes over kernel.org

● “kvm”native tool is posted
● Minimal, replaces QEMU but does not do graphics
● Does do serial console, good for kernel debug, etc.

● Linus rant (2) about ARM tree size/platform churn

● Raw perf events discussion vs. processed events

Jon Masters <jcm@redhat.com>27

May 2011 – 2.6.39-rc6,rc7,2.6.39,3.0-rc1

“That's all, folks” -- Arnd Bergmann kills the BKL

● Linux 2.6.39 was released on May 18th

● Kills off the Big Kernel Lock
● Adds support for “UniCore-32” architecture
● Adds support for Transcendent Memory

● Grant Likely posts patches for Xilinx Zync FPGAs

Jon Masters <jcm@redhat.com>28

Current Status

Jon Masters <jcm@redhat.com>29

General

● Overall looking very strong going into 3.0

● Standard worries about Linus scaling, etc.
● Security problems are worrying

● ...especially when fixed issues become unfixed
● Linus increasingly clamping down on merge window

● Bugs, kerneloops, and regressions

Jon Masters <jcm@redhat.com>30

Embedded

● “flag releases” of the kernel

● CONFIG_EMBEDDED becomes CONFIG_EXPERT

● ARM architecture discussions

● Support for KGDB on Microblaze, etc.

● GPL delays and compliance problems

● Embedded graphics situation

● Virtualization support for Cortex-A15

2011 Linux Symposium • 123

Jon Masters <jcm@redhat.com>31

Desktop

● Dynamic power management improving

● Continued work on scheduler grouping (wonder patch
type of stuff – but increasing from userspace)

● Radar detection patches for wireless 5GHz

Jon Masters <jcm@redhat.com>32

Enterprise/Server

● SSD offload work (bcache and friends)

● Transcendent memory support

● Further work on network flows

● Xen Dom0 bits merged

● HyperV bits still in staging

● Real Time patches not merged

Jon Masters <jcm@redhat.com>33

Future Predictions

● 3.0 will be released before 20th anniversary

● Increasing work will happen on SSD offload

● Microsoft HyperV support will be merged

● ARM fragmentation will be much improved

● RT won't be merged (but getting smaller)

Jon Masters <jcm@redhat.com>34

Recommendations

● Send status emails (like Microblaze and XFS)

● Respond to more questions (many unanswered)

● More civility on the LKML

● Documentation (wiki, etc.)

Jon Masters <jcm@redhat.com>35

Questions

● The views and opinions expressed here are my own.

124 • State of the kernel

Android Development

Tim Riker
Tim@Rikers.org

Abstract

Slides from the talk follow.

• 125 •

126 • Android Development

TimRiker Android OLS 2011 1

Android Development

Tim Riker <Tim@Rikers.org>
Ottawa Linux Symposium 2011

TimRiker Android OLS 2011 2

Android History

 Android, Inc. 2003
 Andy Rubin – Danger, Inc.

− T-Mobile Sidekick (Hiphop)

 Google acquires in 2005
 Not much is public at ths point

TimRiker Android OLS 2011 3

More History

 2007-11-05 “Open” Handheld Alliance
 2008-09-23 T-Mobile G1 released – Android

1.0
 Open Source releases lag

TimRiker Android OLS 2011 4

“Open Source”

 Linux Kernel “It's Linux”
 Java / Dalvik
 Android Market + other Google aps

TimRiker Android OLS 2011 5

Android Architecture

 Operating System
 Kernel / ramdisk (/)
 OS /system
 Userdata /data
 SD /sdcard

 Mix of native and java
 bionic – originally BSD C lib
 Dalvik

TimRiker Android OLS 2011 6

Android Application

 Install apk using adb, web download, etc.
 Window / Activity

– Each application is a new user
 View

Each visible “page” of an application
 Widget

text, image, drop down, etc.

2011 Linux Symposium • 127

TimRiker Android OLS 2011 7

More Android Arch

 Activities

visible UI as an activity. Launching application starts
activity

 Services

persist for a long time, ie: networked application
 Content providers

manage access to persisted data, ie: SQLite dbase
 Broadcast receivers

process data or respond to event

TimRiker Android OLS 2011 8

Development

 SDK releases for app development
 adb atttaches to devices and/or emulators
 Eclipse + ADT allow live debugging
 JDK
 Linux / Windows / OS X
 Android NDK – ARMv5/ARMv7

Android OS builds

 Google releases lag
 CyanogenMod very popular
 Supports many devices
 Also supports emulator!

– Well, for most things
 Different than application builds

– repo / git / jdk / etc

Steps to build CM

 x86_64 Linux / OS X supported
 Install native packages, JDK, etc.
 Install Android SDK
 Install repo / repo sync -j<n> (8GB+)
 (backup files)
 ROM Manager now required
 Lunch / mka to build (5GB)
 Copy ramdisk, system, userdata sometimes

kernel

Links:

 http://developer.android.com/
 http://developer.android.com/videos/
 http://www.ibm.com/developerworks/opensourc

e/library/os-android-devel/
 http://wiki.cyanogenmod.com/?

title=Compile_CyanogenMod_for_Emulator

128 • Android Development

