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Abstract

The Linux Standard Base (LSB) specifies the
binary interface between an application and a
runtime environment. This paper discusses the
LSB Development Kit (LDK) consisting of a
build environment and associated tools to assist
software developers in building/porting their
applications to the LSB interface. Developers
will be able to use the build environment on
their development machines, catching the LSB
porting issues early in the development cycle
and reducing overall LSB conformance testing
time and cost. Associated tools include appli-
cation and package checkers to test for LSB
conformance of application binaries and RPM
packages.

This paper starts with the discussion of ad-
vantages the build environment provides by
showing how it simplifies application develop-
ment/porting for LSB conformance. With the
availability of this additional build environment
from LSB working group, the application de-
velopers will find the task of porting applica-
tions to LSB much easier. We use the standard
Linux/Unix chroot utility to create a con-
trolled environment to keep check of the API
usage by the application during the build to en-
sure LSB conformance. After discussing the
build environment implementation details, the
paper briefly talks about the associated tools for

validating binaries and RPM packages for LSB
conformance. We conclude with a couple of
case studies that demonstrate usage of the build
environment as well as the associated tools de-
scribed in the paper.

1 Linux Standard Base Overview

The Linux* Standard Base (LSB)[1] specifies
the binary interface between an application and
a runtime environment. The LSB Specifica-
tion consists of a generic portion, gLSB, and
an architecture-specific portion, archLSB. As
the names suggest, gLSB contains everything
that is common across all architectures, and
archLSBs contain the things that are specific
to each processor architecture, such as the ma-
chine instruction set and C library symbol ver-
sions.

As much as possible, the LSB builds on ex-
isting standards, including the Single UNIX
Specification (SUS), which has evolved from
POSIX, the System V Interface Definition
(SVID), Itanium C++ ABI, and the System V
Application Binary Interface (ABI). LSB adds
the formal listing of what interfaces are avail-
able in which library as well as the data struc-
tures and constants associated with them.

• 1 •
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Libraries Commands and
Utilities

Core libraries
libc, libm, libpthread, libpam,

libutil, libdl, libcrypt, libz.
libncurses, librt, and libgcc_s

Modules

Graphics Module:
libX11, libXt, libXext,
libSM, libICE, libGL.

C++ module:
libstdc++ ...

Execution
Environment

File System
Hierarchy Localization

System Initialization Users and Groups

Figure 1: LSB Components

1.1 Components of LSB 3.0

Figure 1 shows the components of LSB 3.0 in-
cluding the set of libraries covered in the spec-
ification. For applications to be LSB compli-
ant, they are allowed to import only the speci-
fied symbols from these libraries. If application
needs additional libraries, they either need to be
statically linked or bundled as part of the appli-
cation.

As the LSB expands its scope, future specifica-
tion versions will include more libraries.

In addition to the Application Binary Interface
(ABI) portion, the LSB specification also spec-
ifies a set of commands that may be used in
scripts associated with the application. It also
requires that applications follow the filesystem
hierarchy standard (FHS)[7].

Another component of the LSB is the packag-
ing format specification. The LSB specifies the
package file format to be a subset of the RPM
file format. While LSB does not specify that
the operating system (OS) distribution has to
be based on RPM, it needs to have a way to
process a file in RPM format correctly.

All LSB compliant applications use a special
program interpreter: /lib/ld-lsb.so.3
for LSB version 3.0 instead of the traditional
/lib/ld-linux.so.2 for IA32 platforms.
This program interpreter is executed first when
an application is started, and is responsible for
loading the rest of the program and shared li-
braries into the process address space. This
provides the OS with a hook early in the
process execution in case something special
needs to be done for LSB to provide the cor-
rect runtime environment to the application.
Generally, /lib/ld- arch -lsb.so.3 or
/lib64/ld- arch -lsb.so.3 is used for
other 32– or 64–bit architectures.

The next section discusses issues involved in
porting/developing applications to LSB confor-
mance along with the basic requirements for
the same. The section ends with the overview
of LSB development kit to help with the task.
The subsequent sections discuss alternate stan-
dalone build environments and case studies
showing real applications ported to LSB.
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LSB Development Kit

Build Environments Validation Tools

Wrapper tool - Lsbcc Standalone build
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Figure 2: LSB Development Kit

2 Porting/Developing applications
to LSB

This section starts the discussion with require-
ments for porting or developing applications to
LSB. The application binaries will include ex-
ecutables and Dynamic Shared Object (DSO)
files.

• Limit usage of DSOs to only LSB-
specified libraries. Applications are also
limited to import only LSB-specified sym-
bols from those libraries.

• Use LSB-specific program interpreter
/lib/ld-lsb.so.3 for IA32 and
/lib/ld- arch -lsb.so.3 for other
LSB-supported architectures.

• Use ELF as specified by LSB for created
binaries.

• Use LSB-specified subset of RPM for ap-
plication package.

For many application developers it may be a
non-trivial task to port or develop applications
to LSB. The LSB WG provides a development
kit shown in Figure 2 to assist application de-
velopers in this task.

The LDK mainly consists of build environ-
ments to assist application developers with
porting/development of applications to LSB

and validation tools to verify for LSB con-
formance of application binaries and pack-
ages. LSB WG today haslsbcc/lsbc++ —
a gcc/g++ wrapper tool which serves as a
build environment as discussed in a subsection
below. The second build environment which
we are calling a standalone build environment
is the topic of discussion for this paper. Be-
fore we discuss that build environment in detail,
let’s talk about the validation tools and existing
build tools briefly.

2.1 Validation Tools in LDK

There are two validation tools delivered as part
of LDK. These tools are to be used as part of
LSB compliance testing for application bina-
ries and packages.

1. appchk : This tool is used to validate ELF
binaries (executables and DSOs) for their
LSB conformance. This tool will work
hand-in-hand with the build environment
as discussed in the later sections of this pa-
per. The LDK Case Studies section details
the usage of this tool.

2. pkgchk : This tool new for LSB 3.0 is
used for validating application packages.
The tool makes sure that the package uses
the LSB specified RPM file format. It
also validates the installation aspect of the
package for FHS conformance.

2.2 lsbcc/lsbc++ – Existing build tool

In the last few years, the LSB WG has been pro-
viding a compiler wrapper, calledlsbcc and
lsbc++ , as a build tool for application port-
ing. lsbcc or lsbc++ is used wherever build
scripts usegcc or g++ respectively. The wrap-
per tool parses all of the command line options
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passed to it and rearranges them, inserting a few
extra options to cause the LSB-supplied head-
ers and libraries to be used ahead of the normal
system libraries[6]. This tool also recognizes
non-LSB libraries and forces them to be linked
statically. Because the LSB-supplied headers
and libraries are inserted into the head of the
search paths, it is generally safe to use things
not in the LSB.

With these simple steps many of the applica-
tions can be ported to LSB by simply replac-
ing gcc with lsbcc andg++ with lsbc++ .
In this method, the host environment is used
for the build process; hence sometimes it may
be difficult to reproduce the results on multi-
ple platforms due to environment differences.
This issue is not specific to thelsbcc wrap-
per build environment, but a common prob-
lem for many build systems. The build envi-
ronment discussed in this paper addresses this
issue by creating a standalone environment.
Another shortcoming of thelsbcc approach
is that the wrapper tools rely on the usage
of gcc as compiler and configure-make pro-
cess for application building. If the applica-
tion relies on tools likelibtool which mod-
ify the compiler command lines,lsbcc may
not work correctly without additional configu-
ration changes to produce LSB-compliant re-
sults. Similarly, usage of other compilers may
not be possible as the wrapper tool relies on the
command line option format used bygcc . For
similar reasons, the tool may require additional
configuration in certain customized build pro-
cesses which may not rely on traditional config-
make like build scripts.

3 LDK Standalone build environ-
ment

The standalone build environment is created us-
ing the standard Linux utilitychroot . The

isolated directory hierarchy is built from source
packages and is completely independent of
its host environment. With the development
of this tool application developers will have
a choice between the wrapper tool discussed
above and the standalone build environment
discussed here. From now on we refer to
this standalone build environment as simply the
build environment unless otherwise explicitly
noted.

The concept of this build environment is de-
rived from the Automated Linux from Scratch
(ALFS)[2] project to create an isolated environ-
ment. The build environment comes with basic
build tools and packages required for common
application building. These tools are preconfig-
ured so that the applications built produce LSB-
conformant results. The application developer
may add more tools/packages to this build en-
vironment as discussed later.

Since the application build happens in an iso-
lated environment, except for some minor
changes to Makefiles, the application develop-
ers do not need to change the build process.
Since the whole mechanism is independent of
the compiler as well as build scripts used, this
build environment will work for most applica-
tion development situations.

The build environment provides a set of clean
headers and stub libraries for all the symbols
included in the LSB specification. Applica-
tions are restricted to use only these symbols
to achieve LSB conformance.

The build environment when used as docu-
mented will help produce the LSB-conformant
application binaries. We recommend using the
build environment from the beginning of appli-
cation development cycle which will help catch
any LSB porting issues early, reducing overall
cost of LSB conformance testing.

The remainder of this section discusses the
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build environment implementation in details.
In addition to providing information on how it
is used and accessed, the section also describes
how the build tools are configured and/or up-
dated.

3.1 Build environment Structure

Like a typical Linux distribution, the build
environment has a directory hierarchy with
/bin , /lib , /usr , and other related direc-
tories. Some of the differences between this
build environment and a Linux distribution are
the lack of Linux Kernel, most daemons, and
an X server, etc. To start this build environ-
ment the developer will need root privileges on
the host machine. Thelsb-buildenv com-
mand used for starting the build environment
behaves as follows:

Usage: lsb-buildenv -m [lsb|

nonlsb] -p [port] start|stop|

status

By default when used with no options, the envi-
ronment will be configured for LSB-compliant
building. The optionnon-lsb will force it
to remain in normal build mode. This option
typically is used for updating the build environ-
ment itself with additional packages/tools. The
default sshd-port is set at 8989.

The lsb-buildenv command starts the
sshd daemon at the specified port number. To
access and use the build environment the user
will need to ssh into the started build envi-
ronment. By default, only theroot account is
created; the password is set tolsbbuild123 .
Once the user is logged into the build environ-
ment asroot , he/she can add/update the user
accounts needed for regular build processes.

$ ssh -p 8989 root@localhost

The build environment comes with the LSB
WG-provided headers and stub libraries for all
the LSB 3.0-specified libraries. These head-
ers and stub libraries are located in the/opt/
lsb/include and /opt/lsb/lib direc-
tories respectively. It is strongly recommended
against modifying these directories.

X11 and OpenGL headers are exceptions to this
and are located in/usr/X11R6/include
although they are soft-linked in/opt/lsb/
include/X11 . These headers are taken from
the Release 6 packages from X.org. The stub
libraries related to all X libraries specified in
LSB are located in/opt/lsb/lib .

3.1.1 Tools and Configuration updates

As discussed earlier the build environment is
equipped with all the standard C/C++ build
tools like gcc compiler suite, binutils
package, etc. The goal for this build environ-
ment is to minimize the changes the application
developer needs to make in the build scripts
for the build to produce LSB-compliant results.
The build tools are modified/configured to help
produce LSB-conformant results as discussed
below:

• Compile time changes: As discussed
above, LSB provides a clean set of header
files in the/opt/lsb/include direc-
tory. Thegcc specs file is updated so that
the compiler looks for this directory be-
fore continuing looking for other system
locations. The string-I /opt/lsb/
include is appended to the*cpp_
options and*cc1_options sections
in thegcc specs file.

• Link time changes:

– By default the link editor (ld on
most systems) is configured to look
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in /lib , /usr/lib , and some
other directories for DSO files. For
the build to produce LSB-compliant
results, we need to make sure the
linking happens only with the LSB-
provided stub libraries. For this, the
default search path link editor uses
to search for DSOs is changed to
/opt/lsb/lib by configuring the
ld build process at the time of creat-
ing/building this build environment.
The ld is built with the follow-
ing command: ./configure
-with-lib-path=/opt/lsb/
lib

– Add -L /opt/lsb/lib to
*link section of thegcc specs file
to restrict the first directory accessed
for libraries

– Remove%Dfrom *link_libgcc
section ofgcc specs file. This will
disallow gcc to add -L option for
startup files.

– Set dynamic linker told-lsb.
so.3 by updating thegcc specs
file by appending*link section
with %{!dynamic-linker:

-dynamic-linker /lib/

ld-lsb.so.3} .

3.2 Packaging structure

The build environment comes with the most
commonly needed packages pre-installed.
Commonly used development (devel) packages
are also pre-installed. As it is not possible to
guess exactly what each application developer
will need (since each build process is unique
in requirements), the build environment comes
with a populated RPM database to help the
user add new packages as needed. This RPM
database is built from scratch during the
building of all the packages installed in the

build environment. As no binary RPM is
used for creating the build environment, Linux
distribution-specific dependencies are avoided.

We use the CheckInstall [3] tool for populating
RPM database in the build environment. This
tool works by monitoring the steps taken by
make install process and creates an RPM
package which can then be installed. Please re-
fer to the relevant reference listed in the Refer-
ence section for further documentation regard-
ing this tool.

This RPM database may be used by the appli-
cation developer if he/she needs to add/update
a package required for a given build process.
If for some reason (like dependency issues) a
binary RPM cannot be installed, we suggest
building and installing the package from source
code by starting the build environment in non-
lsb mode. Although not recommended, the user
can always copy the relevant files manually into
the build environment from the host machine.

4 Typical LSB porting process

This section discusses the process involved in
porting the application to LSB. The subsection
below discusses how LDK can be used dur-
ing active development of application. Figure 3
shows the porting process in the form of a flow
diagram.

• The first step is to run the existing applica-
tion binaries throughappchk . This will
identify all the DSOs and symbols used by
the application binaries that are not speci-
fied by LSB.

• The next step is to remove any unnec-
essary library dependencies where possi-
ble. Review all the makefiles (or similar
scripts) to make sure the application is not
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linking with any libraries that it does not
need.

• If appchk is reporting that the applica-
tion binary is dependent on a DSO not
specified in LSB, there are two options to
fix that:

– The first option is to use static ver-
sion of the library. This way the ap-
plication will not depend on the con-
cerned DSO.

– If for some reason (licensing is-
sues, etc.) that is not possible, the
required functions will need to be
implemented by the application de-
veloper avoiding the usage of that
library or creating an application-
specific DSO with those functions.
When an application-specific DSO is
created, it needs to be certified along
with the application binary.

• For changing the usage of DSO to static
library the Makefiles need to be updated
manually. Remove-l options used during
the linking phase for the concerned library.
Include the corresponding static library in
the linker command line.

• The next step is to performconfigure
and make (or similar scripts) as re-
quired by the application. Since the build
environment is configured to use LSB-
provided headers by default, the user may
see some compilation errors. Typically
these errors result due to usage of internal
(although exported) or deprecated sym-
bols. The developer will need to fix these
by using the appropriate symbols for the
given situation. The case study below
shows one such situation. Another type
of error occurs when a used symbol is not
part of LSB although the concerned library
is partially specified in LSB. The applica-
tion developer needs to find alternatives to

LSB Porting process

Validate existing
binaries with

Appchk

Appchk pass?

- Remove unnecessary
DSO usage
- Modify Makefiles to
replace usage non-lsb
DSOs by Static
libraries

No

Yes

Compile (run
configure before if

required)

Take required
action to fix these

errors  (see
discussion below)

Compile
errors?

Perform link to
create final

binaries

Yes

No

Link Errors
Take required

action to fix these
errors  (see

discussion below)

Yes

Run Appchk on all
new binaries

No

Appchk pass?

No

LSB Porting
complete

Figure 3: LSB porting process
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such symbols that are covered by LSB or
implement them as part of the application.

• The next step is linking to create final bi-
naries for the application. If the Make-
files are correctly modified as discussed
above, there should be minimal errors at
this stage. The common error about “Sym-
bol not defined” needs to be handled if cer-
tain deprecated or unspecified LSB sym-
bols are used by the application and not
caught in the compilation phase. Again
the case studies below show couple of
such examples.

4.1 LDK usage during application devel-
opment

Other than porting the existing Linux applica-
tions to LSB, the build environment and the
tools in LDK can be used by developers during
the application development cycle. Regular or
periodic usage of the build environment during
the development cycle will help catch the LSB
porting issues early in the development cycle,
reducing overall LSB conformance testing time
and cost. Such usage is highly recommended.

5 LDK Case Studies

This section discusses the real-life example
of how LSB porting will work using this
build environment. We consider two exam-
ples here to show different aspects of applica-
tion porting. Since these examples are from
the Open Source Software (OSS) projects they
follow the optionalconfigure , make, and
make install model of building and in-
stalling software.

5.1 Example 1: ghostview 1.5

Ghostview[4] usesxmkmf to create the Make-
file. When the application is built on a reg-
ular Linux machine, theldd output for the
ghostview binary is as follows:

$ ldd ghostview
libXaw.so.7 => /usr/X11R6/lib/libXaw.so.7
(0x00751000)
libXmu.so.6 => /usr/X11R6/lib/libXmu.so.6
(0x00b68000)
libXt.so.6 => /usr/X11R6/lib/libXt.so.6
(0x00af6000)
libSM.so.6 => /usr/X11R6/lib/libSM.so.6
(0x00ade000)
libICE.so.6 => /usr/X11R6/lib/libICE.so.6
(0x0024f000)
libXpm.so.4 => /usr/X11R6/lib/libXpm.so.4
(0x03c80000)
libXext.so.6 => /usr/X11R6/lib/libXext.so.6
(0x00522000)
libX11.so.6 => /usr/X11R6/lib/libX11.so.6
(0x00459000)
libm.so.6 => /lib/tls/libm.so.6 (0x0042e000)
libc.so.6 => /lib/tls/libc.so.6 (0x00303000)
libdl.so.2 => /lib/libdl.so.2 (0x00453000)
/lib/ld-linux.so.2 (0x002ea000)

Several of these libraries are not part of LSB
yet and hence the application will not be LSB-
compliant. To confirm that, run theappchk
tool from LDK to find out exactly what is being
used that is outside LSB’s current specification:

$appchk -A ghostview
Incorrect program interpreter: /lib/ld-linux.so.2
Header[1] PT_INTERP Failed
Found wrong intepreter in .interp section: /lib/ld-linux.so.2

instead of: /lib/ld-lsb.so.3
DT_NEEDED: libXaw.so.7 is used, but not part of the LSB
DT_NEEDED: libXmu.so.6 is used, but not part of the LSB
DT_NEEDED: libXpm.so.4 is used, but not part of the LSB
section .got.plt is not in the LSB
appchk for LSB Specification
Checking symbols in all modules
Checking binary ghostview
Symbol XawTextSetInsertionPoint used, but not part of LSB
Symbol XawTextReplace used, but not part of LSB
Symbol XmuInternAtom used, but not part of LSB
Symbol XawTextUnsetSelection used, but not part of LSB
Symbol XawScrollbarSetThumb used, but not part of LSB
Symbol XmuCopyISOLatin1Lowered used, but not part of LSB
Symbol XawTextDisableRedisplay used, but not part of LSB
Symbol XawFormDoLayout used, but not part of LSB
Symbol XawTextEnableRedisplay used, but not part of LSB
Symbol XmuMakeAtom used, but not part of LSB
Symbol XawTextGetSelectionPos used, but not part of LSB
Symbol XawTextInvalidate used, but not part of LSB
Symbol XawTextGetInsertionPoint used, but not part of LSB

The first message indicates the usage of
ld-linux.so instead ofld-lsb.so.3 as
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dynamic linker. DT_NEEDEDmessages indi-
cate the libraries which are not part of LSB
specification but used by the application. The
rest of the messages indicate symbols imported
by the application but not specified in LSB.

Let’s now look at how the build environment
will help with porting this application to LSB
and the steps users will need to go through in
this process.

Step 1: Modify Makefile so that it does not
use DSOs for the non-LSB libraries. Replace
them with the static version of the libraries.

Step 2: Fix the compilation errors. In this case
the errors included usage of symbolssys_
nerr andsys_errlist . These are depre-
cated symbols and hence not part of LSB head-
ers. The usage of these symbols is replaced by
functionstrerror .

Step 3: Fix the link-time errors. In this case
since the application uses three X libraries out-
side of LSB scope, we need to replace them
with the corresponding static libraries.

After compilation and linking, we useappchk
to check for LSB conformance for the created
binaryghostview :

$ appchk -A ghostview
appchk for LSB Specification
Checking symbols in all modules
Checking binary ghostview

If we run ldd on this binary we will see:

$ ldd ghostview
libXt.so.6 => /usr/X11R6/lib/libXt.so.6
(0x00af6000)
libSM.so.6 => /usr/X11R6/lib/libSM.so.6
(0x00ade000)
libICE.so.6 => /usr/X11R6/lib/libICE.so.6
(0x0024f000)
libXext.so.6 => /usr/X11R6/lib/libXext.so.6
(0x00522000)
libX11.so.6 => /usr/X11R6/lib/libX11.so.6
(0x00459000)
libm.so.6 => /lib/tls/libm.so.6 (0x0042e000)
libc.so.6 => /lib/tls/libc.so.6 (0x00303000)
libdl.so.2 => /lib/libdl.so.2 (0x00453000)
/lib/ld-lsb.so.3 (0x002ea000)

All these libraries are part of LSB and the
appchk confirms that the symbols imported
by the binary ghostview are specified in LSB.
This shows the successful porting of the appli-
cation to LSB.

5.2 Example 2: lesstif package

Lesstif[5] is an implementation of OSF/Motif
producing following binaries:

bin/mwm
bin/uil
bin/xmbind
lib/libDt.so*
lib/libDtPrint.so*
lib/libMrm.so*
lib/libUil.so*
lib/libXm.so*

By default none of these binaries is LSB-
compatible. On a regular Linux machine, we
get the following output when we runldd and
appchk onmwm.

$ ldd clients/Motif-2.1/mwm/.libs/mwm
libXm.so.2 => not found
libXp.so.6 => /usr/X11R6/lib/libXp.so.6
(0x0042e000)
libXt.so.6 => /usr/X11R6/lib/libXt.so.6
(0x00af6000)
libSM.so.6 => /usr/X11R6/lib/libSM.so.6
(0x00ade000)
libICE.so.6 => /usr/X11R6/lib/libICE.so.6
(0x0024f000)
libXext.so.6 => /usr/X11R6/lib/libXext.so.6
(0x00522000)
libX11.so.6 => /usr/X11R6/lib/libX11.so.6
(0x00459000)
libXft.so.2 => /usr/X11R6/lib/libXft.so.2
(0x00705000)
libXrender.so.1 =>
/usr/X11R6/lib/libXrender.so.1 (0x00747000)
libc.so.6 => /lib/tls/libc.so.6 (0x00303000)
libdl.so.2 => /lib/libdl.so.2 (0x00453000)
libfontconfig.so.1 =>
/usr/lib/libfontconfig.so.1 (0x006ad000)
libexpat.so.0 => /usr/lib/libexpat.so.0
(0x006e4000)
libfreetype.so.6 => /usr/lib/libfreetype.so.6
(0x0598c000)
/lib/ld-linux.so.2 (0x002ea000)
libz.so.1 => /usr/lib/libz.so.1 (0x00532000)
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$ appchk -A clients/Motif-2.1/mwm/.libs/mwm
Incorrect program interpreter: /lib/ld-linux.so.2
Header[ 1] PT_INTERP Failed
Found wrong intepreter in .interp section: /lib/ld-linux.so.2

instead of: /lib/ld-lsb.so.3
DT_NEEDED: libXm.so.2 is used, but not part of the LSB
DT_NEEDED: libXp.so.6 is used, but not part of the LSB
DT_NEEDED: libXft.so.2 is used, but not part of the LSB
DT_NEEDED: libXrender.so.1 is used, but not part of the LSB
section .got.plt is not in the LSB
appchk for LSB Specification
Checking symbols in all modules
Checking binary clients/Motif-2.1/mwm/.libs/mwm
Symbol XmGetXmDisplay used, but not part of LSB
Symbol XmGetPixmapByDepth used, but not part of LSB
Symbol _XmMicroSleep used, but not part of LSB
Symbol XpmReadFileToImage used, but not part of LSB
Symbol _XmFontListCreateDefault used, but not part of LSB
Symbol XmeWarning used, but not part of LSB
Symbol XmRegisterConverters used, but not part of LSB
Symbol XmStringCreateSimple used, but not part of LSB
Symbol _XmAddBackgroundToColorCache used, but not part of LSB
Symbol _XmGetColors used, but not part of LSB
Symbol _XmSleep used, but not part of LSB
Symbol _XmBackgroundColorDefault used, but not part of LSB
Symbol _XmFontListGetDefaultFont used, but not part of LSB
Symbol XmStringFree used, but not part of LSB
Symbol XmCreateQuestionDialog used, but not part of LSB
Symbol XmMessageBoxGetChild used, but not part of LSB
Symbol _XmAccessColorData used, but not part of LSB

As explained in the previous case study, these
messages indicate the usage of libraries and
symbols not specified in LSB.

This package follows the typical OSS
build process ofconfigure , make, and
make install . All the makefiles are
generated at the end of configure step. What
makes this package an interesting exercise is
the usage oflibtool . This tool is used for
portability in the usage and creation of DSO
and static libraries.

Let’s now walk through the process of building
this package for LSB conformance.

Step 1: Modify Makefile so that it does not
use DSOs for the non-LSB libraries. Replace
them with the static version of the libraries.

Step 2: There are no compilation errors ob-
served for this package.

Step 3: The first linktime error we see is
about the undefined reference to some of the
_Xt functions. These functions exported from
libXt.so are not part of the LSB specifi-
cation even though most of the other func-
tions coming from the same library are cov-

ered. In this case the reason for this exclu-
sion happens to be the nature of these func-
tions. Most of these are internal functions and
not really meant to be used by applications.
The workaround for this will be to use a static
version of the library instead of DSO. All the
makefiles usinglibXt.so are modified for
this.

The next error we see is the usage of func-
tion _XInitImageFuncPtrs . This func-
tion is deprecated and private (although ex-
ported). The suggested function in this case is
XImageInit . Make the required change in
file ImageCache.c .

After the compilation and linking we use
appchk to check for LSB conformance for the
created binaries. The output is shown below:

$ appchk -A -L lib/Xm-2.1/.libs/libXm.so.2 -L
lib/Mrm-2.1 /.libs/\ libMrm.so.2 ?L lib/Uil-2
.1/.libs/libUil.so.2 clients/Motif-2.1/mwm/\

.libs/mwm
appchk for LSB Specification
Checking symbols in all modules
Adding symbols for library lib/Xm-2.1/.libs/
libXm.so.2
Adding symbols for library lib/Mrm-2.1/.libs/
libMrm.so.2
Adding symbols for library lib/Uil-2.1/.libs/
libUil.so.2
Checking binary clients/Motif-2.1/mwm/.libs/mwm

This shows the successful porting of lesstif to
LSB.

6 Future Directions for LDK

For the LSB Development Kit, we will con-
tinue to make the tools better and easier to
use for application developers. As the LDK
is maintained actively through the LSB Work-
ing Group, ongoing feedback will be included
in the future development and active participa-
tion in the tools development is strongly en-
couraged.
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One of the features we are actively consider-
ing is the integration of the LDK with Eclipse
or similar IDE. Another area under considera-
tion is a tool to help develop/create LSB con-
formance packages.

We would like to take this opportunity to en-
courage all application developers to use the
tools discussed in this paper and provide feed-
back and feature requests to the LSB mailing
lists. We strongly encourage ISV participation
in this process and solicit their feedback on the
available tools as well as LSB in general.
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Building Murphy-compatible embedded Linux systems
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Codefidence Ltd.

gilad@codefidence.com

“If builders built buildings the
way programmers wrote programs,
then the first woodpecker that came
along would destroy civilization.”

— Murphy’s Law of Technology #5
[Murphy]

Abstract

It’s 2:00 a.m. An embedded Linux system in
the ladies’ room of an Albuquerque gas sta-
tion is being updated remotely. Just as the last
bytes hit the flash, disaster strikes—the power
fails. Now what? The regular way of updat-
ing the configuration or performing software
upgrade of Linux systems is anonsequiturin
the embedded space. Still, many developers
use these methods, or worse, for lack of a bet-
ter alternative. This talk introduces a better
alternative—a framework for safe remote con-
figuration and software upgrade of a Linux sys-
tem that supports atomic transactions, parallel,
interactive and programmed updates, and mul-
tiple software versions with rollback and all
using using such “novel” concepts as POSIX
rename(2) , Linux pivot_root(2) , and
the initrd/initramfs mechanism.

1 Introduction: When bad things
happen to good machines

Building embedded systems, Linux-based or
otherwise, involves a lot of effort. Thought
must be given to designing important aspects
of the system as its performance, real time con-
straints, hardware interfaces, and cost.

All too often, the issue of system survivabil-
ity in face of Murphy’s Law is not addressed
as part of the overall design. Alternatively, it
may be delegated to the implementor of specific
parts of the overall system as “implementation
details.”

To understand what we mean by “system sur-
vivability in face of Murphy’s law,” let us con-
sider the common warning often encountered
when one updates the firmware of an embed-
ded system:

“Whatever happens, DO NOT
pull the plug or reboot this system un-
til the firmware update has been com-
pleted or you risk turning this system
into a brick.”

If there is something we can guarantee with cer-
tainty, while reading such a sincere warning, it
is that somewhere and some when the power
will indeed falter or the machine reboot just as

• 13 •
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those last precious bits are written to flash, ren-
dering the system completely unusable.

It is important to note that this eventuality, al-
though sure to happen, is not common. Indeed,
the system can undergo thousands of firmware
upgrades in the QA lab without an incident;
there seems to be some magical quality to the
confinements of QA labs that stops this sort of
thing from happening.

Indeed, any upgrade of a a non-critical piece
of equipment in an idle Tuesday afternoon is
considered quite safe in the eyes of the authors,
with relation to the phenomena that we are dis-
cussing.

However, any critical system upgrade, per-
formed on a late Friday afternoon is almost
guaranteed to trigger a complex chain of events
involving power failures, stray cats, or the odd
meteorite or two, all leading to the some sad
(yet expected) outcome—a $3k or $50 irre-
placeable brick.

In essence therefore, system survivability in
face of Murphy’s Law is defined as the chances
of a given system to function in face of failure
in the “worst possible time.”

Despite the humorous tone chosen above, this
characteristic of embedded system has a very
serious and direct consequence on the bottom
line: a 0.1% RMA1 rate for a wireless router
device, or a single melt down of a critical core
router in a strategic customer site can spell the
difference between a successful project or a
failed one. Despite this, all too often design re-
quirements and QA processes do not take Mur-
phy’s Law into account, leading to a serious is-
sue which is only detected in the most painful
way by a customer, after the product has been
shipped.

1Return Materials Authorization, frequently used to
refer to all returned product, whether authorized or not.

If there is a way therefore, to build Murphy-
compliant systems, as it were, that will survive
the worse possible scenario without costing the
implementor too much money or time, it will
be a great boon to society, not to mention em-
bedded system developers.

As always, a trade off is at work here: for ex-
ample, we can coat the system developed with a
thick layer of lead, thus protecting it from dam-
age by cosmic rays. This, however, is not very
logical to do—the price-to-added-protection ra-
tio is simply not attractive enough.

We must therefore pick our battles wisely.

In the course of a 7-year career working
on building GNU/Linux-based embedded sys-
tems, we have identified two points of failure
which we believe based on anecdotal evidence
to be responsible for a significant number of
embedded system failures, and that are eas-
ily addressable with no more then a little pre-
meditative thought and the GNU/Linux feature
set. In this paper we describe those points and
suggest an efficient way to address them when
developing GNU/Linux-based embedded sys-
tems. Those points are:

• Embedded system configuration

• Embedded system software upgrade

The lessons we talk about were learned the hard
way: three different products sold in the market
today (by Juniper Networks Inc., Finjan Soft-
ware Inc., and BeyondSecurity Ltd.) already
make use of ideas or whole parts of the system
we’re about to introduce here, and more prod-
ucts are on the way. In addition, as we will later
disclose—we are not the first going down this
road, but more on that later.

The rest of this paper is outlined as follows: In
Section 2 we present current approaches, their
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weaknesses and strengths. In Section 3 we
present the requirements from a system which
will have all the strengths of the current ap-
proaches but none of their weaknesses. In Sec-
tion 4 we present our approach to solving the
problem of embedded system configuration:
cfgsh , the configuration shell. In Section 5
we present our approach to solving the prob-
lem of embedded system upgrade:sysup : the
system upgrade utility. In Section 6 we discuss
future directions, and we conclude in Section 7.

2 Current approaches: The good,
the bad, and the ugly

In this section we will present two of the more
common approaches: the “naïve” approach and
the RTOS approach. We will discuss each ap-
proach as to its merits and faults.

2.1 The “naïve” approach: tar balls and rc
files

When a developer familiar with the Unix
way is faced with the task of building a
GNU/Linux-based embedded system, his or her
tendency when it comes to handling configu-
ration files and software update is to mimic
the way such tasks are traditionally han-
dled in Unix based workstation or servers
[Embedded Linux Systems]. The flash device
is used in the same way a hard disk is used in a
traditional GNU/Linux workstation or server.

System configuration state, such as IP ad-
dresses, host name, or the like, is stored in
small text files which are read by scripts being
run by theinit(8) process at system startup.
Updating the configuration calls for editing the
text files and possibly re-running the scripts.

In a similar fashion, a software upgrade is done
by downloading and opening tar files of bi-
naries which replace the system binaries and
restarting the relevant processes. The more
“advanced” developers forgo tar files in favor
of plain cpio archives, RPM, deb files, ipkg or
proprietary formats which are essentially file
archives as well.

2.1.1 The good: the Unix way

The strengths of this approach are self evident:
this approach makes use of the Unix “Every-
thing is a file” paradigm, configuration files are
written in the universal interface of plain text,
and since the system behaves like a regular
GNU/Linux workstation or server installation,
it’s easy to build and debug.

In addition, because all the components of a
software version are just files in a file system,
one can replace individual files during system
operation, offering an easy “patch” facility. In
the development and QA labs, this is a helpful
feature.

2.1.2 The bad: no atomic transactions

A power loss during a configuration or software
update may result in a system at an inconsistent
state. Since the operations being performed in
either case are non atomic replacements of files,
a power loss in the middle of a configuration
change or a system upgrade can leave some of
the files in a pre-changed status while the rest
of the files have already been updated and the
system is no longer in a consistent state.

Inconsistent here really can mean anything at
all: from a system that boots with the wrong
IP, through a system which behaves strangely
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or fails in various ways due to incompatible li-
brary versions, and all the way up to a system
that will not boot at all.

Considering that many embedded devices are
being upgraded and managed via a network, a
system with the wrong (or no) IP address may
be as useless as a system which does not boot,
when you are on the wrong side of the continent
or even on a different continent altogether.

In addition, the ease of replacing single files,
which is considered a boon in the development
and QA labs, is a software-versions nightmare
at the customer site. The ability to patch sin-
gle files at a customer site gives rise to a multi-
tude of unofficial mini-versions of the software.
Thus, when a bug report comes in, how can one
tell if the software really is “version 1.6” as the
report says and not “version 1.6 with that patch
we sent to this one customer to debug the prob-
lem but that the guys from professional services
decided to put on each installation since”? The
sad answer is: you can’t.

2.1.3 The ugly: user interface

Editing configuration files and scripts or open-
ing tar files is not an acceptable interface for
the user of a embedded device. A tool has to be
written to supply a decent interface for the user.

Given the lack of any such standard tool, every
GNU/Linux-based embedded system developer
seems to write one of its own. Sometimes,
when there is a need for a configuration solu-
tion that spans telnet and serial CLI, web,and
SNMP interfaces, three different configuration
tools are written.

2.2 The RTOS approach: what we did in
that other project

The RTOS2 approach is favored by people ex-
perienced with legacy RTOS systems, which
seldom have a file system at their disposal, be-
cause it costs extra.

The basic idea is that both configuration infor-
mation and software versions are kept as blobs
of data directly on the system flash.

Configuration is changed by mapping the flash
disk memory and modifying the configuration
parameters in place.

Software update is performed by overwriting
whole images of the system software, com-
prised of the kernel, initrd or initramfs images
to the flash. Some developers utilize an Ext2
[ext2] ram disk image, which leaves the system
running from a read/write, but volatile environ-
ment.

Other developers prefer to use Cramfs [cramfs]
or Squashfs [Squashfs] file systems, in which
the root file system is read-only.

2.2.1 The good

The RTOS approach enjoys two advantages:
atomic system upgrade (under certain condi-
tions) and manageability of system software
versions while possible retaining the ability to
update single files at the lab.

Because system software is a single blob of
data, we can achieve a sort of atomic update
ability by having two separate partitions to
store two versions of the system software. In

2For marketing reasons, most embedded OS vendors
call their offering a Real Time OS, even if most of the
projects using them have negligible real time require-
ments, if any.
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this scenario, software update is performed by
writing the new version firmware to the parti-
tion we didn’t boot from, verify the write and
marking in the configuration part of the flash
the partition we just wrote to as the active one
and booting from it.

In addition, because software updates are per-
formed on entire file systems images, we need
not worry about the software version nightmare
stemming from the ability to update single files
as we described in the Section 2.1.2 previously.

Furthermore, if we happen to be using a
read/write but volatile root file system (such as
a ram disk), we allow the developer the free-
dom to patch single files at run time, while hav-
ing the safety guard of having all these changes
rolled back automatically in the next reboot.

2.2.2 The bad

However, utilizing this advanced method re-
quires additional flash space and a customized
boot loader that can switch boot partition based
on configuration information stored on the
flash. Even then, we are required to prepare in
advance a partition for each possible software
version, which in practice leads only support-
ing two versions at a time.

In addition, booting into a verified firmware
version with a major bug might still turn the
machine into a brick.

As for the configuration information—it is kept
as binary data on a flash, which is an inflexi-
ble and unforgiving format, hard to debug, and
hard to backup.

2.2.3 The ugly

This approach suffers from the same need for a
user interface as the naïve approach. While the

approach based on standard Unix configuration
files can at least rely on some common infras-
tructure to read and update its files, the RTOS
approach dictates the creation of a proprietary
tool to read the binary format in which the con-
figuration is written on the flash.

Moreover, if different user interfaces are re-
quired to handle the configuration of the sys-
tem (for example: telnet and serial CLI, web
and SNMP interfaces) three different tools will
have to be written or at least some common
library that allows all three interfaces to co-
operate in managing the configuration.

3 Requirements: building a better
solution

In this section we present the requirements
from a solution for updating and configuring
an embedded system. These requirements are
derived from the merits of existing approaches,
while leaving out the limitations.

The selected approach should follow the fol-
lowing guidelines:

1. Allow atomic update of configuration and
software versions.

2. Not require any special boot loader soft-
ware.

3. Allow an update of individual files of the
system software, but in a controlled fash-
ion.

4. Everything that can be represented as a
file, should.

5. Configuration files should be human read-
able and editable.
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6. Offer a standard unified tools to deal with
configuration and version management.

As we have seen, the naïve approach follows
guidelines 2, 4, and 5 but fails to meet guide-
lines 1, 3, and 6. On the other hand the RTOS
approach follows guidelines 1 and 3, although
both of them optionally, and fails to meet guide-
lines 2, 4, 5, and 6.

It should be pointed out that both the ap-
proaches we introduced are only examples.
One can think of many other approaches that
follow some of the 6 guidelines but not all of
them. Looking at the two approaches described
above we can understand why—choosing one
or the other of them is a trade off: it mandates
choosing which of the guidelines you are will-
ing to give up for the others.

Another thing worth mentioning is that there is
no tool currently known to the authors which
will be a good candidate to satisfy guideline
6. This is surprising, since the embedded
GNU/Linux field is not short of such embedded
space infrastructure (or framework): the busy-
box meta-utility maintained by Eric Anderson
and friends or the crosstool script by Dan Kegel
are two prime examples of such software which
most (if not all) embedded GNU/Linux systems
are built upon3.

Still, no common framework exists today that
deals with configuration and software up-
grade of embedded systems in the same way
that Busybox deals with system utilities and
crosstool with building cross tool chains and
which allows the embedded developer to build
upon to create his or her respective systems.

3And which the authors of this article will gladly sac-
rifice a goat or two in order to show their gratitude to
their maintainers if not for the very real fear of scaring
them off from doing any additional work on their respec-
tive tools. . .

Can there really exist a solution which will al-
low us to follow all 6 guidelines with no com-
promises or do embedded systems are too tied
up to their unique hardware platforms to give
rise to such a unified tool? And if such a tool is
made, will it need to be a complex and costly-
to-implement solution requiring changes in the
kernel, or a simple straightforward solution re-
quiring no more than some knowledge in C?

Since you’re reading this paper, you’re proba-
bly assuming that we did came up with some-
thing in the end and you’re perfectly right. But
before we are going to tell you all about it we
need to get something off of our chest first: we
didn’t really invent this solution at all.

Rather, when faced with the daunting task of
building the perfect embedded configuration
and upgrade tool(s) we chose to “stand on the
shoulders of giants” and simply went off and
found the best example we could lay our hands
on and imitated it.

Our victim was the Cisco family of routers and
its IOS operating system. Since we have ob-
served that this specific product of embedded
devices does seem to follow all of these guide-
lines, we naturally asked ourselves, “How did
they do that?”

Cisco embedded products, however, do not run
on GNU/Linux, our embedded OS of choice,
nor does Cisco shares the code to its OS with
the world4. What we are about to describe in
the next chapters is therefore, how to get the
same useful feature set of the Cisco line of em-
bedded devices when using GNU/Linux—all
implemented as Free Software.

4At least not willingly...
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4 cfgsh – an embedded GNU /
Linux configuration shell

cfgsh is an embedded GNU/Linux system
configuration shell. It is a small C utility which
aims to provides a unified standard way of han-
dling the configuration of a GNU/Linux-based
embedded system.

cfgsh was independently implemented from
scratch, though it is influenced by the Cisco
IOS shell. cfgsh supports three modes: an
interactive mode, a setup mode, and a silent
mode. Those modes will be described in the
following subsections.

4.1 Interactive mode

Interactive mode gives a user an easy text-
based user interface to manage the configura-
tion, complete with menus, context sensitive
help and command line completion. This is the
default mode.

Upon entering the program, the user is pre-
sented with a prompt of the host name of the
machine. The user can then manage the system
configuration by entering commands. On-line
help is available for all menus.

The GNU readline library [GNU Readline] is
used to implement all the interaction with the
user.

Figure 4.1 showscfgsh main help menu.

The user may enter a sub-menu by entering the
proper command. Upon doing so, the prompt
changes to reflect the menu level the user is at
that moment.

Figure 2 shows how the network menu is en-
tered.

linbox>help
role Display or set system role: role

[role].
timezone Display or set time zone: timezone

[time zone].
network Enter network configuration mode:

network.
ping Ping destination: ping <hostname |

address>.
hostname Displays or set the host name: host-

name [name].
halt Shutdown.

reboot Reboot.
show Display settings: show [config | in-

terfaces | routes | resolver].
save Save configuration.
exit Logout.
quit Logout.
help Display this text.

linbox>

Figure 1:cfgsh main menu help

At any stage the user may utilize the online
context-sensitive line help by simply pressing
the [TAB] key. If the user is entering a com-
mand, the result is simple command comple-
tion. If the user has already specified a com-
mand and she is requesting help with the pa-
rameters, she will get either a short help text on
the command parameters or parameter comple-
tion, where appropriate.

Figure 3 shows the command-line completion
for the “timezone” command5

Every change of configuration requested by the
user is attempted immediately. If the attempt
to reconfigure the system is successful, it is
also stored in thecfgsh internal configuration
“database.”

The user can ask to viewcfgsh internal
configuration database, which reflects (barring

5As can be guessed, the source for the suggested val-
ues for the timezone command are the list of files found
in /usr/share/zoneinfo/ . These are dynamically
generated and are a good example of howcfgsh uti-
lizes the GNU readline library to create a friendly user
interface.
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linbox>network
linbox (network)>help
interface Enter interface configuration mode:

interface [interface].
route Enter route configuration mode:

route [priority].
default Display or set default gateway ad-

dress: gateway [address].
resolver Enter domain name resolution con-

figuration mode: resolver.
exit Return to root mode.
quit Logout.
help Display this text.

linbox (network)>

Figure 2:cfgsh network sub-menu

linbox>timezone
timezone Display or set time zone: timezone [time zone].

Africa Cuba GMT+0 Kwajalein Pacific W-SU
America EET GMT-0 Libya Poland WET
Antarctica EST GMT0 MET Portugal Zulu
Arctic EST5EDT Greenwich MST ROC iso3166.tab
Asia Egypt HST MST7MDT ROK posix
Atlantic Eire Hongkong Mexico Singapore posixrules
Australia Etc Iceland Mideast SystemV right
Brazil Europe Indian NZ Turkey zone.tab
CET Factory Iran NZ-CHAT UCT
CST6CDT GB Israel Navajo US
Canada GB-Eire Jamaica PRC UTC
Chile GMT Japan PST8PDT Universal
linbox>timezone Africa/Lu
timezone Display or set time zone: timezone [time zone].

Luanda Lubumbashi Lusaka
linbox>timezone Africa/Lusaka

Figure 3: cfgsh timezone context sensitive
help

bugs: see below on loosing sync with the sys-
tem??) the system status using “show config”
command. When used, the “show config” com-
mand will display the list ofcfgsh commands
that, once fed intocfgsh , will re-create the
current configuration state.

Figure 4 shows an example of such a report.

In order to save the current system information
for the next system boot, the user enters the
command “save,” which stores the configura-
tion as a text file comprised ofcfgsh com-
mands. If issued, those commands will bring
the system to the exact current state. This con-
fig text file looks exactly like the output of the
“show config” commands (and is in fact gener-
ated from the same code).

linbox>show config
# Configuration Shell config file
hostname linbox
timezone Israel/IDT
network

interface eth0
dhcp off
ip 192.168.1.1
netmask 255.255.255.0
broadcast 2192.168.1.255
exit

default none
route 0

set none
exit

route 1
set none
exit

route 2
set none
exit

resolver
primary 194.90.1.5
secondary 194.90.1.7
search codefidence.com
exit

exit
role none
linbox>

Figure 4: cfgsh show config command output

Unless the user has issued the “save” command,
all the changes to the system configuration are
in effect only until the next system reboot, at
which point the previous configuration will be
used.

4.2 Setup mode

The purpose of setup mode is to allowcfgsh
to set up the system as a replacement for system
rc files. This mode is entered by running the
program with the “setup” argument. Normally,
this will be done once when the system boots,
on every boot, by calling the program from the
systeminittab(5) file.

During setup mode,cfgsh reads the text con-
fig file saved using the “save” command in in-
teractive mode and executes all of the com-
mand in the file in order to automatically set
up the embedded system while also initializ-
ing the run time configuration data base in the
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shared memory segment for future instances of
cfgsh running in interactive or silent mode.

After the file has been read and all the com-
mands executed,cfgsh exists. When run-
ning in this mode, the normal prompt and some
output is suppressed but normal messages are
printed to stdout (e.g. “the system IP is now
192.168.1.1”).

4.3 Silent mode

Silent mode iscfgsh way of supporting a sim-
ple programmable interface to manage the con-
figuration to other programs, such as web man-
agement consoles and the like. This mode is en-
tered by supplying the argument “silent” when
running the program.

In this modecfgsh runs exactly like in inter-
active mode, except that the prompt and some
verbose output is suppressed. A program wish-
ing to change the system configuration can sim-
ply run an instance ofcfgsh running in silent
mode and feed it via a Unix pipecfgsh com-
mand for it to execute.

4.4 Internal configuration database

The internal configuration database is kept in
a POSIX shared memory object obtained via
shm_open(3) which is shared between all
instances ofcfgsh 6 and which stays resident
even when no instance ofcfgsh is running.

Thanks to this design decision,cfgsh does not
need to re-read configuration files or query sys-
tem interfaces when an instance of it is being

6At the time of writing this paper, cfgsh still misses
correct code that will prevent race conditions when ac-
cessing the shared memory area by multiple instances at
the same time. This is however on the TODO list. . .

typedef struct {
char ip[NUMIF][IPQUADSIZ];
char nmask[NUMIF][IPQUADSIZ];
char bcast[NUMIF][IPQUADSIZ];
char gw[IPQUADSIZ];
char ns_search[HOST_NAME_MAX];
char ns1[IPQUADSIZ];
char ns2[IPQUADSIZ];
char role[PATH_MAX];
char tz[PATH_MAX];
char dhcp[NUMIF][DHCP_OPT];
char dhcp_is_on[NUMIF];
char hostname[HOST_NAME_MAX];
char route[ROUTE_NUM][MAX_ROUTE_SIZE];
char num_ifs;

} CONF;

Figure 5: Internal configuration database struc-
ture

run, since the information is available in the
shared memory object.

This design also suffers from at least one down-
side: since most of the information in the con-
figuration database is already present in the sys-
tem in some form (the Linux kernel for IP ad-
dresses or /etc/resolv.conf for resolver address
for example), there is always a risk of losing
sync with the real state of the system. De-
spite this down side we believe that the central
database which holds all the configuration in-
formation in a unified format is a design win
(for embedded systems) despite the replication
of information.

Figure 5 shows the structure of this internal
database.

4.5 Command structure

cfgsh menus are comprised from arrays of
commands. The program maintain a pointer
to the current menu which is initialized in pro-
gram start to the array of the main menu. Each
choice of a sub-menu simply replaces the cur-
rent menu pointer with the address of the ap-
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typedef struct {
char *name;
rl_icpfunc_t *func;
char *doc;
complete_func_t *complete_func;
char * complete_param;

} COMMAND;

Figure 6:cfgsh commands structure

propriate command array. It also updates the
prompt.

Each command entry in the command array is
a command structure which holds a pointer to
the function to be called to perform the com-
mand, a description line to be shown as part
of the help, a GNU readline library command
competition function to perform context sensi-
tive help for the command and a parameter to
pass to the completer function to enable re-use
of common functions (like directory competi-
tion).

Figure 6 shows the structure used to hold a sin-
gle command entry.

4.6 Atomic configuration update

As have been described previously,cfgsh
keeps the configuration database in memory
and only commits it to disk (as a text file
containingcfgsh commands) at the user re-
quests via the “save” command. The same file
is then used during the next boot to initialize
booth the system andcfgsh own configura-
tion database.

As can be understood, writing this configura-
tion file correctly so that in to point on time we
will not have a corrupt (or empty) configura-
tion, is very important part of whatcfgsh is
meant to accomplish.

The method used is a very simple and well
know one, which is based on the fact that the

int commit_file(char *tmp_file, char *file)
int ret = 0;
int fd = open(tmp_file, O_RDWR);
if(fd == -1) return errno;
if((ret = fsync(fd)) == -1) {
close(fd);
goto error;

}
if((ret = close(fd)) == -1) goto error;
if ((ret = rename(tmp_file, file)) != 0)

goto error;
return 0;

error:
unlink(tmp_file);
return ret;

}

Figure 7: The commit_file() procedure

POSIX standard mandates that the if the sec-
ond argument to therename(2) system call
already exists, the call will atomically replace
the old file for the new file such that there is
not point at which another process attempting
to access the original name will find it missing.

To utilize this fact, we simply first created a full
configuration file at a temporary location, sync
its content to disk usingfsync(2) and then
rename(2) the new file over the old file.

Figure 7 shows the code of thecommit_
file() procedure that does the actual heavy
lifting.

One thing which is perhaps missing from the
procedure is a sync to the directory which holds
the configuration file after the rename is over.
Without this extra sync a sudden power fail-
ure after the rename may result in the directory
entry never being written to permanent storage
and the old configuration file used after reboot.

We believe that this is a valid scenario, as our
purpose is to guarantee that the operation ei-
ther fails as a whole or succeed as a whole but
people who consider (quite rightfully) a system
which boots with the previous IP address and
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network parameters after a configuration save a
failure can simple add an fsync to the directory
where the configuration file resides.

This brings up another issue to consider - the
atomicity of this method is really only valid
if and only if the underlying file system saves
a directory entry as part of an atomic transac-
tion. Since file systems that do exactly this are
not rare (e.g. Ext3 [ext3]) this is considered a
reasonable requirement by the authors, but it is
worth noting by would be implementors.

5 sysup – embedded GNU/Linux
system software update utility

sysup —an embedded GNU/Linux system
software update utility—is a very simple tool
that is meant to run at boot time from ini-
trd/initramfs of a Linux-based embedded sys-
tem in order to mount the root file system.
Its objective is allow for an easily and atom-
ically update-able embedded system software
versions.

5.1 File system structure

To utilize sysup, the system file system layout
must be done in a certain specific way, which is
a little different from the normal layout used in
embedded systems.

We shall define several different file system:

Main storage This is the file system on the
main storage of the system—usually the
flash disk. JFFS2 [JFFS2] or Ext3 appro-
priate file system types. This file system
will contain configuration files and images
of versions file system but not system soft-
ware or libraries.

Kernel
+initrd/
initramfs

Mass
Storage

/
bin/
sbin/
lib/
tmp/
dev/

/
bin/
sbin/
lib/
tmp/
dev/

versions.conf

Version 1.0

Version 1.1

Figure 8: File systems layout with sysup

Version image This is a file system that con-
tains the files for a specific version of the
system software. It is meant to be used as
the root file system of the system and con-
tains all binaries, static configuration files,
device files and software. Version images
are (possibly compressed) loop back im-
ages and reside as files on the Main stor-
age file system. Cramfs or Squashfs are
the prime candidate as the type of these file
system, although an Ext2 file system can
be used as well if it is mount read-only.

initrd/initramfs This is a file system image or
cpio archive which are used to host the
files of the sysup mechanism. These file
system are mounted during boot and dis-
carded once the boot sequence is com-
plete. Again, Cramfs, Squashfs, or Ext2
are good choices for the kind of this file
system.

Figure 8 shows a schematic of the various file
systems layout in relation to each other.

5.2 The boot process with sysup

What sysup does can be best explained by de-
scribing the basic boot process on a sysup en-
abled system:
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1. System boots.

2. Boot loader loads kernel and ini-
trd/initramfs images into memory.

3. Kernel runs and mounts initrd or initramfs
content

4. sysup is run.

5. sysup mounts the main storage.

6. sysup locates on the main storage the ver-
sions.conf file.

7. sysup locates on the main storage a ver-
sion image.

8. sysup takes an MD5 signature of the ver-
sion image and compares it to the one
stored in the versions.conf file.

9. If the signatures do not match or in re-
sponse to any other failure, sysup rolls
back to the previous version by moving on
to the next entry in the versions.conf file
and branching back to stage 77.

10. If the signatures match, sysup will loop
back mount the version image in a tem-
porary mount point.

11. sysup will move the mount point of the
main storage device into a mount point in
temporary mount point of the version im-
age. This is done using the “new” (2.5.1,
but back ported to 2.4) MS_MOVE mount
flag tomount(2) 8.

12. sysup will thenpivot_root(2) into
the temporary mount point of the mounted
version image, thus turning it to the new
root file system.

7At the time of the writing of this paper only 2 ver-
sions.conf entries are supported, but changing this is very
easy should the need ever arise.

8Used by the-move options tomount(8) .

7e90f657aaa0f4256923b43e900d2351 \
/boot/version-1.5.img
2c9d55454605787d5eff486b99055dba \
/boot/versions-1.6.img

Figure 9: versions.conf

13. The boot is completed by un-mounting the
initrd or initramfs file systems and exec-
ing into /sbin/init .

An example version.conf file is shown in fig-
ure 9. A very simple implementation of sysup
as a shell script is in figure 10.

5.3 System software update

The above description of a sysup boot sequence
sounds more complicated then usual. On the
other hand, the system software upgrade proce-
dure is quite simple:

1. Download a new version image to the
main storage storage.

2. Calculate its MD5sum and do any other
sanity checks on the image.

3. Create a new versions.conf file under a
temporary name, with the MD5 and path
of the new version image as the first en-
try and the old version image and its MD5
sum (taken from the current version.conf
file) as the second entry.

4. fsync the new versions.conf under its tem-
porary name.

5. rename(2) the new version.conf file over
the old one.

6. Reboot.
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#!/bin/sh
# Name and path to file with filename and MD5s
VERSIONS=versions
# How to get the first line of the file
LINE=‘tail -n 1 versions‘
# File name if MD5 is correct, empty otherwise
FILE=‘./md5check $LINE‘
# How to get the second line of the file
ALTLINE=‘head -n 1 versions‘
# File name if MD5 is correct, empty otherwise
ALTFILE=‘./md5check $LINE‘
# File system type of images
FSTYPE=ext2
# Mount point for new root
MNT=/mnt
# File system type for data parition
# (which holds the image files)
DATAFSTYPE=ext3
# Mount point of data partition
DATA=/data
# Name of directory inside the images
# where the original root mount point
# will be moved to
OLDROOT=initrd
# device of data parition
DATADEV=/dev/hda1
# Emergency shell
EMR_SHELL=/bin/sh
boot() {

mount -t $FSTYPE $FILE $MNT && \
cd $MNT && \
pivot_root . $OLDROOT &&
mount $OLDROOT/$DATA $DATA -o move && \
umount $OLDROOT && \
exec /sbin/init

}
mount -t proc /proc && \
mount -t $DATAFSTYPE $DATADEV && \
if test -z "$FILE"; then \

echo "Attempting to boot 1st choice" && boot(); \
fi && \
if test -z "$ALTFILE"; then \

echo "Attempting to boot 2nd choice" && boot(); \
fi
echo "Boot failure." && exec $EMR_SHELL

Figure 10: sysup shell script

Once again, just like withcfgsh configura-
tion file, the POSIX assured atomicity of the re-
name(2) system call, guarantees that at no point
in time will a loss of power lead to a system that
cannot boot.

5.4 Variations on a theme

To this basic scheme we can add some more
advanced features as described in this section.
None of these implemented in the current ver-
sion of sysup, but they are on our TODO list for
future versions.

5.4.1 Upgrade watchdog

A version image might have good checksum
and mounted correctly, but the software in it
might be broken in such a way as to get the ma-
chine stuck or reboot before allowing the user
to reach a stage that he or she can roll back to
the previous version.

To resolve this issue, or at least to mitigate its
effect to some extent, the following addition
can be made to the sysup boot process:

• During boot, before mounting a version
image file, sysup should look on the main
storage file system for a “boot in progress”
indicator file. If the file is there, it should
roll back and boot the next entry of ver-
sions.conf file.

• If the file is not there and before sysup
mounts the new version image file, it will
create a “boot in progress” indicator file on
the main storage file system.

• After a version image finished its boot suc-
cessfully to such a degree that the user
can request a software version upgrade or
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downgrade, the software on the version
image will delete this “boot in progress”
indicator from the main storage file sys-
tem.

This addition to the boot process allows detect
errors that would otherwise lead to a system
that reboots into a broken version in an infinite
loop.

5.4.2 Network software updates

Another possible extension to the sysup boot
model is to extend sysup to look for newer ver-
sion to boot in a network directory of sorts, in
addition to theversions.conf file.

If a newer version is found, it is downloaded
and Incorporated into the regular version repos-
itory on the main storage (perhaps deleting an
older version to accommodate).

If the newest version on the network directory
is the same as the version stored on the mass
storage, boot continues as before.

5.4.3 Safe mode

Sometime, despite our best efforts, the version
images on the flash can become corrupted. In
such an event, it can be very useful to allow the
sysup code in the initrd/initramfs image, when
it detects such an occurrence, to enter a “safe
mode” which will allow the minimal configu-
ration of the system (e.g. network settings) and
download of a fresh version image to flash.

5.5 The Achilles heel of sysup: kernel up-
grades

The reason sysup is able to supply atomic up-
grade of software version is exactly because,

thank to the ability of the Linux kernel to loop
back file system images, all the system soft-
ware can be squeezed into a single file. Unfor-
tunately, the kernel image itself cannot be in-
cluded in this image for obvious reasons, which
leads to a multitude of problems

As long as we are willing to treat the kernel and
the initrd/initramfs images with it, as a sort of
a boot ROM, only update-able in special cir-
cumstances by re-writing in a non atomic fash-
ion the appropriate flash partition, we have no
problem.

Unfortunately, this is not always enough. Bugs
in the kernel, support for new features and the
need of kernel modules to be loaded into the
same kernel version for which they were com-
piled may require kernel upgrades, not to men-
tions bugs in sysup code itself. . .

There are two ways to overcome this limitation,
each with its own set of problems:

5.5.1 Two kernel Monte

Under this scheme, we add another field to the
versions.conf file—the version of the ker-
nel required by that version image. sysup then
needs to check whether the currently running
kernel is the right one. If it is, we proceed as
usual. If it is not we utilize a Linux based Linux
loader such as kexec or similar in-kernel load-
ers [kexec]9 and boot into the correct kernel.
This time we will be in the right kernel version
and boot will continue as normal.

This method works quite well, however it has
two major drawbacks:

• At the time of the writing of this paper,
neither kexec, two kernel Monte or lobos

9Our tests with this mode of operation were done with
the Two kernel Monte module from Scyld Computing.
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are integrated into the vanilla kernel, re-
quiring a patch.

• Those solutions that do exist seems to
cover x86 and to some degree ppc32 ar-
chitecture only.

• Using this approach lengthens boot time.

5.5.2 Cooperating with the boot loader

As an alternative to booting a Linux kernel
from Linux, we can use the very same mecha-
nism discussed before of marking each version
with the required kernel version to run it and
simply change the boot loader configuration to
boot the right kernel version next time and then
reboot the machine. If all goes well, when we
next run, we will already be running under the
right kernel.

The drawback of this method is of course that
we are now tied to the specific feature set of
a specific boot loader and not all boot loader
lend themselves easily to this sort of coopera-
tion with regard to choosing the Linux kernel
image to boot.

6 Read, Copy, Update

One of the readers of the early draft of this pa-
per remarked how much our approach to cre-
ate atomic update of complex data by creating
a copy and then switching pointers to this data
is similar to the well known IBM patented RCU
method utilized in the latest Linux kernel ver-
sions.

While we happily agree that the mechanism is
the basically the same, we would like to point
out that the purpose of applying the technique
(which we of course do not claim to have in-
vented) is different: the RCU implementation

in the Linux kernel is done to avoid locking
when accessing data structure as an way to
speed up access to these data structures, where
as our use of the technique is done because it is
impossibleto lock the data structure we want to
access, barring the use of a battery attached to
each embedded device.

It is interesting though, to note the usefulness
of the same technique to solve different, but re-
lated problems.

7 Future directions

Apart from implementing our lengthy TODO
list, some of which has been discussed in this
paper, there are some “blue skies” areas of in-
terest for additional research withcfgsh and
sysup.

The most interesting one, in the humble opinion
of the authors, is the possibility that the tech-
niques outlined here and implemented in the
two projects can be useful outside the scope of
embedded systems design, especially with re-
gard to “stateless Linux,” virtual machine set-
tings and GNU/Linux-based clusters.

Because the approach presented here essen-
tially locks all the information about software
versions and configuration in a couple of eas-
ily controlled files, and supports transactional
management of these resources it is hoped that
developers and researches working in those
fields would be able to utilize the easy ability
to change and save the state of a machine with
regard to software version and configuration to
create mechanism to automatically and safely
control their systems, virtual instances or clus-
ter node in the same way that we demonstrated
can be done with embedded systems.
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Abstract

Operating under memory pressure has been a
persistent problem for Linux customers. De-
spite significant work done in the 2.6 kernel to
improve its handling of memory, it is still easy
to make the Linux kernel slow to a crawl or lock
up completely under load.

One of the fundamental sources for mem-
ory pressure is the filesystem pagecache us-
age, along with thebuffer_head entries that
control them. Another problem area is in-
ode and dentry cache entries in the slab cache.
Linux struggles to keep either of these under
control. Userspace processes provide another
obvious source of memory usage, which are
partially handled by the OOM killer subsystem,
which has often been accused of making poor
decisions on which process to kill.

This paper takes a closer look at various scene-
rios causing of memory pressure and the way
VM handles it currently, what we have done
to keep the system for falling apart. This pa-
per also discusses the future work that needs to
be done to improve further, which may require
careful re-design of subsystems.

This paper will try to describe the basics of

memory reclaim in a way that is comprensi-
ble. In order to achieve that, some minor details
have been glossed over; for the full gore, see
the code. The intent is to give an overview first
to give the reader some hope of understanding
basic concepts and precepts.

As with any complex system, it is critical to
have a high-level broad overview of how the
system works before attempting to change any-
thing within. Hopefully this paper will pro-
vide that skeleton understanding, and allow the
reader to proceed to the code details them-
selves. This paper covers LinuxR© 2.6.11.

1 What is memory pressure?

The Linux VM code tries to use up spare mem-
ory for cache, thus there is normally little free
memory on a running system. The intent is
to use memory as efficiently as possible, and
that cache should be easily recoverable when
needed. We try to keep only a small num-
ber of pages free for each zone—usually be-
tween two watermarks:zone->pages_low
and zone->pages_high . In practice, the
interactions between zones make it a little more
complex, but that is the basic intent. When the

• 29 •



30 • Can you handle the pressure? Making Linux bulletproof under load

system needs a page and there are insufficient
available the system will trigger reclaim, that is
it will start the process of identifying and re-
leasing currently in-use pages.

Memory reclaim falls into two basic types:

• per-zone general page reclaim:shrink_

zone()

• slab reclaim:shrink_slab()

both of which are invoked from each of 2
places:

• kswapd—background reclaim daemon;
tries to keep a small number of free pages
available at all times.

• direct reclaim—processes freeing memory
for their own use. Triggered when a pro-
cess is unable to allocate memory and is
willing to wait.

2 When do we try to free pages?

The normal steady state of a running system is
for most pages to be in-use, with just the min-
imum of pages actually free. The aim is to
maintain the maximum working set in memory
whilst maintaining sufficient truly empty pages
to ensure critical operations will not block. The
only thing that will cause us to have to reclaim
pages is if we need to allocate new ones. In the
diagram below are the watermarks that trigger
reclaim activities.

Caption: For highmem zones,pages_min
is normally 512KB. For lowmem, it is about
4*sqrt(low_kb) , but spread across all low
zones in the system. For an ia32 machine with
1GB or more of memory, that works out at
about 3.8MB.

The memory page allocator (__alloc_
pages ) iterates over all the allowable zones for
a given allocation (the zonelist) and tries to find
a zone with enough free memory to take from.
If we are belowpages_low , it will wake up
kswapd to try to reclaim more. If kswapd is
failing to keep up with demand, and we fall be-
low pages_min , each allocating process can
drop into direct reclaim viatry_to_free_
pages . . . searching for memory itself.

3 What pages do we try to free?

The basic plan is to target the least useful pages
on the system. In broad terms the least recently
used pages (LRU). However, in practice it is
rather more complex than this, as we want to
apply some bias over in which pages we keep,
and which we discard (e.g. keeping a balance of
anonymous (application) memory vs filebacked
(pagecache) memory).

Some pages (e.g. slabcache and other kernel
control structures) are not kept on the LRU lists
at all. Either they are not reclaimable, or re-
quire special handling before release (we will
cover these separately below).

3.1 The LRU lists

We keep memory on two lists (per zone)—the
active and inactive lists. The basic premise is
that pages on the active list are in active use,
and pages on the inactive lists are not. We mon-
itor the hardware pagetables (on most architec-
tures) to detect whether the the page is being
actively referenced or not, and copy that infor-
mation down into the struct page in the form of
thePG_referenced flag.

When attempting to reclaim pages, we scan the
LRU lists; pages that are found to be active will
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kswapd

balance_pgdat

__alloc_pages

try_to_free_pages

shrink_caches

shrink_zone

shrink_slab

shrink_cache

refill_inactive_zone

slab->shrinker

Figure 1: Memory Reclaimers
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(1.25 x pages_min)

(1.5 x pages_min)

zone->pages_min

0 pages free

Kswapd tries 
to keep us in 

this range

can_try_harder
(rt task || !GFP_WAIT)

GFP_HIGH

PF_MEMALLOC

(0.75 x pages_min)

(0.5 x pages_min)

zone->pages_low

zone->pages_high

zone->pages_min

Figure 2: Zone Reclaim Watermarks

be moved to the head of the active list, pages
that are found to be inactive will be demoted:

• If they were on the active list, they will be
moved to the inactive list.

• If they were on the inactive list, we will try
to discard them

3.2 Discarding pages

Reclaiming an in-use page from the system in-
volves 5 basic steps:

• free the pagetable mappings (try_to_
unmap() )

• clean the page if it is dirty (i.e. sync it to
disk)

• release anybuffer_heads associated
with the page (explained in section below)

• Remove it from the pagecache

• free the page

3.3 Freeing the pagetable mappings

Freeing the pagetable mappings uses the rmap
(reverse mapping) mechanism to go from a
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reclaim
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Figure 3: LRU lists
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physical page to a list of the pagetable entries
mapping it. The mechanism for how this works
depends on whether the page is anonymous, or
filebacked

• Anonymous page (try_to_unmap_
anon() ) use theanon_vma structure to
retrieve the list ofvmas mapping the page

• Filebacked page (try_to_unmap_
file() ) Go via theaddress_space
structure (the file’s controlling object) to
retrieve a list ofvmas mapping the page.

From thevma, combined with the offset infor-
mation in the struct page, we can find the vir-
tual address within the process, and walk the
pagetables to the PTE entry.

4 Buffer heads

A buffer_head is a control structure for a
page in the pagecache, but are not required for
all pages. Their basic usage is to cache the disk
mapping information for that pagecache page.

4.1 Why are bufferheads used?

• to provide support for filesystem block-
sizes not matching system pagesize. If
the filesystem blocksize is smaller than the
system pagesize, each page may end up
belonging to multiple physical blocks on
the disk. Buffer heads provide a conve-
nient way to map multiple blocks to a sin-
gle page.

• To cache the page to disk block mapping
information. All the pages belong to a
file/inode are attached to that inode using
the logical offset in the file and they are

represented by a radix tree. This will sig-
nificantly reduce the search/traversal times
to map from a given file offset to the back-
ing pagecache page. However, the filesys-
tem can map these pages on the disk what-
ever way it wants. So every time, we need
disk block mapping, we need to ask the
filesystem to give us physical block num-
ber for the given page. Bufferheads pro-
vide a way to cache this information and
there by eliminates an extra call to filesys-
tem to figure out the disk block mapping.
Note that figuring out the disk block map-
ping could involve reading the disk, de-
pending on the filesystem.

• In order to provide ordering guarantees in
case of a transaction commit. Ext3 or-
dered mode guarantees that the file data
gets written to the disk before the meta-
data gets commited to the journal. In or-
der to provide this guarantee, bufferheads
are used as mechanism to link the pages
belong to a transaction. If the transac-
tion is getting commited to the journal, the
buffer_head makes sure that all the
pages attached to the transaction using the
bufferhead are written to the disk.

• as meta data cache. All the meta data
(superblock, directory, inode data, indirect
blocks) are read into the buffer cache for
a quick reference. Bufferheads provide a
way to access the data.

4.2 What is the problem with bufferheads?

• Lowmem consumption: All bufferheads
come from buffer_head slab cache
(see later section on slab cache). Since all
the slabs come fromZONE_NORMAL, they
all consume lowmem (in the case of ia32).
Since there is one or morebuffer_
head structures for each filesystem page-
cache page, thebuffer_head slab
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Figure 4: Object based rmap
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grows very quickly and consumes lots of
lowmem. In an attempt to address the
problem, there is a limit on how much
memory “bh” can occupy, which has been
set to 10% ofZONE_NORMAL.

• page reference handling: When buffer-
heads get attached to a page, they take a
reference on the page, which is held un-
til the VM tries to release the page. Typ-
ically, once the page gets flushed to disk
it is acceptable to release the bufferhead.
However, there is no clean way to drop
thebuffer_head , since the completion
of the page being flushed is done in in-
terrupt context. Thus we leave the buffer-
heads around attached to the page and re-
lease them as and when VM decides to re-
use the page. So, its normal to see lots
of bufferheads floating around in the sys-
tem. Thebuffer_head structures are
allocated viapage_cache_get() , and
freed intry_to_free_buffers() .

• TLB/SLB/cache efficiency: Everytime we
reference thebuffer_head ’s attached
to page, it might cause a TLB/SLB
miss. We have observed this prob-
lem with a large NFS workload, where
ext3kjournald() goes through all the
transactions, all the journal heads and
all the bufferheads looking for things to
flush/clean. Eliminating bufferheads com-
pletely would be the best solution.

5 Non-reclaimable pages

Memory allocated to user processes are gener-
ally reclaimable. A user process can almost al-
ways be stopped and its memory image pushed
out onto swap. Not all memory in the system
can be so easily reclaimed: for example, pages
allocated to the kernel text, pagetable pages, or

those allocated to non-cooperative slab caches
(as we will see later) may not be readily freed.
Such memory is termed non-reclaimable—the
ultimate owner of the allocation may not even
be traceable.

5.1 Kernel Pages

By far the largest source of non-reclaimable al-
locations come from the kernel itself. The ker-
nel text, and all pagetables are non-reclaimable.
Any allocation where the owner is not easily
determined will fall into this category. Often
this occurs because the cost of maintaining the
ownership information for each and every allo-
cation would dominate the cost of those alloca-
tions.

5.2 Locked User Pages

The mlock system call provides a mechanism
for a userspace process to request that a sec-
tion of memory be held in RAM. mlock op-
erates on the processes’ reference to the page
(e.g. thevma and pagetables), not the physical
page controlling structure (e.g. the struct page).
Thus the lock is indicated within the vma by the
VM_LOCKEDflag.

Whilst it would be useful to track this state
within the struct page, this would require an-
other reference count there, for something that
is not often used. ThePG_locked flag is
sometimes confused with mlock functionality,
but is not related to this at all;PG_LOCKEDis
held whilst the page is in use by the VM (e.g.
whilst being written out).

5.3 Why are locked pages such an issue?

Locked pages in and of themselves are not a
huge issue. There will always be information
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which must remain in memory and cannot be
allowed to be ‘moved’ out to secondary storage.
It is when we are in need of higher order allo-
cations (physically contiguous groups of pages)
or are attempting to hotplug a specific area of
physical memory that such ‘unmovable’ mem-
ory becomes an issue.

Taking a pathological example (on an ia32 sys-
tem), we have a process allocating large ar-
eas of anonymous memory. For each 1024
4k pages we will need to allocate a page ta-
ble page to map it, which is non-reclaimable.
As allocations proceed we end up with a non-
reclaimable page every 1025 pages, or one
per MAX_ORDERallocation. As those unre-
claimable pages are interspersed with the re-
claimable pages, if we now need to free a large
physically contiguous region we will find no
fully reclaimable area.

6 Slab reclaim

The slab poses special problems. The slab is
a typed memory allocator and as such takes
system pages and carves them up for alloca-
tion. Each system page in the slab is potentially
split into a number of separate allocations and
owned by different parts of the operating sys-
tem. In order to reclaim any slab page we have
to first reclaim each and every one of the con-
tained allocations.

In order to be reclaimable a slab must regis-
ter a reclaim method—each slab can register
a callback function to ask it to shrink itself,
known as a “shrinker” routine. These are reg-
istered withset_shrinker() and unregis-
tered with remove_shrinker() , held on
shrinker_list , and called fromshrink_
slab() . Note that most slabs do NOT regis-
ter a shrinker, and are thus non-reclaimable, the
only ones that currently do are:

• directory entry cache (dentry)

• disk quota subsystem (dquot)

• inode cache (icache)

• filesystem meta information block cache
(mbcache)

6.1 The Blunderbuss Effect

Taking the dentry cache as an example, we
walk an LRU-type list of dentries—but note
this isentries, not of pages. The problem with
this is that whilst it will get rid of the best
dcache entries it may not get rid of any whole
pages at all. Imagine the following situation,
for example:

Each row represents a page of dentrys, each
box represents in individual dentry. Whilst
many entries have been freed, no pages are re-
claimable as a result—I call this the blunder-
buss effect. We are suffering from internal frag-
mentation, which is made worse by the fact that
some of the dentries (e.g. directories) may be
locked. We actually have a fairly high likeli-
hood of blowing away a very significant por-
tion of the cache before freeing any pages at all.
So whilst the shrink routine is good for keep-
ing dcache size in check, it is not effective at
shrinking it.

Dentry holds a reference to the inode as well.
When we decrement the reference count to the
dentry, the inode entry count is decremented
as well. If the inode refcount is decremented
to 0, we will calltruncate_inode_pages()

which will write back the pages for that file to
disk. That could take avery long time to com-
plete. This means that slab reclaim can cause
very high latencies in order to allocate a page.
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Figure 5: dentry slab

7 Diagnosing OOM situations

When the system runs out of memory, you will
typically see messages either from the OOM
killer, or “page allocation failures.” These are
typically symptoms that either:

• Your workload is unreasonable for the ma-
chine

• Something is wrong

If the workload does not fit into RAM + SWAP,
then you aregoing to run out of memory. If
it does not fit into RAM, then it will probably
perform badly, but should still work.

7.1 Examining error messages

When__alloc_pages can not allocate you
the memory you asked for, it prints something
like this:
%s: page allocation failure.

order:%d, mode:0x%x

If the order was 0, the system could not
allocate you 1 single page of memory.
Examine the flags for the allocation care-
fully, and match them up to theGFP_ ones
in include/linux/gfp.h . Things like
GFP_HIGH, and not having GFP_WAIT
and/orGFP_IO set are brutal on the allocator.
If you do such things at a high rate then, yes,
you will exhaust the system of memory. Play
nice!

If it was a normal alloc (e.g.__GFP_WAIT |
__GFP_IO | __GFP_FS), then you have no
memory, and we could free no memory to sat-
isfy your request. Your system is in deep trou-
ble.

If the order was say 3 (or even larger) you prob-
ably have a slightly different problem. Order
n means trying to allocate 2n pages. For ex-
ample, order 3 means 23 = 8 pages. Worse,
these cannot be any old 8 pages, but 8 physi-
cally contiguous pages, aligned on an boundary
of 8 pages. Systems that have been running for
a while inevitably get fragmented to the point
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where large allocs are inevitably going to fail
(i.e. we have lots of smaller blocks free, but
none big enough for that). Possible fixes are:

• Wait for the VM to get better at deal-
ing with fragmentation (do not hold your
breath).

• See if the caller can do without physically
contiguous blocks of RAM.

• Make the caller operate out of a reserved
mempool

Use the printed stack trace to find the asso-
ciated caller requesting the memory. CIFS,
NFS, and gigabit ethernet with jumbo frames
are known offenders. /proc/buddyinfo will give
you more stats on fragmentation. Adding a
show_mem() to __alloc_pages just after
theprintk of the failure is often helpful.

7.2 So who ate all my memory then?

There are two basic answers, either the kernel
ate it, or userspace ate it. If the userspace ate it,
then hopefully the OOM killer will blow them
away. If it was kernel memory, we need two
basic things to diagnose it,/proc/meminfoand
/proc/slabinfo.

If your system has already hung, Alt+Sysrq+M
may give you some some of the same informa-
tion.

If your system has already OOM killed a bunch
of stuff, then it is hard to get any accurate out-
put. Your best bet is to reproduce it, and do
something like this:

while true
do

date

cat /proc/meminfo
cat /proc/slabinfo
ps ef -o user,pid,rss,command
echo ------------------------
sleep 10

done

From a script, preferably running that from a
remote machine and logging it, i.e.:

script log
ssh theserverthatkeepsbreaking
./thatstupidloggingscript

Examination of the logs from the time the ma-
chine got into trouble will often reveal the
source of the problem.

8 Future Direction

Memory reclaim is sure to be a focus area go-
ing forward—the difference in access latencies
between disk and memory make the decisions
about which pages we select to reclaim critical.
We are seeing ever increasing complexity at the
architectural level: SMP systems are becoming
increasingly large at the high end and increas-
ingly common at the desktop, SMT (symmetric
multi-threading) and multi-core CPUs are en-
tering the market at ever lower prices. All of
these place new constraints on memory in rela-
tion to memory contention and locality which
has a knock on effect on memory allocation
and thereby memory reclaim. There is already
much work in progress looking at these issues.

Promoting Reclaimabilty: work in the alloca-
tor to try and group the reclaimable and non-
reclaimable allocations with allocations of the
same type at various levels. This increases
the chance of finding contigious allocations and



40 • Can you handle the pressure? Making Linux bulletproof under load

when they are not available greatly improves
the likelihood of being able to reclaim an ap-
propriate area.

Promoting Locality: work is ongoing to better
target allocations in NUMA systems when un-
der memory pressure. On much NUMA hard-
ware the cost of using non-local memory for
long running tasks is severe both for the perfor-
mance of the affected process and for the sys-
tem as a whole. Promoting some reclaim for
local allocations even when remote memory is
available is being added.

Hotplug: hot-removal of memory requires that
we be able to force reclaim the memory which
is about to be removed. Work is ongoing to
both increase the likelyhood of being able to re-
claim the memory and how to handle the case
where it cannot be reclaimed thorough remap-
ping and relocation.

Targeted Reclaim: memory reclaim currently
only comes in the form of general pressure on
the memory system. The requirements of hot-
plug and others brings a new kind of pressure,
pressure over a specific address range. Work is
ongoing to see how we can apply address spe-
cific pressure both to the normal memory allo-
cator and the slab allocators.

Active Defragmentation: as a last resort, we
can re-order pages within the system in order to
free up physically contiguous segments to use.

9 Conclusion

As we have shown memory reclaim is a com-
plex subject, something of a black art. The cur-
rent memory reclaim system is extremely com-
plex, one huge heuristic guess. Moreover, it
is under pressure from new requirements from
big and small iron alike. NUMA architectures

are moving to the desktop. Hotplug memory is
becoming the norm for larger machines, and is
increasingly important for virtualization. Each
of these requirements brings its own issues to
what already is a difficult, complex subsystem.



Block Devices and Transport Classes: Where are we
going?

James E.J. Bottomley
SteelEye Technology, Inc.

jejb@steeleye.com

Abstract

A transport class is quite simply a device driver
helper library with an associated sysfs compo-
nent. Although this sounds deceptively simple,
in practise it allows fairly large simplifications
in device driver code. Up until recently, trans-
port classes were restricted to be SCSI only
but now they can be made to apply to any de-
vice driver at all (including ones with no actual
transports).

Subsystems that drive sets of different devices
derive the most utility from transport classes.
SCSI is a really good example of this: We have
a core set of APIs which are needed by ev-
ery SCSI driver (whether Parallel SCSI, Fibre
Channel or something even more exotic) to do
command queueing and interpret status codes.
However, there were a large number of ancil-
lary services which don’t apply to the whole of
SCSI, like Domain Validation for Parallel SCSI
or target disconnection/reconnection for Fibre
Channel. Exposing parameters (like period and
offset, for parallel SCSI) viasysfs gives the
user a well known way to control them with-
out having to develop a core SCSI API. Since a
transport class has only asysfs interface and
a driver API it is completely independent of the
SCSI core. This makes the classes arbitrarily
extensible and imposes no limit on how many
may be simultaneously present.

This paper will examine the evolution of the
transport class in SCSI, covering its current
uses in Parallel SCSI (SPI), Fibre Channel (FC)
and other transports (iSCSI and SAS), contrast-
ing it with previous approaches, like CAM, and
follow with a description of how the concept
was freed from the SCSI subsystem and how it
could be applied in other aspects of kernel de-
velopment, particularly block devices.

1 Introduction

Back in 1986, when the T10 committee first
came out with the Small Computer Systems In-
terconnect (SCSI) protocol, it was designed to
run on a single 8 bit parallel bus. A later proto-
col revision: SCSI-2 [1] was released in 1993
which added the ability to double the bus width
and do synchronous data transfers at speeds up
to 10MHz. Finally, in 1995, the next gener-
ation SCSI-3 architecture [5] was introduced.
This latest standard is a constantly evolving
system which includes different transports (like
serial attached SCSI and Fibre Channel) and
enhances the existing parallel SCSI infrastruc-
ture up to Ultra360.

• 41 •
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2 Overview of SCSI

From its earliest days, SCSI has obeyed a com-
mand model, which means that every device
attached to a SCSI controller has a command
driven state mode; however, this state model
tends to differ radically by device type. This
means that most Operating System’s SCSI sub-
system implementations tend to consist of de-
vice drivers (which understand the device com-
mand model) sitting on top of a more generic
command handling mechanism which under-
stands how to send commands to devices. This
split was also reflected in the first standard for
operating system interfaces to SCSI: CAM [6].

2.1 SCSI CAM

The object of CAM, as the name implies was
to provide a set of common access methods that
would be identical across all operating systems.
Looking at figure 1 one can see how the CAM
infrastructure was laid out.
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Driver (ULD)

Mid Layer

Low Layer
Driver (LLD)

User
Kernel

Linux

Tape Disk CD−ROM Pass
Through

SIM

HBA
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Transport

Module
SCSI Interface

HBA Driver

HBA

Figure 1: Illustration of CAM methods with a
comparison to the current Linux SCSI subsys-
tem

The CAM four level infrastructure on the left is
shown against the current Linux three level in-
frastructure. The object of the comparison isn’t

to describe the layers in detail but to show that
they map identically at the peripheral driver
layer and then disconnect over the remaining
ones.

Although CAM provided a good model to fol-
low in the SCSI-2 days, it was very definitely
tied to the parallel SCSI transport that SCSI-2
was based on and didn’t address very well the
needs of the new transport infrastructures like
Fibre Channel. There was an attempt to pro-
duce a new specification taking these into ac-
count (CAM-3) but it never actually managed
to produce a specification.

2.2 SCSI-3 The Next Generation

From about 1995 onwards, there was a move-
ment to revolutionise the SCSI standard [9].
The basic thrust was a new Architecture Model
(called SAM) whereby the documents were
split up into Peripheral Driver command, a pri-
mary core and transport specific standards. The
basic idea was to unbind SCSI from the con-
cept of a parallel bus and make it much more
extensible in terms of transport architectures.
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Figure 2: SAM-3 with its corresponding map-
ping to Linux on the right

The actual standard [8] describes the layout as
depicted in figure 2 which compares almost
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exactly to the layout of the Linux SCSI sub-
system. Unfortunately, the picture isn’t quite
as rosy as this and there are certain places in
the mid-layer, most notably in error handling,
where we still make transport dependent as-
sumptions.

3 Linux SCSI Subsystem

From the preceding it can be seen that the orig-
inal SCSI Subsystem didn’t follow either CAM
or SAM exactly (although the implementation
is much closer to SAM). Although the SCSI
mid layer (modulo error handling) is pretty ef-
ficient now in the way it handles commands,
it still lacks fine grained multi-level control of
devices that CAM allows. However, in spite of
this the property users most want to know about
their devices (what is the maximum speed this
device is communicating to the system) was
lacking even from CAM.

3.1 Things Linux Learned from CAM

The basic thing CAM got right was splitting the
lower layers (see figure 1) into XPRT (generic
command transport) SIM (HBA specific pro-
cessing) and HBA (HBA driver) was heading
in the right direction. However, there were sev-
eral basic faults in the design:

1. Even the XPRT which is supposed to be
a generic command transport had knowl-
edge of parallel SCSI specific parameters.

2. The User wasn’t given a prescribed
method for either reading or altering pa-
rameters they’re interested in (like bus
speed).

3. The SIM part allowed for there being one
unique SIM per HBA driver.

Point 3 looks to be an advantage because it al-
lows greater flexibility for controlling groups of
HBAs according to their capabilities. However,
its disadvantage is failing to prescribe precisely
where the dividing line lies (i.e. since it permits
one SIM per HBA, most driver writers wrote
for exactly that, their own unique SIM).

A second issue for Linux is that the XPRT layer
is actually split between the generic block layer
and the SCSI mid-layer. Obviously, other block
drivers are interested in certain features (like
tags and command queueing) whereas some
(like bus scanning or device identification) are
clearly SCSI specific. Thus, the preferred im-
plementation should also split the XPRT into a
block generic and a SCSI specific piece, with
heavy preference on keeping the SCSI specific
piece as small as possible.

3.2 Recent Evolution

The policy of slimming down SCSI was first
articulated at the Kernel Summit in 2002 [3]
and later refined in 2003 [4]. The idea was to
slim down SCSI as far as possible by moving as
much of its functionality that could be held in
common up to the block layer (the exemplar of
this at the time being tag command queueing).
and to make the mid-layer a small compact
generic command processing layer with plug in
helper libraries to assist the device drivers with
transport and other issues. However, as is the
usual course, things didn’t quite go according
to plan. Another infrastructure was seeping into
SCSI: generic devices andsysfs .

3.3 sysfs

SCSI was the first device driver subsystem to
try to embracesysfs fully. This was done
purely out of selfish reasons: Users were re-
questing extra information which we could ex-
port viasysfs and also, moving to thesysfs
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infrastructure promised to greatly facilitate the
Augean scale cleaning task of converting SCSI
to be hotplug compliant. The way this was done
was to embed a generic device into each of the
SCSI device components (host, target and de-
vice) along with defining a special SCSI bus
type to which the ULDs now attach assysfs
drivers.

However, once the initial infrastructure was in
place, with extra additions that allowed drivers
to export special driver specific parameters, it
was noticed that certain vendor requirements
were causing them to push patches into drivers
that were actually exporting information that
was specific to the actual transport rather than
the driver [11].

Since this export of information fitted the gen-
eral pattern of the “helper libraries” described
above, discussion ensued about how best to
achieve this export in a manner that could be
utilised by all drivers acting for the given trans-
port [12]. And thus, the concept of a Transport
Class was born.

4 Transport Classes

The original concept of a transport class was
that it was an entity which attached to the SCSI
device at three levels (host, target and LUN)
and that it exported properties from these de-
vices straight to the user via thesysfs class
interface. A further refinement was that the
transport class (although it had support from
the mid-layer) had no API that it exported to (or
via) the mid layer (this is essential for allowing
HBA’s that aren’t transport class compliant to
continue to operate; however, it also has the ex-
tremely advantageous property of ensuring that
the transport class services aren’t bounded by
any API of the mid-layer and thus makes them

truly extensible). Figure 3 illustrates the rela-
tionships between transport classes and the rest
of the Linux system.
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Figure 3: SCSI transport classes under Linux

4.1 Implementation

This section describes historical implementa-
tion only, so if you want to know how the
classes function now1 see section 5.3. The
original implementation was designed to export
transport specific parameters, so the code in
the SCSI subsystem was geared around defin-
ing the class and initialising its attribute files at
the correct point in thesysfs tree. However,
once this was done, it was fairly easy to export
an API from the transport class itself that could
make use of these parameters (like Domain Val-
idation for SPI, see below).

The key point was that the interaction between
the mid-layer and the transport class was re-
stricted to the mid-layer providing an API to
get all thesysfs properties initialised and ex-
ported correctly.

1or rather, at the time of writing, which corresponds
to the 2.6.12 kernel
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4.2 Case Study: the SPI transport Class

SPI means SCSI Parallel Interface and is the
new SCSI-3 terminology for the old parallel
bus. In order to ascertain and control the speed
of the bus, there are three essential characteris-
tics: period, offset and width (plus a large num-
ber of minor characteristics that were added as
the SPI standard evolved).

Once the ability to fetch and set these charac-
teristics had been added, it was natural to add
a domain validation [7] capability to the trans-
port class. What domain validation (DV) does
is to verify that the chosen transport character-
istics match the capability of the SCSI trans-
port by attempting to send and receive a set of
prescribed patterns over the bus from the de-
vice and adjust the transport parameters if the
message is garbled As the parallel bus becomes
faster and faster, this sort of line clearing be-
comes essential since just a small kink in the
cable may produce a large number of errors at
the highest transfer speed.

Since the performance of Domain Validation
depends on nothing more than the setting of
SPI transfer parameters, it is an ideal candidate
service to be performed purely within the SPI
transport class. Although domain validation is
most important in the high speed controllers, it
is still useful to the lower speed ones. Further,
certain high speed controllers themselves con-
tain Domain Validation internally adding code
bloat at best and huge potential for incorrect-
ness at worst (the internal Domain Validation
code has proved to be a significant source of
bugs in certain drivers). As an illustration of the
benefit, the conversion of theaic7xxx driver
to the transport class domain validation resulted
in the removal of 1,700 lines of code [2].

4.3 The Fibre Channel Transport Class

Of all the SCSI transport classes in flux at the
moment, the FC class is doing the most to rev-
olutionise the way the operating system sees
the transport. Following a fairly huge program
of modification, the FC transport class is able
to make use of expanded mid-layer interfaces
to cause even non-SCSI ports of the fabric to
appear under the SCSI device tree—even the
usual SCSI device structure is perturbed since
the tree now appears as host/rport/target/device.

The object of this transport class is twofold:

1. Consolidate all services for Fibre Chan-
nel devices which can be held in common
(things like cable pull timers, port scan-
ning), thus slimming down the actual Fi-
bre Channel drivers.

2. Implement a consistent API viasysfs
which all drivers make use of, thus in the-
ory meaning a single SAN management
tool can be used regardless of underlying
HBA hardware.

5 Transport Class Evolution

Looking at what’s happening in the SCSI world
today, it’s clear that the next nascent transport
to hit the Linux Kernel will be the Serial At-
tached SCSI (SAS) one. Its cousin, Serial ATA
(SATA) is already present in both the 2.4 and
2.6 kernels. One of the interesting points about
SAS and SATA is that at the lowest level, they
both share the same bus and packet transport
mechanism (the PHY layer, which basically
represent a physical point to point connection
which may be only part of a broader logical
point to point connection).
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The clear direction here is that SAS should have
two separate transport classes: one for SAS it-
self and one for the PHY, and further that the
PHY transport class (which would control the
physical characteristics of the PHY interface)
should be common between SAS and SATA.

5.1 Multiple Transport Classes per Device

In the old transport class paradigm, each
transport class requires an “anchor” in
the enveloping device structure (for SCSI
we put these intostruct Scsi_Host ,
struct scsi_target , and struct
scsi_device ). However, to attach multiple
transport classes under this paradigm, we’d
have to have multiple such anchors in the
enveloping device which is starting to look
rather inefficient.

The basic anchor that is required is a pointer
to the class and also a list of attributes which
appear as files insysfs , so the solution is to
remove the need for this anchor altogether: the
generic attribute container.

5.2 Generic Attribute Containers

The idea here is to dispense entirely with the
necessity for an anchor within some envelop-
ing structure. Instead, all the necessary com-
ponents and attribute files are allocated sepa-
rately and then matched up to the correspond-
ing generic device (which currently always sits
inside the enveloping structure). The mecha-
nism by which attribute containers operate is
firstly by the pre-registration of a structure that
contains three elements:

1. A pointer to the class,

2. a pointer to the set of class device at-
tributes

3. and a match callback which may be coded
to use subsystem specific knowledge to
determine if a given generic device should
have the class associated with it.

Once this is registered, a set of event triggers
on the generic device must be coded into the
subsystem (of necessity, some of these triggers
are device creation and destruction, which are
used to add and remove the container, but addi-
tional triggers of any type whatever may also be
included). The benefit of these triggers is enor-
mous: the trigger function will be called for all
devices to whom the given class is registered,
so this can be used, for instance, to begin de-
vice configuration. Once the generic attribute
container was in place, it was extremely simple
to build a generic transport class on top of it.

5.3 Generic Transport Classes

Looking at the old SCSI transport classes in the
light of the new attribute containers, it was eas-
ily seen that there are five trigger points:

1. setup (mandatory), where the class device
is created but not yet made visible to the
system.

2. add (mandatory), where the created class
device and its associated attributes are now
made visible insysfs

3. configure (optional), which is possibly
more SCSI-centric; the above two opera-
tions (setup and add) probe the device us-
ing the lowest common transport settings.
Configure means that the device has been
found and identified and is now ready to be
brought up to its maximum capabilities.

4. remove (mandatory), where the class de-
vice should be removed from thesysfs
export preparatory to being destroyed.
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5. destroy (mandatory), called on final last
put of the device to cause the attribute con-
tainer to be deallocated.

All of these apart from configure are essen-
tially standard events that all generic devices
go through. Basically then, a generic trans-
port class is a structure containing three of
the five trigger points (add, configure and
remove; setup and destroy being purely in-
ternally concerned with allocation and deal-
location of the transport class, with no ex-
ternal callback visibility). To make use of
the generic transport container, all the sub-
system has to do is to register the struc-
ture with the three callbacks (which is usually
done in the transport class initialisation rou-
tine) and embed the mandatory trigger points
into the subsystem structure creation routines
astransport_ event _device() .

As a demonstration of the utility of the generic
transport class, the entire SCSI transport in-
frastructure was converted over to the generic
transport class code with no loss of functional-
ity and a significant reduction in lines of code
and virtually no alteration (except for initialisa-
tions) within the three existing SCSI transport
classes.

Finally, because the generic transport class
is built upon the generic attribute containers,
which depend only on thesysfs generic de-
vice, any subsystem or driver which has been
converted to use generic devices may also make
use of generic transport classes.

6 So Where Are We Going?

Although the creation of the generic transport
classes was done for fairly selfish reasons (to
get SAS to fit correctly in the transport frame-
work with two attached classes), the potential

utility of a generic transport infrastructure ex-
tends well beyond SCSI.

6.1 IDE and hdparm

As the ATA standards have evolved [10], the
transport speed and feature support (like Tag
Command Queueing) has also been evolving.

Additionally, with the addition of SATA and
AoE (ATA over Ethernet), IDE is evolving in
the same direction that SCSI did many years
ago (acquiring additional transports), so it be-
gins to make sense to regroup the currently
monolithic IDE subsystem around a core com-
mand subsystem which interacts with multiple
transports.

Currently if you want to see what the transfer
settings of your drive are, you use thehdparm
program, which manipulates those settings via
special ioctls. This same information would
be an ideal candidate for exporting through
sysfs via the generic transport classes.

6.2 Hardware RAID

The kernel today has quite a plethora of hard-
ware RAID drivers; some, likecciss are
present in the block subsystem but the major-
ity are actually presented to the system as SCSI
devices. Almost every one of these has a slew
of special ioctls for configuration, maintenance
and monitoring of the arrays, and almost all of
them comes with their own special packages to
interface to these private ioctls. There has re-
cently been a movement in the standards com-
mittees to unify the management approach (and
even the data format) of RAID arrays, so it
would appear that the time is becoming ripe
for constructing a raid management transport
class that would act as the interface between a
generic management tool and all of the hard-
ware RAID drivers.
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6.3 SAS

As has been mentioned before, the need to have
both a SAS and a PHY class for the same device
was one of the driving reasons for the creation
of the generic transport class. We are also hop-
ing that SAS will be the first SCSI transport to
enter the kernel with a fully fledged transport
class system (both SPI and FC had their trans-
port classes grafted on to them after drivers for
each had been accepted into the kernel, and not
all FC or SPI drivers currently make use of the
capabilities afforded by the transport classes).

Hopefully, the vastly improved functionality
provided to FC drivers by the FC transport
class, with the addition of the concept of the
remote port and transport class driven domain
enumeration will at least have convinced the
major SAS protagonists of the benefits of the
approach. However, the current statement of
the SCSI maintainers has been that a working
SAS transport class is a necessary prerequisite
for inclusion of any SAS driver.

6.4 SCSI Error Handling

One of the last major (and incredibly neces-
sary) re-organisations of SCSI involves clean-
ing up the error handler. Currently, the SCSI
error handler is completely monolithic (i.e. it
applies to every driver) and its philosophy of
operation is still deeply rooted in the old paral-
lel bus, which makes it pretty inappropriate for
a large number of modern transports. Clearly,
the error handler should be transport specific,
and thus it would make a natural candidate for
being in a transport class. However, previously
transport classes took services from the mid-
layer but didn’t provide any services to it (the
provide services only to the LLD). However, an
error handler primarily provides services to the
Mid Layer and an API for handling errors to

the LLD, so it doesn’t quite fit in with the origi-
nal vision for the SCSI transport classes. How-
ever, it does seem that it can be made to con-
form more closely with the generic transport
class, where the error handler classes become
separate from the actual “transport” transport
classes.

User
Kernel

Mid Layer

Block

Application

Transport Class

sg

Error Handler

Block SG

ULD

Transport Class

Error Handler

ULD

LLD
LLD

Figure 4: An illustration of how the error han-
dlers would work as generic transport classes

How this would work is illustrated in figure 4
The arrows represent the concept of “uses the
services of.” The idea essentially is that the
error handler classes would be built on the
generic transport classes but would provide a
service to the mid-layer based on a transport
dependent API. The error handler parameters
would, by virtue of thesysfs component, be
accessible to the user to tweak.

7 Conclusions

The SCSI transport classes began life as helper
libraries to slim down the SCSI subsystem.
However, they subsequently became well de-
fined transport class entities and went on to
spawn generic transport classes which have
utility far beyond the scope of the original re-
quirement.
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Two basic things remain to be done, though:

1. Retool SCSI error handling to be modular
using generic transport classes.

2. Actually persuade someone outside of the
SCSI subsystem to make use of them.
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Abstract

ACPI (Advanced Configuration and Power In-
terface) is an open industry specification es-
tablishing industry-standard interfaces for OS-
directed configuration and power management
on laptops, desktops, and servers.

ACPI enables new power management technol-
ogy to evolve independently in operating sys-
tems and hardware while ensuring that they
continue to work together.

This paper starts with an overview of the
ACPICA architecture. Next a section describes
the implementation architecture in Linux.

Later sections detail recent advances and cur-
rent challenges in Linux/ACPI processor power
management, CPU and memory hot-plug,
legacy plug-and-play configuration, and hot-
keys.

1 ACPI Component Architecture

The purpose of ACPICA, the ACPI Component
Architecture, is to simplify ACPI implementa-
tions for operating system vendors (OSVs) by

providing major portions of an ACPI imple-
mentation in OS-independent ACPI modules
that can be integrated into any operating sys-
tem.

The ACPICA software can be hosted on any
operating system by writing a small and rel-
atively simple OS Services Layer (OSL) be-
tween the ACPI subsystem and the host oper-
ating system.

The ACPICA source code is dual-licensed such
that Linux can share it with other operating sys-
tems, such as FreeBSD.

1.1 ACPICA Overview

ACPICA defines and implements a group of
software components that together create an
implementation of the ACPI specification. A
major goal of the architecture is to isolate all
operating system dependencies to a relatively
small translation or conversion layer (the OS
Services Layer) so that the bulk of the ACPICA
code is independent of any individual operat-
ing system. Therefore, hosting the ACPICA
code on new operating systems requires no
source code modifications within the CA code

• 51 •
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itself. The components of the architecture in-
clude (from the top down):

• A user interface to the power management
and configuration features.

• A power management and power policy
component (OSPM).1

• A configuration management component.

• ACPI-related device drivers (for example,
drivers for the Embedded Controller, SM-
Bus, Smart Battery, and Control Method
Battery).

• An ACPI Core Subsystem component that
provides the fundamental ACPI services
(such as the AML2 interpreter and names-
pace3 management).

• An OS Services Layer for each host oper-
ating system.

1.2 The ACPI Subsystem

The ACPI Subsystem implements the low level
or fundamental aspects of the ACPI specifica-
tion. It includes an AML parser/interpreter,
ACPI namespace management, ACPI table and
device support, and event handling. Since the
ACPICA core provides low-level system ser-
vices, it also requires low-level operating sys-
tem services such as memory management,
synchronization, scheduling, and I/O. To allow
the Core Subsystem to easily interface to any
operating system that provides such services,
the OSL translates OS requests into the native
calls provided by the host operating system.

1OSPM, Operating System directed Power Manage-
ment.

2AML, ACPI Machine Language exported by the
BIOS in ACPI tables, interpreted by the OS.

3The ACPI namespace tracks devices, objects, and
methods accessed by the interpreter.

Operating System

ACPI Core Subsystem

OS Services Layer

ACPI Subsystem

Figure 1: The ACPI Subsystem Architecture

The OS Services Layer is the only component
of the ACPICA that contains code that is spe-
cific to a host operating system. Figure 1 illus-
trates the ACPI Subsystem is composed of the
OSL and the Core.

The ACPI Core Subsystem supplies the ma-
jor building blocks or subcomponents that are
required for all ACPI implementations includ-
ing an AML interpreter, a namespace man-
ager, ACPI event and resource management,
and ACPI hardware support.

One of the goals of the Core Subsystem is to
provide an abstraction level high enough such
that the host OS does not need to understand
or know about the very low-level ACPI details.
For example, all AML code is hidden from the
OSL and host operating system. Also, the de-
tails of the ACPI hardware are abstracted to
higher-level software interfaces.

The Core Subsystem implementation makes no
assumptions about the host operating system
or environment. The only way it can request
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Host Operating System

OS Services
Layer

Core Subsystem

Host/OS
Interface

ACPI/OS
Interface

ACPI Interface

ACPI Subsystem

Figure 2: Interaction between the Architectural
Components

operating system services is via interfaces pro-
vided by the OSL. Figure 2 shows that the OSL
component “calls up” to the host operating sys-
tem whenever operating system services are re-
quired, either for the OSL itself, or on behalf
of the Core Subsystem component. All native
calls directly to the host are confined to the OS
Services Layer, allowing the core to remain OS
independent.

1.3 ACPI Core Subsystem

The Core Subsystem is divided into several log-
ical modules or sub-components. Each mod-
ule implements a service or group of related
services. This section describes each sub-
component and identifies the classes of external
interfaces to the components, the mapping of
these classes to the individual components, and
the interface names. Figure 3 shows the inter-
nal modules of the ACPI Core Subsystem and
their relationship to each other. The AML inter-
preter forms the foundation of the component,
with additional services built upon this founda-
tion.

AML Interpreter

Event
Management

ACPI H/W
Management

ACPI Table
Management

Namespace
Management

Resource
Management

Figure 3: Internal Modules of the ACPI Core
Subsystem

1.4 AML Interpreter

The AML interpreter is responsible for the
parsing and execution of the AML byte code
that is provided by the computer system ven-
dor. The services that the interpreter provides
include:

• AML Control Method Execution

• Evaluation of Namespace Objects

1.5 ACPI Table Management

This component manages the ACPI tables. The
tables may be loaded from the firmware or di-
rectly from a buffer provided by the host oper-
ating system. Services include:

• ACPI Table Parsing

• ACPI Table Verification

• ACPI Table installation and removal

1.6 Namespace Management

The Namespace component provides ACPI
namespace services on top of the AML inter-
preter. It builds and manages the internal ACPI
namespace. Services include:
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• Namespace Initialization from either the
BIOS or a file

• Device Enumeration

• Namespace Access

• Access to ACPI data and tables

1.7 Resource Management

The Resource component provides resource
query and configuration services on top of the
Namespace manager and AML interpreter. Ser-
vices include:

• Getting and Setting Current Resources

• Getting Possible Resources

• Getting IRQ Routing Tables

• Getting Power Dependencies

1.8 ACPI Hardware Management

The hardware manager controls access to the
ACPI registers, timers, and other ACPI–related
hardware. Services include:

• ACPI Status register and Enable register
access

• ACPI Register access (generic read and
write)

• Power Management Timer access

• Legacy Mode support

• Global Lock support

• Sleep Transitions support (S-states)

• Processor Power State support (C-states)

• Other hardware integration: Throttling,
Processor Performance, etc.

1.9 Event Handling

The Event Handling component manages the
ACPI System Control Interrupt (SCI). The sin-
gle SCI multiplexes the ACPI timer, Fixed
Events, and General Purpose Events (GPEs).
This component also manages dispatch of no-
tification and Address Space/Operation Region
events. Services include:

• ACPI mode enable/disable

• ACPI event enable/disable

• Fixed Event Handlers (Installation, re-
moval, and dispatch)

• General Purpose Event (GPE) Handlers
(Installation, removal, and dispatch)

• Notify Handlers (Installation, removal,
and dispatch)

• Address Space and Operation Region
Handlers (Installation, removal, and dis-
patch)

2 ACPICA OS Services Layer
(OSL)

The OS Services Layer component of the archi-
tecture enables the re-hosting or re-targeting of
the other components to execute under different
operating systems, or to even execute in envi-
ronments where there is no host operating sys-
tem. In other words, the OSL component pro-
vides the glue that joins the other components
to a particular operating system and/or environ-
ment. The OSL implements interfaces and ser-
vices using native calls to host OS. Therefore,
an OS Services Layer must be written for each
target operating system.

The OS Services Layer has several roles.



2005 Linux Symposium • 55

1. It acts as the front-end for some OS-to-
ACPI requests. It translates OS requests
that are received in the native OS format
(such as a system call interface, an I/O re-
quest/result segment interface, or a device
driver interface) into calls to Core Subsys-
tem interfaces.

2. It exposes a set of OS-specific application
interfaces. These interfaces translate ap-
plication requests to calls to the ACPI in-
terfaces.

3. The OSL component implements a stan-
dard set of interfaces that perform OS de-
pendent functions (such as memory allo-
cation and hardware access) on behalf of
the Core Subsystem component. These
interfaces are themselves OS-independent
because they are constant across all OSL
implementations. It is the implemen-
tations of these interfaces that are OS-
dependent, because they must use the na-
tive services and interfaces of the host op-
erating system.

2.1 Functional Service Groups

The services provided by the OS Services
Layer can be categorized into several distinct
groups, mostly based upon when each of the
services in the group are required. There are
boot time functions, device load time functions,
run time functions, and asynchronous func-
tions.

Although it is the OS Services Layer that ex-
poses these services to the rest of the operat-
ing system, it is very important to note that the
OS Services Layer makes use of the services of
the lower-level ACPI Core Subsystem to imple-
ment its services.

2.1.1 OS Boot-load-Time Services

Boot services are those functions that must be
executed very early in the OS load process, be-
fore most of the rest of the OS initializes. These
services include the ACPI subsystem initializa-
tion, ACPI hardware initialization, and execu-
tion of the _INI control methods for various de-
vices within the ACPI namespace.

2.1.2 Device Driver Load-Time Services

For the devices that appear in the ACPI names-
pace, the operating system must have a mecha-
nism to detect them and load device drivers for
them. The Device driver load services provide
this mechanism. The ACPI subsystem provides
services to assist with device and bus enumer-
ation, resource detection, and setting device re-
sources.

2.1.3 OS Run-Time Services

The runtime services include most if not all of
the external interfaces to the ACPI subsystem.
These services also include event logging and
power management functions.

2.1.4 Asynchronous Services

The asynchronous functions include interrupt
servicing (System Control Interrupt), Event
handling and dispatch (Fixed events, General
Purpose Events, Notification events, and Oper-
ation Region access events), and error handling.

2.2 OSL Required Functionality

There are three basic functions of the OS Ser-
vices Layer:
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Host Operating System

ACPI Core Subsystem

ACPI Subsystem

OS Services Layer

Requests To Host OS

Figure 4: ACPI Subsystem to Operating Sys-
tem Request Flow

1. Manage the initialization of the entire
ACPI subsystem, including both the OSL
and ACPI Core Subsystems.

2. Translate requests for ACPI services from
the host operating system (and its appli-
cations) into calls to the Core Subsystem
component. This is not necessarily a one-
to-one mapping. Very often, a single op-
erating system request may be translated
into many calls into the ACPI Core Sub-
system.

3. Implement an interface layer that the Core
Subsystem component uses to obtain op-
erating system services. These standard
interfaces (referred to in this document as
the ACPI OS interfaces) include functions
such as memory management and thread
scheduling, and must be implemented us-
ing the available services of the host oper-
ating system.

2.2.1 Requests from ACPI Subsystem to
OS

The ACPI subsystem requests OS services via
the OSL shown in Figure 4. These requests
must be serviced (and therefore implemented)
in a manner that is appropriate to the host oper-
ating system. These requests include calls for
OS dependent functions such as I/O, resource
allocation, error logging, and user interaction.
The ACPI Component Architecture defines in-
terfaces to the OS Services Layer for this pur-
pose. These interfaces are constant (i.e., they
are OS-independent), but they must be imple-
mented uniquely for each target OS.

2.3 ACPICA—more details

The ACPICA APIs are documented in de-
tail in the ACPICA Component Architecture
Programmer Referenceavailable onhttp://
www.intel.com .

The ACPI header files inlinux/include/

acpi/ can also be used as a reference, as can
the ACPICA source code in the directories un-
der linux/drivers/acpi/ .

3 ACPI in Linux

The ACPI specification describes platform reg-
isters, ACPI tables, and operation of the ACPI
BIOS. It also specifies AML (ACPI Machine
Language), which the BIOS exports via ACPI
tables to abstract the hardware. AML is exe-
cuted by an interpreter in the ACPI OS.4

In some cases the ACPI specification describes
the sequence of operations required by the

4ACPI OS: an ACPI-enabled OS, such as Linux.
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Figure 5: Implementation Architecture

ACPI OS—but generally the OS implementa-
tion is left as an exercise to the reader.

There is no platform ACPI compliance test to
assure that platforms and platform BIOS’ are
compliant to the ACPI specification. System
manufacturers assume compliance when avail-
able ACPI-enabled operating systems boot and
function properly on their systems.

Figure 5 shows these ACPI components log-
ically as a layer above the platform specific
hardware and firmware.

The ACPI kernel support centers around the
ACPICA core. ACPICA implements the AML
interpreter as well as other OS-agnostic parts
of the ACPI specification. The ACPICA code
does not implement any policy, that is the realm
of the Linux-specific code. A single file,osl.
c , glues ACPICA to the Linux-specific func-
tions it requires.

The box in Figure 5 labeled “Linux/ACPI” rep-

resents the Linux-specific ACPI code, includ-
ing boot-time configuration.

Optional “ACPI drivers,” such as Button, Bat-
tery, Processor, etc. are (optionally loadable)
modules that implement policy related to those
specific features and devices.

There are about 200 ACPI-related files in the
Linux kernel source tree—about 130 of them
are from ACPICA, and the rest are specific to
Linux.

4 Processor Power management

Processor power management is a key ingre-
dient in system power management. Manag-
ing processor speed and voltage based on uti-
lization is effective in increasing battery life
on laptops, reducing fan noise on desktops,
and lowing power and cooling costs on servers.
This section covers recent and upcoming Linux
changes related to Processor Power Manage-
ment.

4.1 Overview of Processor Power States

But first refer to Figure 6 for this overview of
processor power management states.

1. G0—System Working State. Processor
power management states have meaning
only in the context of a running system—
not when the system is in one of its various
sleep or off-states.

2. Processor C-state: C0 is the executing
CPU power state. C1–Cn are idle CPU
power states used by the Linux idle loop;
no instructions are executed in C1–Cn.
The deeper the C-state, the more power is
saved, but at the cost of higher latency to
enter and exit the C-state.
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Figure 6: ACPI Global, CPU, and Sleep states

3. Processor P-state: Performance states con-
sist of states representing different proces-
sor frequencies and voltages. This pro-
vides an opportunity to OS to dynamically
change the CPU frequency to match the
CPU workload.

As power varies with the square of volt-
age, the voltage-lowing aspect of p-states
is extremely effective at saving power.

4. Processor T-state: Throttle states change
the processor frequency only, leaving the
voltage unchanged.

As power varies directly with frequency,
T-states are less effective than P-states for
saving processor power. On a system with
both P-states and T-states, Linux uses T-
states only for thermal (emergency) throt-
tling.

4.2 Processor Power Saving Example

Table 1 illustrates that high-volume hardware
offers dramatic power saving opportunities to
the OS through these mechanisms.5 Note that
these numbers reflect processor power, and do
not include other system components, such as
the LCD chip-set, or disk drive. Note also that
on this particular model, the savings in the C1,
C2, and C3 states depend on the P-state the
processor was running in when it became idle.
This is because the P-states carry with them re-
duced voltage.

C-State P-State MHz Volts Watts

C0 P0 1600 1.484 24.5
P1 1300 1.388 22
P2 1100 1.180 12
P3 600 0.956 6

C1, C2 from P0 0 1.484 7.3
from P3 0 0.956 1.8

C3 from P0 0 1.484 5.1
from P3 0 0.956 1.1

C4 (any) 0 0.748 0.55

Table 1: C-State and P-State Processor Power

4.3 Recent Changes

4.3.1 P-state driver

The Linux kernel cpufreq infrastructure has
evolved a lot in past few years, becoming
a modular interface which can connect var-
ious vendor specific CPU frequency chang-
ing drivers and CPU frequency governors
which handle the policy part of CPU fre-
quency changes. Recently different vendors
have different technologies, that change the

5Ref: 1600MHz Pentium M processor Data-sheet.
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CPU frequency and the CPU voltage, bring-
ing with it much higher power savings than
simple frequency changes used to bring before.
This combined with reduced CPU frequency-
changing latency (10uS–100uS) provides a op-
portunity for Linux to do more aggressive
power savings by doing a frequent CPU fre-
quency change and monitoring the CPU utiliza-
tion closely.

The P-state feature which was common
in laptops is now becoming common on
servers as well. acpi-cpufreq and
speedstep-centrino drivers have been
changed to support SMP systems. These
drivers can run with i386 and x86-64 kernel on
processors supporting Enhanced Intel Speed-
step Technology.

4.3.2 Ondemand governor

One of the major advantages that recent CPU
frequency changing technologies (like En-
hanced Intel SpeedStep Technology) brings is
lower latency associated with P-state changes
of the order of 10mS. In order to reap maximum
benefit, Linux must perform more-frequent P-
state transitions to match the current processor
utilization. Doing frequent transitions with a
user-level daemon will involve more kernel-to-
user transitions, as well as a substantial amount
of kernel-to-user data transfer. An in-kernel
P-state governor, which dynamically monitors
the CPU usage and makes P-state decisions
based on that information, takes full advantage
of low-latency P-state transitions. The onde-
mand policy governor is one such in-kernel P-
state governor. The basic algorithm employed
with the ondemand (as in Linux-2.6.11) gover-
nor is as follows:

Every X milliseconds
Get the current CPU utilization

If (utilization > UP_THRESHOLD %)
Increase the P-state
to the maximum frequency

Every Y milliseconds
Get the current CPU utilization
If (utilization < DOWN_THRESHOLD %)

Decrease P-state
to next available lower frequency

The ondemand governor, when supported by
the kernel, will be listed in the/sys interface
under scaling_available_governors .
Users can start using the ondemand governor
as the P-state policy governor by writing onto
scaling_governor :

# cat scaling_available_governors
ondemand user-space performance
# echo ondemand > scaling_governor
# cat scaling_governor
ondemand

This sequence must be repeated on all the CPUs
present in the system. Once this is done, the
ondemand governor will take care of adjusting
the CPU frequency automatically, based on the
current CPU usage. CPU usage is based on
theidle_ticks statistics. Note: On systems
that do not support low latency P-state transi-
tions, scaling_governor will not change
to “ondemand” above. A single policy gover-
nor cannot satisfy all of the needs of applica-
tions in various usage scenarios, the ondemand
governor supports a number of tuning parame-
ters. More details about this can be found on
Intel’s web site.6

4.3.3 cpufreq stats

Another addition to cpufreq infrastructure
is the cpufreq stats interface. This interface

6Enhanced Intel Speedstep Technology for the Pen-
tium M Processor.
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appears in /sys/devices/system/cpu/

cpuX/cpufreq/stats , whenever cpufreq is
active. This interface provides the statistics
about frequency of a particular CPU over time.
It provides

• Total number of P-state transitions on this
CPU.

• Amount of time (in jiffies) spent in each
P-state on this CPU.

• And a two-dimensional (n x n) matrix with
value count(i,j) indicating the number of
transitions from Pi to Pj.

• A top -like tool can be built over this in-
terface to show the system wide P-state
statistics.

4.3.4 C-states and SMP

Deeper C-states (C2 and higher) are mostly
used on laptops. And in today’s kernel, C-
states are only supported on UP systems. But,
soon laptop CPUs will be becoming Dual-Core.
That means we need to support C2 and higher
states on SMP systems as well. Support for C2
and above on SMP is in the base kernel now
ready for future generation of processors and
platforms.

4.4 Upcoming Changes

4.4.1 C4, C5, . . .

In future, one can expect more deeper C states
with higher latencies. But, with Linux kernel
jiffies running at 1mS, CPU may not stay long
enough in a C-state to justify entering C4, C5
states. This is where we can use the existing
variable HZ solution and can make use of more

deeper C-states. The idea is to reduce the rate
of timer interrupts (and local APIC interrupts)
when the CPU is idle. That way a CPU can stay
in a low power idle state longer when they are
idle.

4.4.2 ACPI 3.0 based Software coordina-
tion for P and C states

ACPI 3.0 supports having P-state and C-state
domains defined across CPUs. A domain will
include all the CPUs that share P-state and/or
C-state. Using these information from ACPI
and doing the software coordination of P-states
and C-states across their domains, OS can have
much more control over the actual P-states and
C-states and optimize the policies on systems
running with different configuration.

Consider for example a 2-CPU package sys-
tem, with 2 cores on each CPU. Assume the
two cores on the same package share the P-
states (means both cores in the same package
change the frequency at the same time). If
OS has this information, then if there are only
2 threads running, OS, can schedule them on
different cores of same package and move the
other package to lower P-state thereby saving
power without loosing significant performance.

This is a work in progress, to support software
coordination of P-states and C-states, whenever
CPUs share the corresponding P and C states.

5 ACPI support for CPU and Mem-
ory Hot-Plug

Platforms supporting physical hot-add and hot
remove of CPU/Memory devices are entering
the systems market. This section covers a va-
riety of recent changes that went into kernel
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specifically to enable ACPI based platform to
support the CPU and Memory hot-plug tech-
nology.

5.1 ACPI-based Hot-Plug Introduction

The hot-plug implementation can be viewed as
two blocks, one implementing the ACPI spe-
cific portion of the hot-plug and the other non
ACPI specific portion of the hot-plug.

The non-ACPI specific portion of
CPU/Memory hot-plug, which is being
actively worked by the Linux community,
supports what is know as Logical hot-plug.
Logical hot-plug is just removing or adding the
device from the operating system perspective,
but physically the device still stays in the sys-
tem. In the CPU or Memory case, the device
can be made to disappear or appear from the
OS perspective by echoing either 0 or 1 to
the respective online file. Refer to respective
hot-plug paper to learn more about the logical
online/off-lining support of these devices.
The ACPI specific portion of the hot-plug is
what bridges the gap between the platforms
having the physical hot-plug capability to take
advantage of the logical hot-plug in the kernel
to provide true physical hot-plug. ACPI is
not involved in the logical part of on-lining or
off-lining the device.

5.2 ACPI Hot-Plug Architecture

At the module init time we search the ACPI de-
vice namespace. We register a system notify
handler callback on each of the interested de-
vices. In case of CPU hot-plug support we look
for ACPI_TYPE_PROCESSOR_DEVICEand in
case of Memory hot-plug support we look for

PNP0C80 HID7 and in case of container8 we
look for ACPI004 or PNP0A06 or PNP0A05
devices.

When a device is hot-plugged, the core chip-
set or the platform raises the SCI,9 the SCI
handler within the ACPI core clears the GPE
event and runs _Lxx10 method associated with
the GPE. This _Lxx method in turn executes
Notify(XXXX, 0) and notifies the ACPI core,
which in turn notifies the hot-plug modules
callback which was registered during the mod-
ule init time.

When the module gets notified, the module no-
tify callback handler looks for the event code
and takes appropriate action based on the event.
See the module Design section for more details.

5.3 ACPI Hot-Plug support Changes

The following enhancements were made to
support physical Memory and/or CPU device
hot-plug.

• A new acpi_memhotplug.c module
was introduced into the drives/acpi direc-
tory for memory hot-plug.

• The existing ACPI processor driver was
enhanced to support the ACPI hot-
plug notification for the physical inser-
tion/removal of the processor.

• A new container module was introduced
to support hot-plug notification on a ACPI

7HID, Hardware ID.
8A container device captures hardware dependencies,

such as a Processor and Memory sharing a single remov-
able board.

9SCI, ACPI’s System Control Interrupt, appears as
“acpi” in /proc/interrupts .

10_Lxx - L stands for level-sensitive, xx is the GPE
number, e.g. GPE 42 would use _L42 handler.
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container device. The ACPI container de-
vice can contain multiple devices, includ-
ing another container device.

5.4 Memory module

A newacpi_memhotplug.c driver was in-
troduced which adds support for the ACPI
based Memory hot-plug. This driver pro-
vides support for fielding notifications on ACPI
memory device (PNP0C80) which represents
memory ranges that may be hot-added or hot
removed during run time. This driver is en-
abled by enablingCONFIG_ACPI_HOTPLUG_

MEMORYin the con fig file and is required on
ACPI platforms supporting physical Memory
hot plug of the Memory DIMMs (at some plat-
form granularity).

Design: The memory hot-plug module’s de-
vice notify callback gets called when the mem-
ory device is hot-plug plugged. This handler
checks for the event code and for hot-add case,
first checks the device for physical presence
and reads the memory range reported by the
_CRS method and tells the VM about the new
device. The VM which resides outside of ACPI
is responsible for actual addition of this range
to the running kernel. The ACPI memory hot-
plug module does not yet implement the hot-
remove case.

5.5 Processor module

The ACPI processor module can now support
physical CPU hot-plug by enablingCONFIG_

ACPI_HOTPLUG_CPUunder CONFIG_ACPI_

PROCESSOR.

Design: The processor hot-plug module’s de-
vice notify callback gets called when the pro-
cessor device is hot plugged. This handler

checks for the event code and for the hot-
add case, it first creates the ACPI device by
calling acpi_bus_add() andacpi_bus_
scan() and then notifies the user mode agent
by invoking kobject_hotplug() using
the kobj of the ACPI device that got hot-
plugged. The user mode agent in turn on-lines
the corresponding CPU devices by echoing on
to the online file. Theacpi_bus_add()
would invoke the.add method of the proces-
sor module which in turn sets up theapic_id
to logical_id required for logical online.

For the remove case, the notify callback han-
dler in turn notifies the event to the user mode
agent by invoking kobject_hotplug()
using the kobj of the ACPI device that got hot-
plugged. The user mode first off-lines the de-
vice and then echoes 1 on to the eject file un-
der the corresponding ACPI namespace device
file to remove the device physically. This ac-
tion leads to call into the kernel mode rou-
tine calledacpi_bus_trim() which in turn
calls the .remove method of the processor
driver which will tear the ACPI id to logical id
mappings and releases the ACPI device.

5.6 Container module

ACPI defines a Container device with the HID
being ACPI004 or PNP0A06 or PNP0A05.
This device can in turn contain other devices.
For example, a container device can contain
multiple CPU devices and/or multiple Memory
devices. On a platform which supports hotplug
notify on Container device, this driver needs
to be enabled in addition to the above device
specific hotplug drivers. This driver is enabled
by enablingCONFIG_ACPI_CONTAINERin the
config file.

Design: The module init is pretty much the
same as the other driver where in we regis-
ter for the system notify callback on to every
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container device with in the ACPI root names-
pace scope. Thecontainer_notify_
cb() gets called when the container device
is hot-plugged. For the hot-add case it first
creates an ACPI device by callingacpi_
bus_add() andacpi_bus_scan() . The
acpi_bus_scan() which is a recursive call
in turns calls the.add method of the respec-
tive hotplug devices. When theacpi_bus_
scan() returns the container driver notifies
the user mode agent by invokingkobject_
hotplug() using kobj of the container de-
vice. The user mode agent is responsible to
bring the devices to online by echoing on to the
online file of each of those devices.

5.7 Future work

ACPI-based, NUMA-node hotplug support (al-
though there are a little here and there patches
to support this feature from different hardware
vendors). Memory hot-remove support and
handling physical hot-add of memory devices.
This should be done in a manner consistent
with the CPU hotplug—first kernel mode does
setup and notifies user mode, then user mode
brings the device on-line.

6 PNPACPI

The ACPI specification replaces the PnP BIOS
specification. As of this year, on a platform that
supports both specifications, the Linux PNP
ACPI code supersedes the Linux PNP BIOS
code. The ACPI compatible BIOS defines all
PNP devices in its ACPI DSDT.11 Every ACPI
PNP device defines a PNP ID, so the OS can
enumerate this kind of device through the PNP

11DSDT, Differentiated System Description Table, the
primary ACPI table containing AML

pnpacpi_get_resources()
pnpacpi_parse_allocated_resource() /* _CRS */

pnpacpi_disable_resources()
acpi_evaluate_object (_DIS) /* _DIS */

pnpacpi_set_resources()
pnpacpi_build_resource_template() /* _CRS */
pnpacpi_encode_resources() /* _PRS */
acpi_set_current_resources() /* _SRS */

Figure 7: ACPI PNP protocol callback routines

ID. ACPI PNP devices also define some meth-
ods for the OS to manipulate device resources.
These methods include _CRS (return current
resources), _PRS (return all possible resources)
and _SRS (set resources).

The generic Linux PNP layer abstracts
PNPBIOS and ISAPNP, and some drivers use
the interface. A natural thought to add ACPI
PNP support is to provide a PNPBIOS-like
driver to hook ACPI with PNP layer, which is
what the current PNPACPI driver does. Fig-
ure 7 shows three callback routines required for
PNP layer and their implementation overview.
In this way, existing PNP drivers transparently
support ACPI PNP. Currently there are still
some systems whose PNPACPI does not work,
such as the ES7000 system. Boot option
pnpacpi=off can disable PNPACPI.

Compared with PNPBIOS, PNPACPI does not
need to call into 16-bit BIOS. Rather it di-
rectly utilizes the ACPICA APIs, so it is faster
and more OS friendly. Furthermore, PNPACPI
works even under IA64. In the past on IA64,
ACPI-specific drivers such as 8250_acpi driver
were written. But since ACPI PNP works on
all platforms with ACPI enabled, existing PNP
drivers can work under IA64 now, and so the
specific ACPI drivers can be removed. We did
not remove all the drivers yet for the reason of
stabilization (PNPACPI driver must be widely
tested)

Another advantage of ACPI PNP is that it sup-
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ports device hotplug. A PNP device can define
some methods (_DIS, _STA, _EJ0) to support
hotplug. The OS evaluates a device’s _STA
method to determine the device’s status. Every
time the device’s status changes, the device will
receive a notification. Then the OS registered
device notification handler can hot add/remove
the device. An example of PNP hotplug is a
docking station, which generally includes some
PNP devices and/or PCI devices.

In the initial implementation of ACPI PNP, we
register a default ACPI driver for all PNP de-
vices, and the driver will hook the ACPI PNP
device to PNP layer. With this implementation,
adding an ACPI PNP device will automatically
put the PNP device into Linux PNP layer, so the
driver is hot-pluggable. Unfortunately, the fea-
ture conflicted with some specific ACPI drivers
(such as 8250_acpi), so we removed it. We will
reintroduce the feature after the specific ACPI
drivers are removed.

7 Hot-Keys

Keys and buttons on ACPI-enabled systems
come in three flavors:

1. Keyboard keys, handled by the keyboard
driver/Linux input sub-system/X-window
system. Some platforms add additional
keys to the keyboard hardware, and the
input sub-system needs to be augmented
to understand them through utilities to
map scan-codes to characters, or though
model-specific keyboard drivers.

2. Power, Sleep, and Lid buttons. These
three buttons are fully described by the
ACPI specification. The kernel’s ACPI
button.c driver sends these events to user-
space via/proc/acpi/event . A user-
space utility such asacpid(8) is re-
sponsible for deciding what to do with

them. Typically shutdown is invoked on
power button events, and suspend is in-
voked for sleep or lid button events.

3. The “other” keys are generally called “hot-
keys,” and have icons on them describing
various functions such as display output
switching, LCD brightness control, WiFi
radio, audio volume control etc.

Hot-keys may be implemented in a variety of
ways, even within the same platform.

• Full BIOS control: Here hot-keys trigger
an SMI, and the SMM BIOS12 will handle
everything. Using this method, the hot-
key is invisible to the kernel—to the OS
they are effectively done “in hardware.”

The advantage is that the buttons will do
their functions successfully, even in the
presence of an ignorant or broken OS.

The disadvantage is that the OS is com-
pletely un-aware that these functions are
occurring and thus has no opportunity
to optimize its policies. Also, as the
SMI/SMM is shipped by the OEM in the
BIOS, users are unable to either fix it when
it is broken, or customize it in any way.

Some systems include this SMI-based hot-
key mechanism, but disable it when an
ACPI-enabled OS boots and puts the sys-
tem into ACPI-mode.

• Self-contained AML methods: from a
user’s—even a kernel programmer’s—
point of view, method is analogous to the
full-BIOS control method above. The OS
is is un-aware that the button is pressed
and what the button does. However, the
OS actually supplies the mechanics for

12SMI, System Management Interrupt; SMM, System
Management Mode—an interrupt that sends the proces-
sor directly into BIOS firmware.
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this kind of button to work, It would
not work if the OS’s interrupts and ACPI
AML interpreter were not available.

Here a GPE13 causes an ACPI interrupt.
The ACPI sub-system responds to the in-
terrupt, decodes which GPE caused it, and
vectors to the associated BIOS-supplied
GPE handler (_Lxx/_Exx/_Qxx). The
handler is supplied by the BIOS in AML,
and the kernel’s AML interpreter make
it run, but the OS is not informed about
what the handler does. The handler in this
scenario is hard-coded to tickle whatever
hardware is necessary to to implement the
button’s function.

• Event based: This is a platform-specific
method. Each hot-key event triggers a cor-
responding hot-key event from/proc/

acpi/event to notify user space dae-
mon, such asacpid(8) . Then, acpid
must execute corresponding AML meth-
ods for hot-key function.

• Polling based: Another non-standard im-
plementation. Each hot-key pressing
will trigger a polling event from/proc/

acpi/event to notify user space daemon
acpid to query the hot-key status. Then
acpid should call related AML methods.

Today there are several platform specific
“ACPI” drivers in the kernel tree such
as asus_acpi.c , ibm_acpi.c , and
toshiba_acpi.c , and there are even more
of this group out-of-tree. The problem with
these drivers is that they work only for the
platforms they’re designed for. If you don’t
have that platform, it doesn’t help you. Also,
the different drivers perform largely the same
functions.

There are many different platform vendors,
and so producing and supporting a platform-

13GPE, General Purpose Event.

specific driver for every possible vendor is not a
good strategy. So this year several efforts have
been made to unify some of this code, with the
goal that the kernel contain less code that works
on more platforms.

7.1 ACPI Video Control Driver

The ACPI specification includes an ap-
pendix describing ACPI Extensions for Display
Adapters. This year, Bruno Ducrot created the
initial acpi/video.c driver to implement it.

This driver registers notify handlers on the
ACPI video device to handle events. It also ex-
ports files in/proc for manual control.

The notify handlers in the video driver are suf-
ficient on many machines to make the dis-
play control hot-keys work. This is because
the AML GPE handlers associated with these
buttons simply issue a Notify() event on the
display device, and if thevideo.c driver is
loaded and registered on that device, it receives
the event and invokes the AML methods asso-
ciated with the request via the ACPI interpreter.

7.2 Generic Hot-Key Driver

More recently, Luming Yu created a generic
hot-key driver with the goal to factor the
common code out of the platform-specific
drivers. This driver is intended to support two
non-standard hot-key implementations—event-
based and polling-based.

The idea is that configurable interfaces can be
used to register mappings between event num-
ber and GPEs associated with hot-keys, and
mappings between event number and AML
methods, then we don’t need the platform-
specific drivers.
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Here the user-space daemon, acpid, needs to is-
sue a request to an interface for the execution of
those AML methods, upon receiving a specific
hot-key GPE. So, the generic hot-key driver im-
plements the following interfaces to meet the
requirements of non-standard hot-key.

• Event based configure interface,/proc/

acpi/hotkey/event_config .

– Register mappings of event number
to hot-key GPE.

– Register ACPI handle to install no-
tify handler for hot-key GPE.

– Register AML methods associated
with hot-key GPE.

• Polling based configure interface,/proc/

acpi/hotkey/poll_config .

– Register mappings of event number
to hot-key polling GPE.

– Register ACPI handle to install no-
tify handler for hot-key polling GPE.

– Register AML methods associated
with polling GPE

– Register AML methods associated
with hot-key event.

• Action interface,/proc/acpi/hotkey/

action .

– Once acpid knows which event is
triggered, it can issue a request to
the action interface with arguments
to call corresponding AML methods.

– For polling based hot-key, once
acpid knows the polling event trig-
gered, it can issue a request to the ac-
tion interface to call polling method,
then it can get hot-key event number
according to the results from polling
methods. Then, acpid can issue an-
other request to action interface to

invoke right AML methods for that
hot-key function.

The current usage model for this driver requires
some hacking—okay for programmers, but not
okay for distributors. Before using the generic
hot-key driver for a specific platform, you need
to figure out how vendor implemented hot-key
for it. If it just belongs to the first two standard
classes, the generic hot-key driver is useless.
Because, the hot-key function can work without
any hot-key driver including this generic one.
Otherwise, you need to flow these steps.

• Disassemble DSDT.

• Figure out the AML method of hot-key
initialization.

• Observing /proc/acpi/event to find
out the corresponding GPE associated
with each hot-key.

• Figure out the specific AML methods as-
sociated with each hot-key GPE.

• After collecting sufficient information,
you can configure them through interfaces
of event_config , poll_config .

• Adjust scripts for acpid to issue right com-
mand to action interface.

The hope is that this code will evolve into
something that consolidates, or at least miti-
gates a potential explosion in platform-specific
drivers. But to reach that goal, it will need
to be supportable without the complicated ad-
ministrator incantations that it requires today.
The current thinking is that the additions of
a quirks table for configuration may take this
driver from prototype to something that “just
works” on many platforms.
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Abstract

The ext2 and ext3 filesystems on LinuxR© are
used by a very large number of users. This
is due to its reputation of dependability, ro-
bustness, backwards and forwards compatibil-
ity, rather than that of being the state of the
art in filesystem technology. Over the last few
years, however, there has been a significant
amount of development effort towards making
ext3 an outstanding filesystem, while retaining
these crucial advantages. In this paper, we dis-
cuss those features that have been accepted in
the mainline Linux 2.6 kernel, including direc-
tory indexing, block reservation, and online re-
sizing. We also discuss those features that have
been implemented but are yet to be incorpo-
rated into the mainline kernel: extent maps,
delayed allocation, and multiple block alloca-
tion. We will then examine the performance
improvements from Linux 2.4 ext3 filesystem
to Linux 2.6 ext3 filesystem using industry-
standard benchmarks features. Finally, we will
touch upon some potential future work which is
still under discussion by the ext2/3 developers.

1 Introduction

Although the ext2 filesystem[4] was not the
first filesystem used by Linux and while other
filesystems have attempted to lay claim to be-
ing the native Linux filesystem (for example,
when Frank Xia attempted to rename xiafs to
linuxfs), nevertheless most would consider the
ext2/3 filesystem as most deserving of this dis-
tinction. Why is this? Why have so many sys-
tem administrations and users put their trust in
the ext2/3 filesystem?

There are many possible explanations, includ-
ing the fact that the filesystem has a large and
diverse developer community. However, in
our opinion, robustness (even in the face of
hardware-induced corruption) and backwards
compatibility are among the most important
reasons why the ext2/3 filesystem has a large
and loyal user community. Many filesystems
have the unfortunate attribute of beingfrag-
ile. That is, the corruption of a single, unlucky,
block can be magnified to cause a loss of far
larger amounts of data than might be expected.
A fundamental design principle of the ext2/3
filesystem is to avoid fragile data structures by
limiting the damage that could be caused by the
loss of a single critical block.

• 69 •
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This has sometimes led to the ext2/3 filesys-
tem’s reputation of being a little boring, and
perhaps not the fastest or the most scalable
filesystem on the block, but which is one of the
most dependable. Part of this reputation can
be attributed to the extremely conservative de-
sign of the ext2 filesystem [4], which had been
extended to add journaling support in 1998,
but which otherwise had very few other mod-
ern filesystem features. Despite its age, ext3
is actually growing in popularity among enter-
prise users/vendors because of its robustness,
good recoverability, and expansion characteris-
tics. The fact thate2fsck is able to recover
from very severe data corruption scenarios is
also very important to ext3’s success.

However, in the last few years, the ext2/3 de-
velopment community has been working hard
to demolish the first part of this common wis-
dom. The initial outline of plans to “modern-
ize” the ext2/3 filesystem was documented in a
2002 Freenix Paper [15]. Three years later, it is
time to revisit those plans, see what has been
accomplished, what still remains to be done,
and what further extensions are now under con-
sideration by the ext 2/3 development commu-
nity.

This paper is organized into the following sec-
tions. First, we describe about those fea-
tures which have already been implemented
and which have been integrated into the main-
line kernel in Section 2. Second, we discuss
those features which have been implemented,
but which have not yet been integrated in main-
line in Section 3 and Section 4. Next, we ex-
amine the performance improvements on ext3
filesystem during the last few years in Sec-
tion 5. Finally, we will discuss some potential
future work in Section 6.

2 Features found in Linux 2.6

The past three years have seen many discus-
sions of ext2/3 development. Some of the
planned features [15] have been implemented
and integrated into the mainline kernel during
these three years, including directory indexing,
reservation based block allocation, online re-
sizing, extended attributes, large inode support,
and extended attributes in large inode. In this
section, we will give an overview of the design
and the implementation for each feature.

2.1 Directory indexing

Historically, ext2/3 directories have used a sim-
ple linked list, much like the BSD Fast Filesys-
tem. While it might be expected that the
O(n) lookup times would be a significant per-
formance issue, the Linux VFS-level direc-
tory cache mitigated the O(n) lookup times for
many common workloads. However, ext2’s
linear directory structure did cause significant
performance problems for certain applications,
such as web caches and mail systems using the
Maildir format.

To address this problem, various ext2 develop-
ers, including Daniel Phillips, Theodore Ts’o,
and Stephen Tweedie, discussed using a B-tree
data structure for directories. However, stan-
dard B-trees had numerous characteristics that
were at odds with the ext2 design philosophy of
simplicity and robustness. For example, XFS’s
B-tree implementation was larger than all of
ext2 or ext3’s source files combined. In addi-
tion, users of other filesystems using B-trees
had reported significantly increased potential
for data loss caused by the corruption of a high-
level node in the filesystem’s B-tree.

To address these concerns, we designed a rad-
ically simplified tree structure that was specifi-
cally optimized for filesystem directories[10].
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This is in contrast to the approach used by
many other filesystems, including JFS, Reis-
erfs, XFS, and HFS, which use a general-
purpose B-tree. Ext2’s scheme, which we
dubbed “HTree,” uses 32-bit hashes for keys,
where each hash key references a range of en-
tries stored in a leaf block. Since internal
nodes are only 8 bytes, HTrees have a very
high fanout factor (over 500 blocks can be ref-
erenced using a 4K index block), two levels of
index nodes are sufficient to support over 16
million 52-character filenames. To further sim-
plify the implementation, HTrees are constant
depth (either one or two levels). The combina-
tion of the high fanout factor and the use of a
hash of the filename, plus a filesystem-specific
secret to serve as the search key for the HTree,
avoids the need for the implementation to do
balancing operations.

We maintain forwards compatibility in old ker-
nels by clearing theEXT3_INDEX_FL when-
ever we modify a directory entry. In order to
preserve backwards compatibility, leaf blocks
in HTree are identical to old-style linear di-
rectory blocks, and index blocks are prefixed
with an 8-byte data structure that makes them
appear to non-HTree kernels as deleted direc-
tory entries. An additional advantage of this
extremely aggressive attention towards back-
wards compatibility is that HTree directories
are extremely robust. If any of the index nodes
are corrupted, the kernel or the filesystem con-
sistency checker can find all of the directory en-
tries using the traditional linear directory data
structures.

Daniel Phillips created an initial implementa-
tion for the Linux 2.4 kernel, and Theodore
Ts’o significantly cleaned up the implementa-
tion and merged it into the mainline kernel dur-
ing the Linux 2.5 development cycle, as well
as implementing e2fsck support for the HTree
data structures. This feature was extremely
well received, since for very large directories,

performance improvements were often better
by a factor of 50–100 or more.

While the HTree algorithm significantly im-
proved lookup times, it could cause some per-
formance regressions for workloads that used
readdir() to perform some operation of all
of the files in a large directory. This is caused
by readdir() returning filenames in a hash-
sorted order, so that reads from the inode table
would be done in a random order. This perfor-
mance regression can be easily fixed by mod-
ifying applications to sort the directory entries
returned byreaddir() by inode number. Al-
ternatively, anLD_PRELOADlibrary can be
used, which intercepts calls toreaddir()
and returns the directory entries in sorted order.

One potential solution to mitigate this perfor-
mance issue, which has been suggested by
Daniel Phillips and Andreas Dilger, but not yet
implemented, involves the kernel choosing free
inodes whose inode numbers meet a property
that groups the inodes by their filename hash.
Daniel and Andreas suggest allocating the in-
ode from a range of inodes based on the size
of the directory, and then choosing a free in-
ode from that range based on the filename hash.
This should in theory reduce the amount of
thrashing that results when accessing the inodes
referenced in the directory in readdir order. In
it is not clear that this strategy will result in a
speedup, however; in fact it could increase the
total number of inode blocks that might have
to be referenced, and thus make the perfor-
mance ofreaddir() + stat() workloads
worse. Clearly, some experimentation and fur-
ther analysis is still needed.

2.2 Improving ext3 scalability

The scalability improvements in the block layer
and other portions of the kernel during 2.5
development uncovered a scaling problem for
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ext3/JBD under parallel I/O load. To address
this issue, Alex Tomas and Andrew Morton
worked to remove a per-filesystem superblock
lock (lock_super() ) from ext3 block allo-
cations [13].

This was done by deferring the filesystem’s
accounting of the number of free inodes and
blocks, only updating these counts when they
are needed bystatfs() or umount() sys-
tem call. This lazy update strategy was en-
abled by keeping authoritative counters of the
free inodes and blocks at the per-block group
level, and enabled the replacement of the
filesystem-widelock_super() with fine-
grained locks. Since a spin lock for every
block group would consume too much mem-
ory, a hashed spin lock array was used to pro-
tect accesses to the block group summary in-
formation. In addition, the need to use these
spin locks was reduced further by using atomic
bit operations to modify the bitmaps, thus al-
lowing concurrent allocations within the same
group.

After addressing the scalability problems in
the ext3 code proper, the focus moved to the
journal (JBD) routines, which made exten-
sive use of the big kernel lock (BKL). Alex
Tomas and Andrew Morton worked together
to reorganize the locking of the journaling
layer in order to allow as much concurrency
as possible, by using a fine-grained locking
scheme instead of using the BKL and the per-
filesystem journal lock. This fine-grained lock-
ing scheme uses a new per-bufferhead lock
(BH_JournalHead ), a new per-transaction
lock (t_handle_lock ) and several new per-
journal locks (j_state_lock , j_list_
lock , and j_revoke_lock ) to protect the
list of revoked blocks. The locking hierarchy
(to prevent deadlocks) for these new locks is
documented in theinclude/linux/jbd.
h header file.

The final scalability change that was needed

was to remove the use ofsleep_on() (which
is only safe when called from within code run-
ning under the BKL) and replacing it with the
newwait_event() facility.

These combined efforts served to improve
multiple-writer performance on ext3 notice-
ably: ext3 throughput improved by a factor
of 10 on SDET benchmark, and the context
switches are dropped significantly [2, 13].

2.3 Reservation based block allocator

Since disk latency is the key factor that affects
the filesystem performance, modern filesys-
tems always attempt to layout files on a filesys-
tem contiguously. This is to reduce disk head
movement as much as possible. However, if
the filesystem allocates blocks on demand, then
when two files located in the same directory are
being written simultaneously, the block alloca-
tions for the two files may end up getting inter-
leaved. To address this problem, some filesys-
tems use the technique ofpreallocation, by an-
ticipating which files will likely need allocate
blocks and allocating them in advance.

2.3.1 Preallocation background

In ext2 filesystem, preallocation is performed
on the actual disk bitmap. When a new disk
data block is allocated, the filesystem internally
preallocates a few disk data blocks adjacent to
the block just allocated. To avoid filling up
filesystem space with preallocated blocks too
quickly, each inode is allowed at most seven
preallocated blocks at a time. Unfortunately,
this scheme had to be disabled when journal-
ing was added to ext3, since it is incompatible
with journaling. If the system were to crash be-
fore the unused preallocated blocks could be re-
claimed, then during system recovery, the ext3
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journal would replay the block bitmap update
change. At that point the inode’s block map-
ping could end up being inconsistent with the
disk block bitmap. Due to the lack of full
forced fsck for ext3 to return the preallocated
blocks to the free list, preallocation was dis-
abled when the ext3 filesystem was integrated
into the 2.4 Linux kernel.

Disabling preallocation means that if multiple
processes attempted to allocate blocks to two
files in the same directory, the blocks would be
interleaved. This was a known disadvantage of
ext3, but this short-coming becomes even more
important with extents (see Section 3.1) since
extents are far more efficient when the file on
disk is contiguous. Andrew Morton, Mingming
Cao, Theodore Ts’o, and Badari Pulavarty ex-
plored various possible ways to add preallo-
cation to ext3, including the method that had
been used for preallocation in ext2 filesystem.
The method that was finally settled upon was a
reservation-based design.

2.3.2 Reservation design overview

The core idea of the reservation based alloca-
tor is that for every inode that needs blocks, the
allocator reserves a range of blocks for that in-
ode, called a reservation window. Blocks for
that inode are allocated from that range, instead
of from the whole filesystem, and no other in-
ode is allowed to allocate blocks in the reserva-
tion window. This reduces the amount of frag-
mentation when multiple files are written in the
same directory simultaneously. The key differ-
ence between reservation and preallocation is
that the blocks are only reserved in memory,
rather than on disk. Thus, in the case the system
crashes while there are reserved blocks, there is
no inconsistency in the block group bitmaps.

The first time an inode needs a new block,
a block allocation structure, which describes

the reservation window information and other
block allocation related information, is allo-
cated and linked to the inode. The block allo-
cator searches for a region of blocks that fulfills
three criteria. First, the region must be near the
ideal “goal” block, based on ext2/3’s existing
block placement algorithms. Secondly, the re-
gion must not overlap with any other inode’s
reservation windows. Finally, the region must
have at least one free block. As an inode keeps
growing, free blocks inside its reservation win-
dow will eventually be exhausted. At that point,
a new window will be created for that inode,
preferably right after the old with the guide of
the “goal” block.

All of the reservation windows are indexed via
a per-filesystem red-black tree so the block al-
locator can quickly determine whether a par-
ticular block or region is already reserved by a
particular inode. All operations on that tree are
protected by a per-filesystem global spin lock.

Initially, the default reservation window size
for an inode is set to eight blocks. If the reser-
vation allocator detects the inode’s block allo-
cation pattern to be sequential, it dynamically
increases the window size for that inode. An
application that knows the file size ahead of the
file creation can employ an ioctl command to
set the window size to be equal to the antici-
pated file size in order to attempt to reserve the
blocks immediately.

Mingming Cao implemented this reservation
based block allocator, with help from Stephen
Tweedie in converting the per-filesystem reser-
vation tree from a sorted link list to a red-black
tree. In the Linux kernel versions 2.6.10 and
later, the default block allocator for ext3 has
been replaced by this reservation based block
allocator. Some benchmarks, such as tiobench
and dbench, have shown significant improve-
ments on sequential writes and subsequent se-
quential reads with this reservation-based block
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allocator, especially when a large number of
processes are allocating blocks concurrently.

2.3.3 Future work

Currently, the reservation window only lasts
until the last process writing to that file closes.
At that time, the reservation window is released
and those blocks are available for reservation or
allocation by any other inode. This is necessary
so that the blocks that were reserved can be re-
leased for use by other files, and to avoid frag-
mentation of the free space in the filesystem.

However, some files, such as log files and
UNIX R© mailbox files, have aslow growthpat-
tern. That is, they grow slowly over time, by
processes appending a small amount of data,
and then closing the file, over and over again.
For these files, in order to avoid fragmentation,
it is necessary that the reservation window be
preserved even after the file has been closed.

The question is how to determine which files
should be allowed to retain their reservation
window after the last close. One possible so-
lution is to tag the files or directories with an
attribute indicating that they contain files that
have a slow growth pattern. Another possibil-
ity is to implement heuristics that can allow the
filesystem to automatically determines which
file seems to have a slow growth pattern, and
automatically preserve the reservation window
after the file is closed.

If reservation windows can be preserved in this
fashion, it will be important to also implement
a way for preserved reservation windows to be
reclaimed when the filesystem is fully reserved.
This prevents an inode that fails to find a new
reservation from falling back to no-reservation
mode too soon.

2.4 Online resizing

The online resizing feature was originally de-
veloped by Andreas Dilger in July of 1999 for
the 2.0.36 kernel. The availability of a Logi-
cal Volume Manager (LVM), motivated the de-
sire for on-line resizing, so that when a logical
volume was dynamically resized, the filesys-
tem could take advantage of the new space.
This ability to dynamically resize volumes and
filesystems is very useful in server environ-
ments, where taking downtime for unmounting
a filesystem is not desirable. After missing the
code freeze for the 2.4 kernel, the ext2online
code was finally included into the 2.6.10 ker-
nel and e2fsprogs 1.36 with the assistance of
Stephen Tweedie and Theodore Ts’o.

2.4.1 The online resizing mechanism

The online resizing mechanism, despite its
seemingly complex task, is actually rather sim-
ple in its implementation. In order to avoid a
large amount of complexity it is only possible
to increase the size of a filesystem while it is
mounted. This addresses the primary require-
ment that a filesystem that is (nearly) full can
have space added to it without interrupting the
use of that system. The online resizing code de-
pends on the underlying block device to handle
all aspects of its own resizing prior to the start
of filesystem resizing, and does nothing itself
to manipulate the partition tables of LVM/MD
block devices.

The ext2/3 filesystem is divided into one or
more block allocation groups of a fixed size,
with possibly a partial block group at the end
of the filesystem [4]. The layout of each block
group (where the inode and block allocation
bitmaps and the inode table are stored) is kept
in the group descriptor table. This table is
stored at the start of at the first block group, and
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consists of one or more filesystem blocks, de-
pending on the size of the filesystem. Backup
copies of the group descriptor table are kept in
more groups if the filesystem is large enough.

There are three primary phases by which a
filesystem is grown. The first, and simplest, is
to expand the last partial block group (if any)
to be a full block group. The second phase is
to add a new block group to an existing block
in the group descriptor table. The third phase
is to add a new block to the group descriptor
table and add a new group to that block. All
filesystem resizes are done incrementally, go-
ing through one or more of the phases to add
free space to the end of the filesystem until the
desired size is reached.

2.4.2 Resizing within a group

For the first phase of growth, the online resizing
code starts by briefly locking the superblock
and increasing the total number of filesystem
blocks to the end of the last group. All of the
blocks beyond the end of the filesystem are al-
ready marked as “in use” by the block bitmap
for that group, so they must be cleared. This
is accomplished by the same mechanism that
is used when deleting a file—ext3_free_
blocks() and can be done without lock-
ing the whole filesystem. The online resizer
simply pretends that it is deleting a file that
had allocated all of the blocks at the end of
the filesystem, andext3_free_blocks()
handles all of the bitmap and free block count
updates properly.

2.4.3 Adding a new group

For the second phase of growth, the online
resizer initializes the next group beyond the

end of the filesystem. This is easily done be-
cause this area is currently unused and un-
known to the filesystem itself. The block
bitmap for that group is initialized as empty,
the superblock and group descriptor backups (if
any) are copied from the primary versions, and
the inode bitmap and inode table are initialized.
Once this has completed successfully the on-
line resizing code briefly locks the superblock
to increase the total and free blocks and inodes
counts for the filesystem, add a new group to
the end of the group descriptor table, and in-
crease the total number of groups in the filesys-
tem by one. Once this is completed the backup
superblock and group descriptors are updated
in case of corruption of the primary copies. If
there is a problem at this stage, the next e2fsck
will also update the backups.

The second phase of growth will be repeated
until the filesystem has fully grown, or the last
group descriptor block is full. If a partial group
is being added at the end of the filesystem the
blocks are marked as “in use” before the group
is added. Both first and second phase of growth
can be done on any ext3 filesystem with a sup-
ported kernel and suitable block device.

2.4.4 Adding a group descriptor block

The third phase of growth is needed periodi-
cally to grow a filesystem over group descrip-
tor block boundaries (at multiples of 16 GB for
filesystems with 4 KB blocksize). When the
last group descriptor block is full, a new block
must be added to the end of the table. How-
ever, because the table is contiguous at the start
of the first group and is normally followed im-
mediately by the block and inode bitmaps and
the inode table, the online resize code needs
a bit of assistance while the filesystem is un-
mounted (offline) in order to maintain compat-
ibility with older kernels. Either atmke2fs
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time, or for existing filesystems with the assis-
tance of theext2prepare command, a small
number of blocks at the end of the group de-
scriptor table are reserved for online growth.
The total amount of reserved blocks is a tiny
fraction of the total filesystem size, requiring
only a few tens to hundreds of kilobytes to grow
the filesystem 1024-fold.

For the third phase, it first gets the next re-
served group descriptor block and initializes a
new group and group descriptor beyond the end
of the filesystem, as is done in second phase of
growth. Once this is successful, the superblock
is locked while reallocating the array that in-
dexes all of the group descriptor blocks to add
another entry for the new block. Finally, the
superblock totals are updated, the number of
groups is increased by one, and the backup su-
perblock and group descriptors are updated.

The online resizing code takes advantage of the
journaling features in ext3 to ensure that there
is no risk of filesystem corruption if the resize
is unexpectedly interrupted. The ext3 journal
ensures strict ordering and atomicity of filesys-
tem changes in the event of a crash—either the
entire resize phase is committed or none of it
is. Because the journal has no rollback mech-
anism (except by crashing) the resize code is
careful to verify all possible failure conditions
prior to modifying any part of the filesystem.
This ensures that the filesystem remains valid,
though slightly smaller, in the event of an error
during growth.

2.4.5 Future work

Future development work in this area involves
removing the need to do offline filesystem
manipulation to reserve blocks before doing
third phase growth. The use of Meta Block
Groups [15] allows new groups to be added to

the filesystem without the need to allocate con-
tiguous blocks for the group descriptor table.
Instead the group descriptor block is kept in the
first group that it describes, and a backup is kept
in the second and last group for that block. The
Meta Block Group support was first introduced
in the 2.4.25 kernel (Feb. 2004) so it is reason-
able to think that a majority of existing systems
could mount a filesystem that started using this
when it is introduced.

A more complete description of the online
growth is available in [6].

2.5 Extended attributes

2.5.1 Extended attributes overview

Many new operating system features (such as
access control lists, mandatory access con-
trols, Posix Capabilities, and hierarchical stor-
age management) require filesystems to be able
associate a small amount of custom metadata
with files or directories. In order to implement
support for access control lists, Andreas Gru-
enbacher added support for extended attributes
to the ext2 filesystems. [7]

Extended attributes as implemented by Andreas
Gruenbacher are stored in a single EA block.
Since a large number of files will often use the
same access control list, as inherited from the
directory’s default ACL as an optimization, the
EA block may be shared by inodes that have
identical extended attributes.

While the extended attribute implementation
was originally optimized for use to store ACL’s,
the primary users of extended attributes to date
have been the NSA’s SELinux system, Samba
4 for storing extended attributes from Windows
clients, and the Lustre filesystem.

In order to store larger EAs than a single
filesystem block, work is underway to store
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large EAs in another EA inode referenced from
the original inode. This allows many arbitrary-
sized EAs to be attached to a single file, within
the limitations of the EA interface and what
can be done inside a single journal transaction.
These EAs could also be accessed as additional
file forks/streams, if such an API were added to
the Linux kernel.

2.5.2 Large inode support and EA-in-inode

Alex Tomas and Andreas Dilger implemented
support for storing the extended attribute in an
expanded ext2 inode, in preference to using a
separate filesystem block. In order to do this,
the filesystem must be created using an inode
size larger than the default 128 bytes. Inode
sizes must be a power of two and must be no
larger than the filesystem block size, so for a
filesystem with a 4 KB blocksize, inode sizes
of 256, 512, 1024, 2048, or 4096 bytes are
valid. The 2 byte field starting at offset 128
(i_extra_size ) of each inode specifies the
starting offset for the portion of the inode that
can be used for storing EA’s. Since the starting
offset must be a multiple of 4, and we have not
extended the fixed portion of the inode beyond
i_extra_size , currentlyi_extra_size
is 4 for all filesystems with expanded inodes.
Currently, all of the inode past the initial 132
bytes can be used for storing EAs. If the user at-
tempts to store more EAs than can fit in the ex-
panded inode, the additional EAs will be stored
in an external filesystem block.

Using the EA-in-inode, a very large (seven-fold
improvement) difference was found in some
Samba 4 benchmarks, taking ext3 from last
place when compared to XFS, JFS, and Reis-
erfs3, to being clearly superior to all of the
other filesystems for use in Samba 4. [5] The in-
inode EA patch started by Alex Tomas and An-
dreas Dilger was re-worked by Andreas Gruen-
bacher. And the fact that this feature was such a

major speedup for Samba 4, motivated it being
integrated into the mainline 2.6.11 kernel very
quickly.

3 Extents, delayed allocation and
extent allocation

This section and the next (Section 4) will dis-
cuss features that are currently under develop-
ment, and (as of this writing) have not been
merged into the mainline kernel. In most cases
patches exist, but they are still being polished,
and discussion within the ext2/3 development
community is still in progress.

Currently, the ext2/ext3 filesystem, like other
traditionalUNIX filesystems, uses a direct, indi-
rect, double indirect, and triple indirect blocks
to map file offsets to on-disk blocks. This
scheme, sometimes simply called an indirect
block mapping scheme, is not efficient for large
files, especially large file deletion. In order to
address this problem, many modern filesystems
(including XFS and JFS on Linux) use some
form of extent maps instead of the traditional
indirect block mapping scheme.

Since most filesystems try to allocate blocks in
a contiguous fashion, extent maps are a more
efficient way to represent the mapping between
logical and physical blocks for large files. An
extentis a single descriptor for a range of con-
tiguous blocks, instead of using, say, hundreds
of entries to describe each block individually.

Over the years, there have been many discus-
sions about moving ext3 from the traditional in-
direct block mapping scheme to an extent map
based scheme. Unfortunately, due to the com-
plications involved with making an incompati-
ble format change, progress on an actual imple-
mention of these ideas had been slow.
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Alex Tomas, with help from Andreas Dilger,
designed and implemented extents for ext3. He
posted the initial version of his extents patch
on August, 2003. The initial results on file cre-
ation and file deletion tests inspired a round of
discussion in the Linux community to consider
adding extents to ext3. However, given the con-
cerns that the format changes were ones that all
of the ext3 developers will have to support on
a long-term basis, and the fact that it was very
late in the 2.5 development cycle, it was not in-
tegrated into the mainline kernel sources at that
time.

Later, in April of 2004, Alex Tomas posted
an updated extents patch, as well as addi-
tional patches that implemented delayed allo-
cation and multiple block allocation to the ext2-
devel mailing list. These patches were reposted
in February 2005, and this re-ignited interest
in adding extents to ext3, especially when it
was shown that the combination of these three
features resulted in significant throughput im-
provements on some sequential write tests.

In the next three sections, we will discuss how
these three features are designed, followed by a
discussion of the performance evaluation of the
combination of the three patches.

3.1 Extent maps

This implementation of extents was originally
motivated by the problem of long truncate
times observed for huge files.1 As noted above,
besides speeding up truncates, extents help im-
prove the performance of sequential file writes
since extents are a significantly smaller amount
of metadata to be written to describe contigu-
ous blocks, thus reducing the filesystem over-
head.

1One option to address the issue is performing asyn-
chronous truncates, however, while this makes the CPU
cycles to perform the truncate less visible, excess CPU
time will still be consumed by the truncate operations.

Most files need only a few extents to describe
their logical-to-physical block mapping, which
can be accommodated within the inode or a
single extent map block. However, some ex-
treme cases, such as sparse files with random
allocation patterns, or a very badly fragmented
filesystem, are not efficiently represented using
extent maps. In addition, allocating blocks in a
random access pattern may require inserting an
extent map entry in the middle of a potentially
very large data representation.

One solution to this problem is to use a tree
data structure to store the extent map, either a
B-tree, B+ tree, or some simplified tree struc-
ture as was used for the HTree feature. Alex
Tomas’s implementation takes the latter ap-
proach, using a constant-depth tree structure. In
this implementation, the extents are expressed
using a 12 byte structure, which include a
32-bit logical block number, a 48-bit physical
block number, and a 16-bit extent length. With
4 KB blocksize, a filesystem can address up to
1024 petabytes, and a maximum file size of 16
terabytes. A single extent can cover up to 216

blocks or 256 MB.2

The extent tree information can be stored in
the inode’si_data array, which is 60 bytes
long. An attribute flag in the inode’si_flags
word indicates whether the inode’si_data ar-
ray should be interpreted using the traditional
indirect block mapping scheme, or as an ex-
tent data structure. If the entire extent infor-
mation can be stored in thei_data field, then
it will be treated as a single leaf node of the
extent tree; otherwise, it will be treated as the
root node of inode’s extent tree, and additional
filesystem blocks serve as intermediate or leaf
nodes in the extent tree.

At the beginning of each node, theext3_
ext_header data structure is 12 bytes long,

2Currently, the maximum block group size given a 4
KB blocksize is 128 MB, and this will limit the maxi-
mum size for a single extent.
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and contains a 16-bit magic number, 2 16-bit
integers containing the number of valid entries
in the node, and the maximum number of en-
tries that can be stored in the node, a 16-bit inte-
ger containing the depth of the tree, and a 32-bit
tree generation number. If the depth of the tree
is 0, then root inode contains leaf node infor-
mation, and the 12-byte entries contain the ex-
tent information described in the previous para-
graph. Otherwise, the root node will contain
12-byte intermediate entries, which consist of
32-bit logical block and a 48-bit physical block
(with 16 bits unused) of the next index or leaf
block.

3.1.1 Code organization

The implementation is divided into two parts:
Generic extents support that implements ini-
tialize/lookup/insert/remove functions for the
extents tree, and VFS support that allows
methods and callbacks likeext3_get_
block() , ext3_truncate() , ext3_
new_block() to use extents.

In order to use the generic extents layer, the
user of the generic extents layer must declare its
tree via anext3_extents_tree structure.
The structure describes where the root of the
tree is stored, and specifies the helper routines
used to operate on it. This way one can root
a tree not only ini_data as described above,
but also in a separate block or in EA (Extended
Attributes) storage. The helper routines de-
scribed by structext3_extents_helpers
can be used to control the block allocation
needed for tree growth, journaling metadata,
using different criteria of extents mergability,
removing extents etc.

3.1.2 Future work

Alex Tomas’s extents implementation is still a
work-in-progress. Some of the work that needs
to be done is to make the implementation in-
dependent of byte-order, improving the error
handling, and shrinking the depth of the tree
when truncated the file. In addition, the extent
scheme is less efficient than the traditional indi-
rect block mapping scheme if the file is highly
fragmented. It may be useful to develop some
heuristics to determine whether or not a file
should use extents automatically. It may also
be desirable to allow block-mapped leaf blocks
in an extent-mapped file for cases where there
is not enough contiguous space in the filesys-
tem to allocate the extents efficiently.

The last change would necessarily change the
on-disk format of the extents, but it is not only
the extent format that has been changed. For
example, the extent format does not support
logical block numbers that are greater than 32
bits, and a more efficient, variable-length for-
mat would allow more extents to be stored in
the inode before spilling out to an external tree
structure.

Since deployment of the extent data struc-
ture is disruptive because it involved an non-
backwards-compatible change to the filesystem
format, it is important that the ext3 developers
are comfortable that the extent format is flexi-
ble and powerful enough for present and future
needs, in order to avoid the need for additional
incompatible format changes.

3.2 Delayed allocation

3.2.1 Why delayed allocation is needed

Procrastination has its virtues in the ways of an
operating system. Deferring certain tasks un-



80 • State of the Art: Where we are with the Ext3 filesystem

til an appropriate time often improves the over-
all efficiency of the system by enabling optimal
deployment of resources. Filesystem I/O writes
are no exception.

Typically, when a filesystemwrite() sys-
tem call returns success, it has only copied the
data to be written into the page cache, mapped
required blocks in the filesystem and marked
the pages as needing write out. The actual
write out of data to disk happens at a later
point of time, usually when writeback opera-
tions are clustered together by a background
kernel thread in accordance with system poli-
cies, or when the user requests file data to
be synced to disk. Such an approach ensures
improved I/O ordering and clustering for the
system, resulting in more effective utilization
of I/O devices with applications spending less
time in thewrite() system call, and using
the cycles thus saved to perform other work.

Delayed allocation takes this a step further,
by deferring the allocation of new blocks in
the filesystem to disk blocks until writeback
time [12]. This helps in three ways:

• Reduces fragmentation in the filesystem
by improving chances of creating contigu-
ous blocks on disk for a file. Although
preallocation techniques can help avoid
fragmentation, they do not address frag-
mentation caused by multiple threads writ-
ing to the file at different offsets simul-
taneously, or files which are written in a
non-contiguous order. (For example, the
libfd library, which is used by the GNU
C compiler will create object files that are
written out of order.)

• Reduces CPU cycles spent in repeated
get_block() calls, by clustering allo-
cation for multiple blocks together. Both
of the above would be more effective when
combined with a good multi-block alloca-
tor.

• For short lived files that can be buffered
in memory, delayed allocation may avoid
the need for disk updates for metadata cre-
ation altogether, which in turn reduces im-
pact on fragmentation [12].

Delayed allocation is also useful for the Ac-
tive Block I/O Scheduling System (ABISS) [1],
which provides guaranteed read/write bit rates
for applications that require guaranteed real-
time I/O streams. Without delayed allocation,
the synchronous code path forwrite() has
to read, modify, update, and journal changes to
the block allocation bitmap, which could dis-
rupt the guaranteed read/write rates that ABISS
is trying to deliver.

Since block allocation is deferred until back-
ground writeback when it is too late to return an
error to the caller ofwrite() , thewrite()
operation requires a way to ensure that the
allocation will indeed succeed. This can be
accomplished by carving out, or reserving, a
claim on the expected number of blocks on disk
(for example, by subtracting this number from
the total number of available blocks, an op-
eration that can be performed without having
to go through actual allocation of specific disk
blocks).

Repeated invocations of ext3_get_
block()/ext3_new_block() is not
efficient for mapping consecutive blocks,
especially for an extent based inode, where it is
natural to process a chunk of contiguous blocks
all together. For this reason, Alex Tomas
implemented an extents based multiple block
allocation and used it as a basis for extents
based delayed allocation. We will discuss
the extents based multiple block allocation in
Section 3.3.
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3.2.2 Extents based delayed allocation im-
plementation

If the delayed allocation feature is enabled for
an ext3 filesystem and a file uses extent maps,
then the address space operations for its inode
are initialized to a set of ext3 specific routines
that implement the write operations a little dif-
ferently. The implementation defers allocation
of blocks fromprepare_write() and em-
ploys extent walking, together with the multiple
block allocation feature (described in the next
section), for clustering block allocations maxi-
mally into contiguous blocks.

Instead of allocating the disk block in
prepare_write() , the the page is marked
as needing block reservation. Thecommit_
write() function calculates the required
number of blocks, and reserves them to make
sure that there are enough free blocks in the
filesystem to satisfy the write. When the
pages get flushed to disk bywritepage()
or writepages() , these functions will walk
all the dirty pages in the specified inode, clus-
ter the logically contiguous ones, and submit
the page or pages to the bio layer. After the
block allocation is complete, the reservation
is dropped. A single block I/O request (or
BIO) is submitted for write out of pages pro-
cessed whenever a new allocated extent (or the
next mapped extent if already allocated) on
the disk is not adjacent to the previous one,
or whenwritepages() completes. In this
manner the delayed allocation code is tightly
integrated with other features to provide best
performance.

3.3 Buddy based extent allocation

One of the shortcomings of the current ext3
block allocation algorithm, which allocates one
block at a time, is that it is not efficient enough

for high speed sequential writes. In one ex-
periment utilizing direct I/O on a dual Opteron
workstation with fast enough buses, fiber chan-
nel, and a large, fast RAID array, the CPU lim-
ited the I/O throughput to 315 MB/s. While
this would not be an issue on most machines
(since the maximum bandwidth of a PCI bus
is 127 MB/s), but for newer or enterprise-class
servers, the amount of data per second that can
be written continuously to the filesystem is no
longer limited by the I/O subsystem, but by the
amount of CPU time consumed by ext3’s block
allocator.

To address this problem, Alex Tomas designed
and implemented a multiple block allocation,
called mballoc, which uses a classic buddy data
structure on disk to store chunks of free or used
blocks for each block group. This buddy data
is an array of metadata, where each entry de-
scribes the status of a cluster of 2n blocks, clas-
sified as free or in use.

Since block buddy data is not suitable for de-
termining a specific block’s status and locating
a free block close to the allocation goal, the tra-
ditional block bitmap is still required in order
to quickly test whether a specific block is avail-
able or not.

In order to find a contiguous extent of blocks
to allocate, mballoc checks whether the goal
block is available in the block bitmap. If it is
available, mballoc looks up the buddy data to
find the free extent length starting from the goal
block. To find the real free extent length, mbal-
loc continues by checking whether the physical
block right next to the end block of the pre-
viously found free extent is available or not.
If that block is available in the block bitmap,
mballoc could quickly find the length of the
next free extent from buddy data and add it up
to the total length of the free extent from the
goal block.

For example, if block M is the goal block and
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is claimed to be available in the bitmap, and
block M is marked as free in buddy data of or-
der n, then initially the free chunk size from
block M is known to be 2n. Next, mballoc
checks the bitmap to see if blockM + 2n + 1
is available or not. If so, mballoc checks the
buddy data again, and finds that the free extent
length from blockM + 2n + 1 is k. Now, the
free chunk length from goal block M is known
to be 2n + 2k. This process continues until at
some point the boundary block is not available.
In this manner, instead of testing dozens, hun-
dreds, or even thousands of blocks’ availability
status in the bitmap to determine the free blocks
chunk size, it can be enough to just test a few
bits in buddy data and the block bitmap to learn
the real length of the free blocks extent.

If the found free chunk size is greater than the
requested size, then the search is considered
successful and mballoc allocates the found free
blocks. Otherwise, depending on the allocation
criteria, mballoc decides whether to accept the
result of the last search in order to preserve the
goal block locality, or continue searching for
the next free chunk in case the length of con-
tiguous blocks is a more important factor than
where it is located. In the later case, mballoc
scans the bitmap to find out the next available
block, then, starts from there, and determines
the related free extent size.

If mballoc fails to find a free extent that sat-
isfies the requested size after rejecting a pre-
defined number (currently 200) of free chunks,
it stops the search and returns the best (largest)
free chunk found so far. In order to speed up the
scanning process, mballoc maintains the total
number of available blocks and the first avail-
able block of each block group.

3.3.1 Future plans

Since in ext3 blocks are divided into block
groups, the block allocator first selects a block
group before it searches for free blocks. The
policy employed in mballoc is quite simple: to
try the block group where the goal block is lo-
cated first. If allocation from that group fails,
then scan the subsequent groups. However, this
implies that on a large filesystem, especially
when free blocks are not evenly distributed,
CPU cycles could be wasted on scanning lots
of almost full block groups before finding a
block group with the desired free blocks crite-
ria. Thus, a smarter mechanism to select the
right block group to start the search should im-
prove the multiple block allocator’s efficiency.
There are a few proposals:

1. Sort all the block groups by the total num-
ber of free blocks.

2. Sort all the groups by the group fragmen-
tation factor.

3. Lazily sort all the block groups by the to-
tal number of free blocks, at significant
change of free blocks in a group only.

4. Put extents into buckets based on extent
size and/or extent location in order to
quickly find extents of the correct size and
goal location.

Currently the four options are under evaluation
though probably the first one is a little more in-
teresting.

3.4 Evaluating the extents patch set

The initial evaluation of the three patches (ex-
tents, delayed allocation and extent alloca-
tion) shows significant throughput improve-
ments, especially under sequential tests. The
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tests show that the extents patch significantly
reduces the time for large file creation and re-
moval, as well as file rewrite. With extents
and extent allocation, the throughput of Di-
rect I/O on the aforementioned Opteron-based
workstation is significantly improved, from 315
MB/sec to 500MB/sec, and the CPU usage is
significantly dropped from 100% to 50%. In
addition, extensive testing on various bench-
marks, including dbench, tiobench, FFSB [11]
and sqlbench [16], has been done with and
without this set of patches. Some initial analy-
sis indicates that the multiple block allocation,
when combined with delayed allocation, is a
key factor resulting in this improvement. More
testing results can be obtained fromhttp://

www.bullopensource.org/ext4 .

4 Improving ext3 without changing
disk format

Replacing the traditional indirect block map-
ping scheme with an extent mapping scheme,
has many benefits, as we have discussed in the
previous section. However, changes to the on-
disk format that are not backwards compati-
ble are often slow to be adopted by users, for
two reasons. First of all, robust e2fsck sup-
port sometimes lags the kernel implementation.
Secondly, it is generally not possible to mount
the filesystem with an older kernel once the
filesystem has been converted to use these new
features, preventing rollback in case of prob-
lems.

Fortunately, there are a number of improve-
ments that can be made to the ext2/3 filesys-
tem without making these sorts of incompatible
changes to the on-disk format.

In this section, we will discuss a few of fea-
tures that are implemented based on the current

ext3 filesystem. Section 4.1 describes the ef-
fort to reduce the usage of bufferheads struc-
ture in ext3; Section 4.2 describes the effort
to add delayed allocation without requiring the
use of extents; Section 4.3 discusses the work to
add multiple block allocation; Section 4.4 de-
scribes asynchronous file unlink and truncate;
Section 4.5 describes a feature to allow more
than 32000 subdirectories; and Section 4.6 de-
scribes a feature to allow multiple threads to
concurrently create/rename/link/unlink files in
a single directory.

4.1 Reducing the use of bufferheads in ext3

Bufferheads continue to be heavily used in
Linux I/O and filesystem subsystem, even
though closer integration of the buffer cache
with the page cache since 2.4 and the new block
I/O subsystem introduced in Linux 2.6 have in
some sense superseded part of the traditional
Linux buffer cache functionality.

There are a number of reasons for this. First of
all, the buffer cache is still used as a metadata
cache. All filesystem metadata (superblock,
inode data, indirect blocks, etc.) are typi-
cally read into buffer cache for quick reference.
Bufferheads provide a way to read/write/access
this data. Second, bufferheads link a page to
disk block and cache the block mapping infor-
mation. In addition, the design of bufferheads
supports filesystem block sizes that do not
match the system page size. Bufferheads pro-
vide a convenient way to map multiple blocks
to a single page. Hence, even the generic multi-
page read-write routines sometimes fall back to
using bufferheads for fine-graining or handling
of complicated corner cases.

Ext3 is no exception to the above. Besides the
above reasons, ext3 also makes use of buffer-
heads to enable it to provide ordering guaran-
tees in case of a transaction commit. Ext3’s or-
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dered mode guarantees that file data gets writ-
ten to the disk before the corresponding meta-
data gets committed to the journal. In order
to provide this guarantee, bufferheads are used
as the mechanism to associate the data pages
belonging to a transaction. When the transac-
tion is committed to the journal, ext3 uses the
bufferheads attached to the transaction to make
sure that all the associated data pages have been
written out to the disk.

However, bufferheads have the following dis-
advantages:

• All bufferheads are allocated from the
“buffer_head” slab cache, thus they con-
sume low memory3 on 32-bit architec-
tures. Since there is one bufferhead
(or more, depending on the block size)
for each filesystem page cache page, the
bufferhead slab can grow really quickly
and consumes a lot of low memory space.

• When bufferheads get attached to a page,
they take a reference on the page. The ref-
erence is dropped only when VM tries to
release the page. Typically, once a page
gets flushed to disk it is safe to release its
bufferheads. But dropping the bufferhead,
right at the time of I/O completion is not
easy, since being in interrupt handler con-
text restricts the kind of operations feasi-
ble. Hence, bufferheads are left attached
to the page, and released later as and when
VM decides to re-use the page. So, it is
typical to have a large number of buffer-
heads floating around in the system.

• The extra memory references to buffer-
heads can impact the performance of
memory caches, the Translation Looka-
side Buffer (TLB) and the Segment

3Low memory is memory that can be directly mapped
into kernel virtual address space, i.e. 896MB, in the case
of IA32.

Lookaside Buffer4 (SLB). We have ob-
served that when running a large NFS
workload, while the ext3 journaling thread
kjournald() is referencing all the transac-
tions, all the journal heads, and all the
bufferheads looking for data to flush/clean
it suffers a large number of SLB misses
with the associated performance penalty.
The best solution for these performance
problems appears to be to eliminate the
use of bufferheads as much as possible,
which reduces the number of memory ref-
erences required by kjournald().

To address the above concerns, Badari
Pulavarty has been working on removing
bufferheads usage from ext3 from major
impact areas, while retaining bufferheads for
uncommon usage scenarios. The focus was on
elimination of bufferhead usage for user data
pages, while retaining bufferheads primarily
for metadata caching.

Under the writeback journaling mode, since
there are no ordering requirements between
when metadata and data gets flushed to disk,
eliminating the need for bufferheads is rel-
atively straightforward because ext3 can use
most recent generic VFS helpers for writeback.
This change is already available in the latest
Linux 2.6 kernels.

For ext3 ordered journaling mode, however,
since bufferheads are used as linkage between
pages and transactions in order to provide flush-
ing order guarantees, removal of the use of
bufferheads gets complicated. To address this
issue, Andrew Morton proposed a new ext3
journaling mode, which works without buffer-
heads and provides semantics that are some-
what close to that provided in ordered mode[9].
The idea is that whenever there is a transaction
commit, we go through all the dirty inodes and

4The SLB is found on the 64-bit Power PC.
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dirty pages in that filesystem and flush every
one of them. This way metadata and user data
are flushed at the same time. The complexity of
this proposal is currently under evaluation.

4.2 Delayed allocation without extents

As we have discussed in Section 3.2, de-
layed allocation is a powerful technique that
can result in significant performance gains,
and Alex Tomas’s implementation shows some
very interesting and promising results. How-
ever, Alex’s implementation only provide de-
layed allocation when the ext3 filesystem
is using extents, which requires an incom-
patible change to the on-disk format. In
addition, like past implementation of de-
layed allocation by other filesystems, such as
XFS, Alex’s changes implement the delayed
allocation in filesystem-specific versions of
prepare_write() , commit_write() ,
writepage() , and writepages() , in-
stead of using the filesystem independent rou-
tines provided by the Linux kernel.

This motivated Suparna Bhattacharya, Badari
Pulavarty and Mingming Cao to implement de-
layed allocation and multiple block allocation
support to improve the performance of the ext3
to the extent possible without requiring any on-
disk format changes.

Interestingly, the work to remove the use
of bufferheads in ext3 implemented most
of the necessary changes required for de-
layed allocation, when bufferheads are not re-
quired. Thenobh_commit_write() func-
tion, delegates the task of writing data to
thewritepage() andwritepages() , by
simply marking the page as dirty. Since
the writepage() function already has to
handle the case of writing a page which is
mapped to a sparse memory-mapped files,
the writepage() function already handles

block allocation by calling the filesystem spe-
cific get_block() function. Hence, if the
nobh_prepare_write function were to
omit call get_block() , the physical block
would not be allocated until the page is ac-
tually written out via thewritepage() or
writepages() function.

Badari Pulavarty implemented a relatively
small patch as a proof-of-concept, which
demonstrates that this approach works well.
The work is still in progress, with a few lim-
itations to address. The first limitation is
that in the current proof-of-concept patch, data
could be dropped if the filesystem was full,
without thewrite() system call returning -
ENOSPC.5 In order to address this problem, the
nobh_prepare_write function must note
that the page currently does not have a phys-
ical block assigned, and request the filesys-
tem reserve a block for the page. So while
the filesystem will not have assigned a spe-
cific physical block as a result ofnobh_
prepare_write() , it must guarantee that
whenwritepage() calls the block allocator,
the allocation must succeed.

The other major limitation is, at present, it
only worked when bufferheads are not needed.
However, thenobh code path as currently
present into the 2.6.11 kernel tree only sup-
ports filesystems when the ext3 is journaling in
writeback mode and not in ordered journaling
mode, and when the blocksize is the same as the
VM pagesize. Extending thenobh code paths
to support sub-pagesize blocksizes is likely not
very difficult, and is probably the appropriate
way of addressing the first part of this short-
coming.

5The same shortcoming exists today if a sparse file
is memory-mapped, and the filesystem is full when
writepage() tries to write a newly allocated page to
the filesystem. This can potentially happen after user
process which wrote to the file viammap() has exited,
where there is no program left to receive an error report.
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However, supporting delayed allocation for
ext3 ordered journaling using this approach is
going to be much more challenging. While
metadata journaling alone is sufficient in write-
back mode, ordered mode needs to track I/O
submissions for purposes of waiting for com-
pletion of data writeback to disk as well, so
that it can ensure that metadata updates hit the
disk only after the corresponding data blocks
are on disk. This avoids potential exposures
and inconsistencies without requiring full data
journaling[14].

However, in the current design of generic multi-
page writeback routines, block I/O submis-
sions are issued directly by the generic rou-
tines and are transparent to the filesystem spe-
cific code. In earlier situations where buffer-
heads were used for I/O, filesystem specific
wrappers around generic code could track I/O
through the bufferheads associated with a page
and link them with the transaction. With the
recent changes, where I/O requests are built di-
rectly as multi-page bio requests with no link
from the page to the bio, this no longer applies.

A couple of solution approaches are under con-
sideration, as of the writing of this paper:

• Introducing yet another filesystem spe-
cific callback to be invoked by the generic
multi-page write routines to actually issue
the I/O. ext3 could then track the number
of in-flight I/O requests associated with
the transaction, and wait for this to fall to
zero at journal commit time. Implement-
ing this option is complicated because the
multi-page write logic occasionally falls
back to the older bufferheads based logic
in some scenarios. Perhaps ext3 ordered
mode writeback would need to provide
both the callback and the page buffer-
head tracking logic if this approach is em-
ployed.

• Find a way to get ext3 journal commit to
effectively reuse a part the fsync/O_SYNC
implementation that waits for writeback to
complete on the pages for relevant inodes,
using a radix-tree walk. Since the journal
layer is designed to be unaware of filesys-
tems [14], this could perhaps be accom-
plished by associating a (filesystem spe-
cific) callback with journal commit, as re-
cently suggested by Andrew Morton[9].

It remains to be seen which approach works out
to be the best, as development progresses. It
is clear that since ordered mode is the default
journaling mode, any delayed allocation imple-
mentation must be able to support it.

4.3 Efficiently allocating multiple blocks

As with the Alex Tomas’s delayed allocation
patch, Alex’s multiple block allocator patch re-
lies on an incompatible on-disk format change
of the ext3 filesystem to support extent maps.
In addition, the extent-based mballoc patch also
required a format change in order to store data
for the buddy allocator which it utilized. Since
oprofile measurements of Alex’s patch indi-
cated the multiple block allocator seemed to
be responsible for reducing CPU usage, and
since it seemed to improve throughput in some
workloads, we decided to investigate whether it
was possible to obtain most of the benefits of a
multiple block allocator using the current ext3
filesystem format. This seemed to be a reason-
able approach since many of the advantages of
supporting Alex’s mballoc patch seemed to de-
rive from collapsing a large number of calls to
ext3_get_block() into much fewer calls
to ext3_get_blocks() , thus avoiding ex-
cess calls into the journaling layer to record
changes to the block allocation bitmap.

In order to implement a multiple-block allo-
cator based on the existing block allocation
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bitmap, Mingming Cao first changedext3_
new_block() to accept a new argument
specifying how many contiguous blocks the
function should attempt to allocate, on a best
efforts basis. The function now allocates the
first block in the existing way, and then contin-
ues allocating up to the requested number of ad-
jacent physical blocks at the same time if they
are available.

The modifiedext3_new_block() function
was then used to implement ext3’sget_
blocks() method, the standardized filesys-
tem interface to translate a file offset and a
length to a set of on-disk blocks. It does this
by starting at the first file offset and translat-
ing it into a logical block number, and then tak-
ing that logical block number and mapping it to
a physical block number. If the logical block
has already been mapped, then it will continue
mapping the next logical block until the requi-
site number of physical blocks have been re-
turned, or an unallocated block is found.

If some blocks need to be allocated, first
ext3_get_blocks() will look ahead to
see how many adjacent blocks are needed, and
then passes this allocation request toext3_
new_blocks() , searches for the requested
free blocks, marks them as used, and re-
turns them toext3_get_blocks() . Next,
ext3_get_blocks() will update the in-
ode’s direct blocks, or a single indirect block
to point at the allocated blocks.

Currently, this ext3_get_blocks() im-
plementation does not allocate blocks across an
indirect block boundary. There are two rea-
sons for this. First, theJBD journaling re-
quests the filesystem to reserve the maximum
of blocks that will require journaling, when a
new transaction handle is requested viaext3_
journal_start() . If we were to allow
a multiple block allocation request to span an
indirect block boundary, it would be difficult
to predict how many metadata blocks may get

dirtied and thus require journaling. Secondly, it
would be difficult to place any newly allocated
indirect blocks so they are appropriately inter-
leaved with the data blocks.

Currently, only the Direct I/O code path
uses the get_blocks() interfaces; the
mpage_writepages() function calls
mpage_writepage() which in turn calls
get_block() . Since only a few work-
loads (mainly databases) use Direct I/O,
Suparna Bhattacharya has written a patch
to change mpage_writepages() use
get_blocks() instead. This change
should be generically helpful for any
filesystems which implement an efficient
get_blocks() function.

Draft patches have already been posted to
the ext2-devel mailing list. As of this writ-
ing, we are trying to integrate Mingming’s
ext3_get_blocks() patch, Suparna Bhat-
tacharya’smpage_writepage() patch and
Badari Pulavarty’s generic delayed allocation
patch (discussed in Section 4.2) in order to
evaluate these three patches together using
benchmarks.

4.4 Asynchronous file unlink/truncate

With block-mapped files and ext3, truncation
of a large file can take a considerable amount
of time (on the order of tens to hundreds of sec-
onds if there is a lot of other filesystem activ-
ity concurrently). There are several reasons for
this:

• There are limits to the size of a sin-
gle journal transaction (1/4 of the jour-
nal size). When truncating a large frag-
mented file, it may require modifying so
many block bitmaps and group descriptors
that it forces a journal transaction to close
out, stalling the unlink operation.



88 • State of the Art: Where we are with the Ext3 filesystem

• Because of this per-transaction limit, trun-
cate needs to zero the [dt]indirect blocks
starting from the end of the file, in case it
needs to start a new transaction in the mid-
dle of the truncate (ext3 guarantees that a
partially-completed truncate will be con-
sistent/completed after a crash).

• The read/write of the file’s [dt]indirect
blocks from the end of the file to the be-
ginning can take a lot of time, as it does
this in single-block chunks and the blocks
are not contiguous.

In order to reduce the latency associated with
large file truncates and unlinks on the LustreR©
filesystem (which is commonly used by sci-
entific computing applications handling very
large files), the ability for ext3 to perform asyn-
chronous unlink/truncate was implemented by
Andreas Dilger in early 2003.

The delete thread is a kernel thread that ser-
vices a queue of inode unlink or truncate-to-
zero requests that are intercepted from nor-
mal ext3_delete_inode() and ext3_
truncate() calls. If the inode to be un-
linked/truncated is small enough, or if there is
any error in trying to defer the operation, it is
handled immediately; otherwise, it is put into
the delete thread queue. In the unlink case, the
inode is just put into the queue and the delete
thread is woke up, before returning to the caller.
For the truncate-to-zero case, a free inode is al-
located and the blocks are moved over to the
new inode before waking the thread and return-
ing to the caller. When the delete thread is woke
up, it does a normal truncate of all the blocks on
each inode in the list, and then frees the inode.

In order to handle these deferred delete/truncate
requests in a crash-safe manner, the inodes
to be unlinked/truncated are added into the
ext3 orphan list. This is an already exist-
ing mechanism by which ext3 handles file un-
link/truncates that might be interrupted by a

crash. A persistent singly-linked list of in-
ode numbers is linked from the superblock and,
if this list is not empty at filesystem mount
time, the ext3 code will first walk the list and
delete/truncate all of the files on it before the
mount is completed.

The delete thread was written for 2.4 kernels,
but is currently only in use for Lustre. The
patch has not yet been ported to 2.6, but the
amount of effort needed to do so is expected
to be relatively small, as the ext3 code has
changed relatively little in this area.

For extent-mapped files, the need to have asyn-
chronous unlink/truncate is much less, because
the number of metadata blocks is greatly re-
duced for a given file size (unless the file is very
fragmented). An alternative to the delete thread
(for both files using extent maps as well as in-
direct blocks) would be to walk the inode and
pre-compute the number of bitmaps and group
descriptors that would be modified by the oper-
ation, and try to start a single transaction of that
size. If this transaction can be started, then all
of the indirect, double indirect, and triple in-
direct blocks (also referenced as [d,t] indirect
blocks) no longer have to be zeroed out, and
we only have to update the block bitmaps and
their group summaries, reducing the amount of
I/O considerably for files using indirect blocks.
Also, the walking of the file metadata blocks
can be done in forward order and asynchronous
readahead can be started for indirect blocks to
make more efficient use of the disk. As an
added benefit, we would regain the ability to
undelete files in ext3 because we no longer have
to zero out all of the metadata blocks.

4.5 Increased nlinks support

The use of a 16-bit value for an inode’s link
count (i_nlink ) limits the number of hard
links on an inode to 65535. For directories, it
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starts with a link count of 2 (one for “.” and one
for “..”) and each subdirectory has a hard link
to its parent, so the number of subdirectories is
similarly limited.

The ext3 implementation further reduced this
limit to 32000 to avoid signed-int problems.
Before indexed directories were implemented,
the practical limit for files/subdirectories was
about 10000 in a single directory.

A patch was implemented to overcome this
subdirectory limit by not counting the subdi-
rectory links after the counter overflowed (at
65000 links actually); instead, a link count of
one is stored in the inode. The ext3 code al-
ready ignores the link count when determining
if a directory is full or empty, and a link count
of one is otherwise not possible for a directory.

Using a link count of one is also required be-
cause userspace tools like “find” optimize their
directory walking by only checking a number
of subdirectories equal to the link count minus
two. Having a directory link count of one dis-
ables that heuristic.

4.6 Parallel directory operations

The Lustre filesystem (which is built on top of
the ext3 filesystem) has to meet very high goals
for concurrent file creation in a single directory
(5000 creates/second for 10 million files) for
some of its implementations. In order to meet
this goal, and to allow this rate to scale with
the number of CPUs in a server, the implemen-
tation of parallel directory operations (pdirops)
was done by Alex Tomas in mid 2003. This
patch allows multiple threads to concurrently
create, unlink, and rename files within a single
directory.

There are two components in the pdirops
patches: one in the VFS to lock individual en-
tries in a directory (based on filesystem pref-
erence), instead of using the directory inode

semaphore to provide exclusive access to the
directory; the second patch is in ext3 to imple-
ment proper locking based on the filename.

In the VFS, the directory inode semaphore ac-
tually protects two separate things. It protects
the filesystem from concurrent modification of
a single directory and it also protects the dcache
from races in creating the same dentry multiple
times for concurrent lookups. The pdirops VFS
patch adds the ability to lock individual dentries
(based on the dentry hash value) within a direc-
tory to prevent concurrent dcache creation. All
of the places in the VFS that would takei_sem
on a directory instead calllock_dir() and
unlock_dir() to determine what type of
locking is desired by the filesystem.

In ext3, the locking is done on a per-directory-
leaf-block basis. This is well suited to the
directory-indexing scheme, which has a tree
with leaf blocks and index blocks that very
rarely change. In the rare case that adding an
entry to the leaf block requires that an index
block needs locking the code restarts at the top
of the tree and keeps the lock(s) on the index
block(s) that need to be modified. At about
100,000 entries, there are 2-level index blocks
that further reduce the chance of lock collisions
on index blocks. By not locking index blocks
initially, the common case where no change
needs to be made to the index block is im-
proved.

The use of the pdirops VFS patch was also
shown to improve the performance of the tmpfs
filesystem, which needs no other locking than
the dentry locks.

5 Performance comparison

In this section, we will discuss some perfor-
mance comparisons between the ext3 filesys-
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tem found on the 2.4 kernel and the 2.6 ker-
nel. The goal is to evaluate the progress ext3
has made over the last few years. Of course,
many improvements other than the ext3 spe-
cific features, for example, VM changes, block
I/O layer re-write, have been added to the Linux
2.6 kernel, which could affect the performance
results overall. However, we believe it is still
worthwhile to make the comparison, for the
purpose of illustrating the improvements made
to ext3 on some workload(s) now, compared
with a few years ago.

We selected linux 2.4.29 kernel as the base-
line, and compared it with the Linux 2.6.10
kernel. Linux 2.6.10 contains all the features
discussed in Section 2, except the EA-in-inode
feature, which is not relevant for the bench-
marks we had chosen. We also performed the
same benchmarks using a Linux 2.6.10 ker-
nel patched with Alex Tomas’ extents patch
set, which implements extents, delayed allo-
cation, and extents-based multiple block allo-
cation. We plan to run the same benchmarks
against a Linux 2.6.10 kernel with some of the
patches described in Section 4 in the future.

In this study we chose two benchmarks. One
is tiobench, a benchmark testing filesystem
sequential and random I/O performance with
multiple running threads. Another benchmark
we used is filemark, a modified postmark[8]
benchmark which simulates I/O activity on a
mail server with multiple threads mode. File-
mark was used by Ray Bryant when he con-
ducted filesystem performance study on Linux
2.4.17 kernel three years ago [3].

All the tests were done on the same 8-CPU
700 MHZ Pentium III system with 1 GB RAM.
All the tests were run with ext3’s writeback
journaling mode enabled. When running tests
with the extents patch set, the filesystem was
mouted with the appropriate mount options to
enable the extents, multiple block allocation,
and delayed allocation features. These test runs
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Figure 1: tiobench sequential write throughput
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Figure 2: tiobench sequential read throughput
results comparison

are shown as “2.6.10_writeback_emd ”
in the graphs.

5.1 Tiobench comparison

Although there have been a huge number of
changes between the Linux 2.4.29 kernel to the
Linux 2.6.10 kernel could affect overall perfor-
mance (both in and outside of the ext3 filesys-
tem), we expect that two ext3 features, remov-
ing BKL from ext3 (as described in Section 2.2)
and reservation based block allocation (as de-
scribed in Section 2.3) are likely to signifi-
cantly impact the throughput of the tiobench
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benchmark. In this sequential write test, mul-
tiple threads are sequentially writing/allocating
blocks in the same directory. Allowing allo-
cations concurrently in this case most likely
will reduces the CPU usage and improves the
throughput. Also, with reservation block al-
location, files created by multiple threads in
this test could be more contiguous on disk, and
likely reduce the latency while writing and se-
quential reading after that.

Figure 1 and Figure 2 show the sequential write
and sequential read test results of the tiobench
benchmark, on the three selected kernels, with
threads ranging from 1 to 64. The total files
size used in this test is 4GB and the blocksize
is 16348 byte. The test was done on a single
18G SCSI disk. The graphs indicate signifi-
cant throughput improvement from the 2.4.29
kernel to the Linux 2.6.10 kernel on this par-
ticular workload. Figure 2 shows the sequen-
tial read throughput has been significantly im-
proved from Linux 2.4.29 to Linux 2.6.10 on
ext3 as well.

When we applied the extents patch set, we saw
an additional 7-10% throughput improvement
on tiobench sequential write test. We suspect
the improvements comes from the combination
of delayed allocation and multiple block alloca-
tion patches. As we noted earlier, having both
features could help lay out files more contigu-
ously on disk, as well as reduce the times to
update the metadata, which is quite expensive
and happens quite frequently with the current
ext3 single block allocation mode. Future test-
ing are needed to find out which feature among
the three patches (extents, delayed allocation
and extent allocation) is the key contributor of
this improvement.

5.2 Filemark comparison

A Filemark execution includes three phases:
creation, transaction, and delete phase. The
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Figure 3: Filemark benchmark transaction rate
comparison

transaction phase includes file read and ap-
pend operations, and some file creation and re-
moval operations. The configuration we used
in this test is the so called “medium system”
mentioned in Bryant’s Linux filesystem perfor-
mance study [3]. Here we run filemark with 4
target directories, each on a different disk, 2000
subdirectories per target directory, and 100,000
total files. The file sizes ranged from 4KB
to 16KB and the I/O size was 4KB. Figure 3
shows the average transactions per second dur-
ing the transaction phase, when running File-
mark with 1, 8, 64, and 128 threads on the three
kernels.

This benchmark uses a varying number of
threads. We therefore expected the scalability
improvements to the ext3 filesystem in the 2.6
kernel should improve Linux 2.6’s performance
for this benchmark. In addition, during the
transaction phase, some files are deleted soon
after the benchmark creates or appends data to
those files. The delayed allocation could avoid
the need for disk updates for metadata changes
at all. So we expected Alex’s delayed allocation
to improve the throughput on this benchmark as
well.

The results are shown in Figure 3. At 128
threads, we see that the 2.4.29 kernel had sig-
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nificant scalability problems, which were ad-
dressed in the 2.6.10 kernel. At up to 64
threads, there is approximately a 10% to 15%
improvement in the transaction rate between
Linux 2.4.29 and Linux 2.6.10. With the ex-
tents patch set applied to Linux 2.6.10, the
transaction rate is increased another 10% at 64
threads. In the future, we plan to do futher work
to determine how much of the additional 10%
improvement can be ascribed to the different
components of the extents patch set.

More performance results, both of the bench-
mark tests described above, and additional
benchmark tests expected to be done be-
fore the 2005 OLS conference can be
found at http://ext2.sourceforge.
net/ols05-testing .

6 Future Work

This section will discuss some features that are
still on the drawing board.

6.1 64 bit block devices

For a long time the Linux block layer limited
the size of a single filesystem to 2 TB (232∗
512-byte sectors), and in some cases the SCSI
drivers further limited this to 1TB because of
signed/unsigned integer bugs. In the 2.6 ker-
nels there is now the ability to have larger block
devices and with the growing capacity and de-
creasing cost of disks the desire to have larger
ext3 filesystems is increasing. Recent vendor
kernel releases have supported ext3 filesystems
up to 8 TB and which can theoretically be as
large as 16 TB before it hits the 232 filesys-
tem block limit (for 4 KB blocks and the 4 KB
PAGE_SIZE limit on i386 systems). There is
also a page cache limit of 232 pages in an ad-
dress space, which are used for buffered block

devices. This limit affects both ext3’s internal
metadata blocks, and the use of buffered block
devices when running e2fsprogs on a device to
create the filesystem in the first place. So this
imposes yet another 16TB limit on the filesys-
tem size, but only on 32-bit architectures.

However, the demand for larger filesystems is
already here. Large NFS servers are in the
tens of terabytes, and distributed filesystems
are also this large. Lustre uses ext3 as the back-
end storage for filesystems in the hundreds of
terabytes range by combining dozens to hun-
dreds of individual block devices and smaller
ext3 filesystems in the VFS layer, and having
larger ext3 filesystems would avoid the need to
artificially fragment the storage to fit within the
block and filesystem size limits.

Extremely large filesystems introduce a num-
ber of scalability issues. One such concern is
the overhead of allocating space in very large
volumes, as described in Section 3.3. Another
such concern is the time required to back up
and perform filesystem consistency checks on
very large filesystems. However, the primier is-
sue with filesystems larger than 232 filesystem
blocks is that the traditional indirect block map-
ping scheme only supports 32-bit block num-
bers. The additional fact that filling such a large
filesystem would take many millions of indi-
rect blocks (over 1% of the whole filesystem,
at least 160 GB of just indirect blocks) makes
the use of the indirect block mapping scheme
in such large filesystems undesirable.

Assuming a 4 KB blocksize, a 32-bit block
number limits the maximum size of the filesys-
tem to 16 TB. However, because the superblock
format currently stores the number of block
groups as a 16-bit integer, and because (again
on a 4 KB blocksize filesystem) the maximum
number of blocks in a block group is 32,768
(the number of bits in a single 4k block, for
the block allocation bitmap), a combination of
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these constraints limits the maximum size of
the filesystem to 8 TB.

One of the plans for growing beyond the 8/16
TB boundary was to use larger filesystem
blocks (8 KB up to 64 KB), which increases
the filesystem limits such as group size, filesys-
tem size, maximum file size, and makes block
allocation more efficient for a given amount of
space. Unfortunately, the kernel currently lim-
its the size of a page/buffer to virtual memory’s
page size, which is 4 KB for i386 processors.
A few years ago, it was thought that the advent
of 64-bit processors like the Alpha, PPC64, and
IA64 would break this limit and when they be-
came commodity parts everyone would be able
to take advantage of them. The unfortunate
news is that the commodity 64-bit processor ar-
chitecture, x86_64, also has a 4 KB page size
in order to maintain compatibility with its i386
ancestors. Therefore, unless this particular lim-
itation in the Linux VM can be lifted, most
Linux users will not be able to take advantage
of a larger filesystem block size for some time.

These factors point to a possible paradigm shift
for block allocations beyond the 8 TB bound-
ary. One possibility is to use only larger ex-
tent based allocations beyond the 8 TB bound-
ary. The current extent layout described in Sec-
tion 3.1 already has support for physical block
numbers up to 248 blocks, though withonly232

blocks (16 TB) for a single file. If, at some
time in the future larger VM page sizes be-
come common, or the kernel is changed to al-
low buffers larger than the the VM page size,
then this will allow filesystem growth up to 264

bytes and files up to 248 bytes (assuming 64 KB
blocksize). The design of the extent structures
also allows for additional extent formats like a
full 64-bit physical and logical block numbers
if that is necessary for 4 KBPAGE_SIZEsys-
tems, though they would have to be 64-bit in
order for the VM to address files and storage
devices this large.

It may also make sense to restrict inodes to the
first 8 TB of disk, and in conjunction with the
extensible inode table discussed in Section 6.2
use space within that region to allocate all in-
odes. This leaves the > 8 TB space free for ef-
ficient extent allocations.

6.2 Extensible Inode Table

Adding an dynamically extensible inode table
is something that has been discussed exten-
sively by ext2/3 developers, and the issues that
make adding this feature difficult have been dis-
cussed before in [15]. Quickly summarized,
the problem is a number of conflicting require-
ments:

• We must maintain enough backup meta-
data about the dynamic inodes to allow us
to preserve ext3’s robustness in the pres-
ence of lost disk blocks as far as possible.

• We must not renumber existing inodes,
since this would require searching and up-
dating all directory entries in the filesys-
tem.

• Given the inode number the block alloca-
tion algorithms must be able to determine
the block group where the inode is located.

• The number of block groups may change
since ext3 filesystems may be resized.

Most obvious solutions will violate one or more
of the above requirements. There is a clever
solution that can solve the problem, however,
by using the space counting backwards from
231− 1, or “negative” inode. Since the num-
ber of block groups is limited by 232/(8 ∗
blocksize), and since the maximum number of
inodes per block group is also the same as the
maximum number of blocks per block group
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is (8 ∗ blocksize), and if inode numbers and
block numbers are both 32-bit integers, then
the number of inodes per block group in the
“negative” inode space is simply(8∗blocksize)
- normal-inodes-per-blockgroup. The location
of the inode blocks in the negative inode space
are stored in a reserved inode.

This particular scheme is not perfect, however,
since it is not extensible to support 64 bit block
numbers unless inode numbers are also ex-
tended to 64 bits. Unfortunately, this is not so
easy, since on 32-bit platforms, the Linux ker-
nel’s internal inode number is 32 bits. Worse
yet, theino_t type in thestat structure is
also 32 bits. Still, for filesystems that are utiliz-
ing the traditional 32 bit block numbers, this is
still doable.

Is it worth it to make the inode table extensi-
ble? Well, there are a number of reasons why
an extensible inode table is interesting. Histori-
cally, administrators and themke2fs program
have always over-allocated the number of in-
odes, since the number of inodes can not be in-
creased after the filesystem has been formatted,
and if all of the inodes have been exhausted,
no additional files can be created even if there
is plenty of free space in the filesystem. As
inodes get larger in order to accommodate the
EA-in-inode feature, the overhead of over-
allocating inodes becomes significant. There-
fore, being able to initially allocate a smaller
number of inodes and adding more inodes later
as needed is less wasteful of disk space. A
smaller number of initial inodes also makes the
the initial mke2fs takes less time, as well as
speeding up thee2fsck time.

On the other hand, there are a number of dis-
advantages of an extensible inode table. First,
the “negative” inode space introduces quite a
bit of complexity to the inode allocation and
read/write functions. Second, as mentioned
earlier, it is not easily extensible to filesystems

that implement the proposed 64-bit block num-
ber extension. Finally, the filesystem becomes
more fragile, since if the reserved inode that
describes the location of the “negative” inode
space is corrupted, the location of all of the ex-
tended inodes could be lost.

So will extensible inode tables ultimately be
implemented? Ultimately, this will depend on
whether an ext2/3 developer believes that it is
worth implementing—whether someone con-
siders extensible inode an “itch that they wish
to scratch.” The authors believe that the ben-
efits of this feature only slightly outweigh the
costs, but perhaps not by enough to be worth
implementing this feature. Still, this view is not
unanimously held, and only time will tell.

7 Conclusion

As we have seen in this paper, there has been
a tremendous amount of work that has gone
into the ext2/3 filesystem, and this work is con-
tinuing. What was once essentially a simpli-
fied BSD FFS descendant has turned into an
enterprise-ready filesystem that can keep up
with the latest in storage technologies.

What has been the key to the ext2/3 filesystem’s
success? One reason is the forethought of the
initial ext2 developers to add compatibility fea-
ture flags. These flags have made ext2 easily
extensible in a variety of ways, without sacri-
ficing compatibility in many cases.

Another reason can be found by looking at the
company affiliations of various current and past
ext2 developers: Cluster File Systems, Digeo,
IBM, OSDL, Red Hat, SuSE, VMWare, and
others. Different companies have different pri-
orities, and have supported the growth of ext2/3
capabilities in different ways. Thus, this di-
verse and varied set of developers has allowed
the ext2/3 filesystem to flourish.
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The authors have no doubt that the ext2/3
filesystem will continue to mature and come
to be suitable for a greater and greater number
of workloads. As the old Frank Sinatra song
stated, “The best is yet to come.”

Patch Availability

The patches discussed in this paper can be
found at http://ext2.sourceforge.
net/ols05-patches .
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Abstract

Hypervisor technology presents some promis-
ing opportunities for optimizing Linux deploy-
ment. By isolating a server’s unique properties
into a set of patches to initialization scripts and
other selected files, deployment of a new server
will be demonstrated to occur in a few seconds
by creating a new Xen domain, re-using an ex-
isting file system image and applying patches
to it during domain initialization. To capture
changes to a server’s configuration that occur
while it is running, the paper discusses the po-
tential of copy-on-write file systems to hold
changes to selected files. By separating the ini-
tialization and file data that make a linux server
instance unique, that data can be stored and re-
trieved in a number of ways. The paper demon-
strates how to store and retrieve different ini-
tialization patches over the network and inte-
grate these capabilities into the Xen tools. Po-
tential uses for the techniques demonstrated in
the paper include capacity on demand, and new

methods of provisioning servers and worksta-
tions.

1 Introduction

Virtual machine technology is rapidly be-
coming ubiquitous for commodity processors.
Commercial product has established a foothold
in this space. Open Source products are emerg-
ing and maturing at a rapid pace. This pa-
per demonstrates how the use of virtualization
technology can improve deployment and main-
tenance of Linux servers.

The virtualization technology used for this pa-
per is Xen, an open source hypervisor devel-
oped at the University of Cambridge1. Xen
supports para-virtualized guests, that is operat-
ing systems are modified to run in domains on
top of Xen.

1http://www.cl.cam.ac.uk/Research/
SRG/netos/xen/
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All I/O devices are owned by one or more privi-
leged domains. Typically the first domain to be
created (called domain 0), but other domains
may have control over one or more I/O device.
The privileged domain runs a kernel that is con-
figured with regular device drivers. The privi-
leged domain initializes and services I/O hard-
ware.

Block, network, and USB devices are virtual-
ized by the privileged domain. Backend device
drivers run in the privilege domain to provide a
bridge between the physical device and the user
domains. Front end virtual device drivers exe-
cute in user domains and appear to Linux as a
regular device driver.

While Xen includes management and control
tools (xend and others), an alternate toolset,
vmtools2, is used for the work discussed in
this paper. vmtools is a re-implementation in
“C” of the Xen toolset, which is implemented
in python. vmtools provides the capabilities
needed to configure domains.

vmtools consists of a daemon,xenctld ; a
set of command line tools,vm-* ; andvmm—a
script that provides a more user-friendly fron-
tend to the vmtools. vmtools provides com-
mands for creating a domain, assigning re-
sources to the domain, starting and stopping a
domain, querying information about domains.
The tools are modular, provide ease of use
within scripts, and are easy to modify and ex-
tend.

vmtools are used to demonstrate the flexibil-
ity of the Xen architecture by showing it can
be controlled by multiple toolsets, and also as
a vehicle for extending the Xen configuration
syntax3.

2http://www.cs.utexas.edu/users/
aliguori/vm-tools-0.0.9a.tar.gz

3http://www.cl.cam.ac.uk/Research/
SRG/netos/xen/readmes/user/user.html

2 DEPLOYMENT OVERVIEW

Deployment is the provisioning of a new op-
erating system and associated configuration
for a unique instance of a computer system.
Throughout this paper a unique instance of an
operating system is referred to as a system im-
age. Traditionally, each computer system has
one system image deployed on it. With virtual-
ization technology, each computer system may
have one to many system images deployed,
each executing within its own virtual machine
environment.

Related to deployment is maintenance. After a
system image is established, it must be main-
tained. Software components must be updated
(for example, replaced with new versions) to
address security problems, provide new fun-
tionality, or correct problems with existing soft-
ware. Sometimes this involves replacing one
component, a subset of the overall software
components, or a complete replacement of all
operating system software. Similarly, applica-
tion software and middleware needs to be main-
tained.

Data centers have numerous computer systems,
and numerous system images. To keep things
manageable, most datacenters strive to keep
system images as common as possible. Thus, it
is common practice to choose one specific ver-
sion of an operating system and deploy that on
all (or a large percentage of) the system images.

2.1 Deployment Tasks

Deploying a new system image involves:

• Configuring the physical (or virtual) ma-
chine, such as processor count, physical
memory, I/O devices
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• Installing the operating system software,
such as kernel configuration (smp vs up,
highmem, and so on), device drivers,
shells, tools, documentation, and so on.

• Configuring the operating system (such as
hostname, network parameters, security,
and so on).

• Creating user accounts

• Installing application software

• Configuring application environment

2.2 Current Deployment Methods

There are different ways to deploy multiple
copies of the same system. These include man-
ual deployment, use of a higher-level installa-
tion tool for example kickstart, and installation
customization then cloning.

2.2.1 Manual

The most basic mechanism is to do a manual
install from the same installation media to each
system image. This method is time consuming
and can be error prone (as the system admin-
istrator must execute a series of steps and with
repetition is inclined to miss a step or make a
subtle variation in the process that can have un-
forseen consequences).

2.2.2 Kickstart

Kickstart4 is a tool provided by Red Hat that
enables repeating a system install with identi-
cal parameters. In effect, all questions that are

4http://www.redhat.com/docs/
manuals/linux/RHL-9-Manual/
custom-guide/part-install-info.html .

normally asked by the system installer are an-
swered in advanced and saved in a configura-
tion file. Thus, identical system images may be
installed on multiple machines with reasonable
automation.

2.2.3 YaST Auto Installer

AutoYaST5 functions according to the same
principal as Kickstart. Configuration and de-
ployment of the platform is driven by a con-
figuration file, and the process can be repeated
(with configuration changes) for multiple de-
ployments.

2.2.4 Clone/Customize

Another install method is to clone an installed
system and customize the resulting system im-
age. In many cases a clone operation, which
consists of copying the contents of the original
installed root file system, is quicker than go-
ing through the complete install process. Af-
ter the clone operation, system image specific
customization is then performed. For example,
setting hostname.

3 IMPROVEMENTS AVAILABLE
THROUGH VIRTUALIZATION

Virtualization technology provides opportuni-
ties to improve deployment mechanisms. Im-
proved aspects of deployment include:

• normalization of hardware configuration

• dynamic control over hardware configura-
tion

5http://yast.suse.com/autoinstall/
ref.html .
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• omission of hardware discovery and prob-
ing

• use of virtual block devices (VBD)

• file system reuse

• virtual networking (VLAN)

3.1 Dynamic Control Of Hardware Config-
uration

Without virtualization, changing the number of
CPUs available, the amount of physical mem-
ory, or the types and quantity of devices re-
quires modifying the physical platform. Typ-
ically this requires shutting down the system,
modifying the hardware resources, then restart-
ing the system. (It may also involve rebuilding
the kernel.)

Using virtualization, resources can be modi-
fied through software control. This makes it
possible to take disparate hardware, and still
create normalized virtual machine configura-
tions, without having to physically reconfigure
the machine. Further, it provides the capabil-
ity of redefining virtual machines with more re-
sources available to address capacity issues.

For example, Xen allows you to add and re-
move processors, network, and block devices
from and to user domains by editing a configu-
ration file and running a command-line utility.
No kernel configuration is necessary, and you
don’t need to shut down the physical computer.
This operation can be repeated as often as nec-
essary.

In addition to the advantages in deploying and
maintaining Linux systems, dynamic hardware
configuration makes more advanced workload
management applications easier to implement.

3.2 Virtual Block Devices

Xen privileged domains virtualize block de-
vices by exporting virtual block devices (VBD)
to domU’s. Any block device accessible by
Linux can be exported as a VBD. As part of
the process of setting up a VBD, the system ad-
ministrator specifies the device path the VBD
should appear to the domU as. For example
/dev/sda1 or /dev/hda5 . Disk partitions
may be exported this way, or a VBD may be
backed by a file in dom0’s file system.

Virtual block devices provide two benefits to
deployment and maintenance of Linux servers.
First, they provide hardware normalization as
described above. (Every domain can have an
identical fstab, for example). Secondly, VBDs
make the reuse of file systems with Xen do-
mains exceedingly simple, even for read/write
file systems.

3.3 Virtual Networking

Xen privileged domains virtualize network de-
vices in a manner similar to VDBs. The priv-
ileged domain kernel initializes network inter-
faces and starts networking services just as a
normal kernel does. In addition, Xen privileged
domains implement a virtual LAN and use the
Xen network back end (netback) driver to ex-
port virtual network interfaces to user domains.

User domains import virtualized network in-
terfaces as “devices,” usuallyeth0...ethN .
The virtualized eth0, for example, is really a
stub that uses Xen inter-domain communica-
tion channels to communicate with the netback
driver running in a privileged domain. Finally,
the Xen privileged domain bridges virtualized
network interfaces to the physical network us-
ing standard Linux bridge tools.

The most common practice is to use private IP
addresses for all the virtual network interfaces
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and then bridge them to a physical network in-
terface that is forwarded using Network Ad-
dress Translation (NAT) to the “real world.”

A significant benefit of this method for deploy-
ment and maintenance of servers is that every
server can have identical network configura-
tions. For example, every user domain can have
the same number of network interfaces and can
use the same IP configuration for each inter-
face. Each server can use the bridging and NAT
forwarding services of the privileged domain to
hide their private addresses. Note that bridging
without NAT is also a common practice, and
allows user domains to host externally visible
network interfaces.

3.4 File System Reuse

Xen’s Virtual Machine technology can export
file systems and file images to virtual ma-
chines as devices. Sharing file systems among
Linux platforms is a time-honored technique
for deploying Linux servers, and virtual ma-
chine technology simplifies the sharing of file
systems.

File System reuse is an especially helpful tech-
nique for deploying and maintaining Linux sys-
tems. The vast majority of the time spent de-
ploying a new Linux system is spent creating
and populating the file systems.

Re-using read-only file systems is exceedingly
simple in Xen. All you have to do is ex-
port the file system as a device to Xen. For
example, the linedisk = [’file:/var/

images/xen_usr,sda1,r’] causes the file
system image/var/images/xen_usr to
be exported to the user domain as/dev/
sda1 . (All configuration commands are rel-
ative to the privilged domain’s view of the
world.) Because this is a read-only file system
you don’t need to do anything special to syn-
chronize access among domians.

In addition to file system images, the Xen do-
main configuration syntax allows you to export
both physical devices and network file systems
as devices into the new domain. A future ver-
sion of Xen will the exporting of a VFS direc-
tory tree to a Xen domain as a device.

Read/write file systems are not as easy to share
among domains because write access must be
synchronized among domains. There are at
least three ways to do this:

• Use a storage server that provides exter-
nal, sychronized shared storage. There is
a range of systems that have this capabil-
ity.

• Use a copy-on-write file system. One such
file system is unionfs.6

• “Fork” an existing file system by duplicat-
ing it for each new domain. This is a sim-
ple and expedient (if not efficient) way to
re-use read-write file systems.

The Logical Volume Manager (LVM)7 has an
interesting snapshot capability that was de-
signed primarily to support hot backups of file
systems, but which could evolve into a copy-
on-write file system appropriate for use with
Xen.

One problem with re-use of read-write file sys-
tems is that they usually contain configuration
files that are specific to an individual Linux sys-
tem. For example,/etc on a Linux system
contains most of the uniqueness of a system. If
you are going to re-use an/etc file system,
you need an automated way to “fork” and mod-
ify it. Fortunately the typical system does not

6http://www.fsl.cs.sunysb.edu/
project-unionfs.html

7http://www.tldp.org/HOWTO/
LVM-HOWTO/index.html .
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need a vast number of changes in/etc and
as a result it is possible to automate the “fork-
ing” process. Later this paper discusses some
tools we have developed to automate the cre-
ation, modification, and exporting of file sys-
tems under Xen.

4 EXPLOITING XEN TO DE-
PLOY SERVERS

A variation of the clone and modify approach
is proposed to deploy Linux on Xen virtual ma-
chines. In addition, an extended configuration
syntax and Xen deployment tool is proposed to
integrate the deployment process with Xen do-
main creation. This approach uses Xen to im-
prove on the existing clone methods in the fol-
lowing ways:

• Xen allows exporting of VBDs to do-
mains, where they appear as virtual de-
vices, such as SCSI or IDE drives. This
is an improvement over cloning a file sys-
tem image to a bare-metal server.

• Xen allows the exporting of NFS volumes
as virtual devices. This privides a file sys-
tem with some of the same advantages as
VBDs.

• Xen allows provides control over the
“hardware” environment of each new
server. By exporting specific devices to
the new domain, it is not necessary to ac-
comodate all the possible hardware con-
figurations when deploying a new server.
For example, all domains within an orga-
nization may appear to have only SCSI
block devices, despite variation in the un-
derlying physical hardware.

4.1 Deploying Application Stacks

The flexibility to export specific file systems to
the new partitions means that it is much eas-
ier to deploy new servers for specific applica-
tions. For example, a file system image can be
prepared with a complete DBMS stack. When
a new data base server is needed, a Xen do-
main can be created using the DBMS file sys-
tem images. In this case, Xen can export the
DBMS image to the new domain. The new
domain can and mount the image read-only as
/opt/dbms/ . Exporting of pre-built file sys-
tems as virtual devices to Xen domains sim-
plifies the deployment of application-specific
servers.

4.2 Xen Deployment Methodology

The general methodology used is to create
a handful of “canned” file systems that can
be mixed-and-matched to create new Xen do-
mains by exporting them as VDBs or NFS
mounts. For example,/usr and /bin as
standard read-only file systems;/etc as a
read/write file system that needs to be prepro-
cessed;/var/ and /home as read-write file
systems that need COW or snapshot capabil-
ity; Variations of/opt for specific application
stacks, and so on.

Extending vmtools to support integrated de-
ployment and domain creation requires some
new configuration properties for domains, as
well as some shell scripts to perform prepro-
cessing on the images to customize them (when
necessary) for each domain.

The “Xen Domain Container” is comprised of
the following:

• An overall configuration file for the new
domain. This is an extended version of
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the existing domain configuration file used
by the vmmcommand. The extensions
include information about the domain’s
VDB or NFS file systems and how they
should be processed by vmtools prior to
domain creation. The extended-syntax
configuration file is called a “container
file.”

• File System Images. Each image consists
of a file system stored in a compressed
cpio archive (just as initrd). In addition,
each file system image has metadata in
the container file for the file system and
processing instructions for vmtools. The
metadata and processing instructions de-
scribe characteristics of the file system in-
cluding where it should be mounted by the
new domain, whether it should be read-
only or read-write, and how it needs to be
customized for each new domain.

For example, a file system that is to be
mounted by the new domain as/etc
needs to be customized for each new do-
main. The /etc file system includes
the sysinit data and configuration files,
plus user and group accounts, file system
mounting, hostnames, terminal configura-
tion, etc.

• Init hooks. Each file system can include
shell scripts that will be driven by a con-
figuration file, also in that file system. The
idea is to have vmtools preprocess the file
system, then mount it on a device (or ex-
port it using NFS). During domain startup,
the initrd/init process looks for a “post
processing” shell script and executes the
script on the mounted file system. De-
pending upon the context of the init pro-
cess, it may remount file systems and ex-
ecute a pivot-root and restart the init pro-
cess.

4.3 Composing a Xen Container

An important goal is to make composing and
maintaining Xen domain containers as simple
as possible. The container file may contain
standard Xen domain configuration statements
in addition to “container” syntax. Both types
of statements (standard Xen configuration and
container) may be intermixed throughout the
file.

The container syntax refers to file system
images using URIs. Each URI may point
to a file system image stored locally, as
in file:///var/images/etc.cpio.gz ; or
remotely, as inhttp://foo.org/images/

etc.cpio.gz . This reference syntax has two
important advantages:

• Simplification of file system deployment.
Using a URI reference for each file system
image allows the administrator to keep
a canonical image on a network server.
When starting the domain, vmtools will
follow the URI and download the file sys-
tem and perform pre-processing on a lo-
cal copy. The tools follow this process for
each URI reference configured for use by
the domain.

• Simplification of file system maintene-
nace. For read-only file systems that con-
tain applications, such as/bin , /sbin ,
and /usr , applying updates and patches
comprise a large percentage of the ad-
ministrator’s time. The URI reference al-
lows the administrator to patch or update
the cononical, network-resident file sys-
tem image. Domains can be configured to
retrieve their file system images every time
they start. A more advanced design would
provide a way for the domain initialization
to check for recent updates to its file sys-
tem images.
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4.3.1 Domain Customization

Domain customization involves applying mod-
ifications to Linux configuration files residing
within a file system image. After retrieving a
file system image, vmtools can mount and mod-
ify the image before starting the Xen domain.

The container syntax provides three different
methods for modifying files within a file sys-
tem image:

• File replacement. This mechanism causes
vmtools to replace the content of a file
with text embedded in the configuration
file itself. The conainter syntax for file re-
placement is shown in Figure 1.

This simple expression in Figure 1 will
cause vmtools to retrieve the file system
archive at http://images.xen.foo.

org/etc.cpio.gz , expand the archive,
and replace the file /etc/HOSTNAME with
a new file. The new file will contain
a single line, “FCDOBBS.” If /etc/
HOSTNAMEdoes not exist, it will be cre-
ated.

There are additional options in the file re-
placement syntax to create a patch file by
comparing the original and modified file
systems, and to “fork” the archive by cre-
ating a new copy (with the modifications)

vmtools makes some simple attempts to
be efficient. It will only retrieve and ex-
pand file system image once per invoca-
tion. Thereafter, it will use a locally ex-
panded copy. The creator of the container
file can order expressions so that the file
system is forked only after it has been
completely processed.

The remaining methods for modifying
files follow the same patterns as the re-
placement method.

• File copy. This mechanism causes vm-
tools to retrieve a file and copy the re-
trieved file over an existing file.

• File system patching. This mechanism re-
trieves a patch and then applies the patch
to the file system.

4.3.2 Steps to Compose a Xen “Container”

Composing a Xen container, then, involves:

• Preparing file system images. This step
only needs to be performed initially, af-
ter which you can use the same file system
images repeatedly to deploy further Linux
domains. The tools discussed in this paper
provide commands that automate file sys-
tem preparation. (Remember, a file sys-
tem image is simply a compressed cpio
archive).

• Creating the container file. The container
file defines the new domain, including the
location of the kernel, the amount of mem-
ory, the number of virtual processors, vir-
tual block devices, virtual ethernets, and
so on. The proposed container expressions
prepare, retrieve, and process file system
images for use by the new domain.

All information describing the domain is
present in the container file: resources, devices,
kernel, and references to file systems. Further,
the container file includes processing instruc-
tions for each file system, with the ability to
retrieve updated file systems whenever the do-
main is started. This collection of information
is referred to as a “domain container” because
it is self-contained and portable from one xen
platform to another.

At the present time one container file must be
created for each domain. However, because
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CONTAINER SYNTAX FOR FILE REPLACEMENT

[replace /etc/HOSTNAME
archive http://foo.org/images/etc.cpio.gz

FCDOBBS

] [end]

Figure 1: Container Syntax for File Replacement. This simple example shows the
/etc/HOSTNAME file being replaced with one text line containing “FCDOBBS.”

most of the configuration syntax (including the
extensions we propose) is boilerplate, there are
improvements which will allow reuse of a con-
tainer template to control the deployment and
maintenance of multiple domains.

To complete the deployment, you must process
the domain container usingvm-container ,
as shown in Figure 2. This example is assumed
to be running as a user process in the Xen Do-
main0 virtual machine. Domain0 is always the
first domain to run on a Xen platform, and it is
created implicitly by Xen at boot time.

The command in Figure 2 parses the con-
tainer file my-domain and processes all the
extended-syntax expressions within that file. It
also produces the standard Xen configuration
file my-config . Output is logged to/var/
log/domain , and/var/images is used as
the working directory for processing file system
images.

At this point all that’s left is to start the domain
usingvmm create my-config .

4.4 Xen Container Syntax

The Xen container syntax is a superset of “stan-
dard” Xen configuration syntax. Using the
standard Xen syntax you can define the domain
boot kernel and boot parameters, the amount of

memory to allocate for the domain, which net-
work and disk devices to virtualize, and more.
The expressions discussed below arein addi-
tion to the standard Xen syntax and both types
of expressions may be mingled in the same con-
tainer file.

The Xen container syntax will expand as fur-
ther experience using it to deploy Linux sys-
tems is gained. The syntax is presently com-
plete enough to manage the creation, deploy-
ment, and maintenance of Xen domains, in-
cluding the composition and reuse of file sys-
tem images.

The Xen container syntax is explained below
using examples. In actual use, the container file
will have a number of container expressions.
The vm-container parser only makes one
pass through the container file and it processes
each expression in the order it is declared
within the file. Dependent expressions, such
as apopulate expression which refers to an
archive instantiated by acreate expression,
must be in the correct order.

4.5 Creating a File System Image

A file system image for a Xen container can be
created from any existing file system. For ex-
ample, the expression



106 • Using a the Xen Hypervisor to Supercharge OS Deployment

PROCESSING THE DOMAIN CONTAINER

vm-container --container my-domain \
--stripped my-config --log /var/log/domain \
--dir /var/images

Figure 2: Processing the Domain Container

[create
/etc/

ftp://foo.org/images/etc.cpio.gz
][end]

will create a compressedcpio archive out of
the contents of the local/etc/ directory tree.
It will then store that archive usingftp to
the URI ftp://foo.org/images/etc.
cpio.gz

4.6 Creating a Sparse File System

Loopback devices are especially convenient to
use with Xen. Theimage expression will
causevm-container to create a sparse file
system image, formatted as anext3 volume.

[image /var/images/fido-etc
50MB

fido_etc] [end]

This example will causevm-container to
create a sparse 50 MB file system image at
/var/images/fido-etc . The file system
will be formatted and labelled asfido-etc .

4.7 Populating a File System Image

Any type of volume (LVM, NFS, loopback,
or physical device) exported to a Xen domain
needs to have a formatted file system and be
populated with files. Thepopulate expres-
sion will make it happen.

[populate image
/var/images/fido-etc
/mnt/
ftp://foo.org/images/etc.cpio.gz
][end]

The example above will cause
vm-container to mount the file sys-
tem /var/images/fido-etc to
/mnt using a loopback device. It
will then retrieve the archive ftp:

//foo.org/images/etc.cpio.gz , ex-
pand the archive into/mnt , sync , umount ,
and delete the loop device.

4.8 Replacing and Copying

Figure 1 shows an example of replacing a spe-
cific file within a file system. Thereplace
expression can also be used to generate adiff
file that isolates the modifications made to the
file system. It can also create an new file system
archive based on the modifications.

The copy expression is almost identical to
replace , except that it retrieves whole files
using URI references and copies those file into
the file system being modified. It also supports
patch generation and forking.

4.9 Patching a File System

Thereplace andcopy expressions can both
generate a patch file that isolates modifications
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to a file system. Once that patch file is created,
you can use it repeatedly to modify file systems
during domain initialization.

[patch
file://var/ images/fido-etc
ftp://foo.org/ images/fido-etc.patch 1
file:///var/ images/fido-etc-patched
][end]

This example will retrieve a patch file
from ftp://foo.org/images/fido-etc.

patch1 . It will then expand and patch the file
system image at/var/images/fido-etc .
It will then “fork” the file system by saving
a patched archive atfile:///var/images/

fido-etc-patched .

4.10 Forking File Systems

While each of thereplace , copy , and
patch expressions will “fork” the file system,
doing so should only occur after that file sys-
tem had undergone all the modifications indi-
cated by the container file. The statement that
causes the file system to be copied and stored is
always optional.

5 Further Work

The notion of using a hypervisor to supercharge
OS deployment is valuable and warrants fur-
ther development effort. In particular, the inte-
gration of file system image customization with
Xen management and control tools proved very
successful. The concept of capturing the unique
personality of a domain as a set of changes to
file system images was straightforward and fa-
miliar, and it worked as expected. A number of
files were successfully patched during domain
initialization, including the/etc/passwd ,

/etc/shadow , and /etc/groups . These
last three examples show how user accounts
and group member can be modified during do-
main initialization.

Patching user accounts and authorization data
during domain initialization is dangerous, espe-
cially since our tools retrieved patchfiles over
the network. High on the list of further work
is generation and verification of cryptographic
signatures for all file system images and differ-
ence files. It would also be prudent to generate
and verify signatures for the extended configu-
ration file.

While modifying file systems during domain
initialization from Domain 0’s userspace was
very reliable, mixed success was achieved
when modifying file systems during the kernel
init process. Sometimes patches were success-
ful but usually the patches failed or the init pro-
cess died and was respawned. Continued ex-
perimentation with the init process as a vehicle
for domain customization is warrented.

5.0.1 LVM

LVM has great potential to augment the ap-
proach to domain deployment. In fact, it is al-
ready a great tool for use with virtual machines.
The LVM snapshot capability, while design for
hot backups, works as a COW file system but
needs to be evaluated further with this particu-
lar use model in mind.
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Abstract

The Active Block I/O Scheduling System
(ABISS) is an extension of the storage subsys-
tem of Linux. It is designed to provide guar-
anteed reading and writing bit rates to applica-
tions, with minimal overhead and low latency.

In this paper, the various components of ABISS
as well as their actual implementation are de-
scribed. This includes work on the Linux ele-
vator and support for delayed allocation.

In a set of experimental runs with real-life data
we have measured great improvements of the
real-time response of read and write operations
under heavy system load.

1 Introduction

As storage space is getting cheaper, the use
of hard disk drives in home or mobile con-
sumer devices is becoming more and more
mainstream. As this class of devices like HDD
video recorders, media centers and personal au-
dio and video players were originally intended
to be used by one person at a time (or by mul-
tiple persons, but watching the same content),
performance of the hard disk drives was not a

real issue. Adding more video sources to such
a device (more tuners, for instance), however,
will strain the storage subsystem by demand-
ing the recording of multiple streams simulta-
neously. As these devices are being enabled
with connectivity options and become intercon-
nected through home networks or personal area
networks, a device should also be able to serve
a number of audio or video streams to multi-
ple clients. For example, a media center should
be able to provide a number of so-called me-
dia extenders or renderers throughout the house
with recorded content. Putting aside high bit
rate tasks, even simple low-end devices could
benefit from a very low latency storage system.

Consumer electronics (CE) equipment has to
consist of fairly low-cost hardware and often
has to meet a number of other constraints like
low power consumption and low-noise oper-
ation. Devices serving media content should
therefore do this in an efficient way, instead
of using performance overkill to provide their
soft-real-time services. To be able to accom-
plish this sharing of resources in an effective
way, either the applications have to be aware of
each other or the system has to be aware of the
applications.

In this paper we will present the results of work
done on the storage subsystem of Linux, re-
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sulting in theActive Block I/O Scheduling Sys-
tem (ABISS). The main purpose of ABISS is
to make the system application-aware by ei-
ther providing a guaranteed reading and writ-
ing bit rate to any application that asks for
it or denying access when the system is fully
committed. Apart from these guaranteed real-
time (RT) streams, our solution also introduces
priority-based best-effort (BE) disk traffic.

The system consists of a framework included in
the kernel, with a policy and coordination unit
implemented in user space as daemon. This ap-
proach ensures separation between the kernel
infrastructure (the framework) and the policies
(e.g. admission control) in user space.

The kernel part consists mainly of our ownel-
evator and the ABISSscheduler. The eleva-
tor implements I/O priorities to correctly dis-
tinguish between real-time guaranteed streams
and background best-effort requests. The
scheduler is responsible for timely preloading
and buffering of data. Furthermore, we have
introduced an alternative allocation mechanism
to be more effectively able to provide real-time
writing guarantees. Apart from these new fea-
tures, some minor modifications were made to
file system drivers to incorporate our frame-
work. ABISS supports the FAT, ext2, and ext3
filesystems.

ABISS works from similar premises as RTFS
[1], but puts less emphasis on tight control of
low-level operations, and more on convergence
with current Linux kernel development.

In Section 2 a general overview of the ABISS
architecture is given. Section 3 describes the
steps involved in reading and explains the solu-
tions incorporated in ABISS to control the in-
volved latencies. The same is done for the writ-
ing procedure in Section 4. Performance mea-
surements are presented in Section 5, followed
by future work in Section 6 and the conclusions
in Section 7.

The ABISS project is hosted athttp://
abiss.sourceforge.net .

2 Architecture

An application reading or writing data from
a hard drive in a streaming way needs timely
availability of data to avoid skipping of the
playback or recording. Disk reads or writes can
introduce long and hard-to-predict delays both
from the drive itself as well as from the vari-
ous operating system layers providing the data
to the application. Therefore, conventionally
a streaming application introduces a relatively
large buffer to bridge these delays. The prob-
lem however is that as the delays are theoreti-
cally unbounded and can be quite long in prac-
tice (especially on a system under heavy load),
the application cannot predict how much buffer
space will be needed. Worst-case buffering
while reading means loading the whole file into
memory, while a worst-case write buffer should
be large enough to hold all the data which is be-
ing written to disk.

2.1 Adaptive buffering

If I/O priorities are introduced and thus the
involved delays become more predictable, an
adaptive buffering scheme may be a useful ap-
proach. The adaptive algorithm can compen-
sate for disk latency, system speed and various
other variables. Still, an application will need
to know how much competition it will face and
what the initial parameters should be. Also, the
algorithm would need some way to correctly di-
mension the buffer to be able to sustain some
background activity.

Furthermore, some fairness against lower-
priority I/O should be maintained. If any appli-
cation can raise its priority uncontrolled, best-
effort traffic can be completely starved. Too
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Figure 1: Global ABISS architecture layout.

many applications doing too much I/O at a high
priority can also result in unbounded delays for
those applications, simply because there are not
enough system resources available. Clearly, ad-
mission control is needed.

ABISS implements such an adaptive buffering
algorithm as a service for streaming applica-
tions on a relatively coarse time scale; buffer
sizes are determined when the file is opened
and may be adapted when the real-time load
changes (i.e., when other high-priority files are
opened). It makes use of elevated I/O prior-
ities to be able to guarantee bounded access
times and a real-time CPU priority to be able
to more effectively predict the various operat-
ing system related delays. Furthermore, the file

system meta-data is cached. All delays are thus
predictable in non-degenerate cases and can be
caught by a relatively small buffer on system
level, outside of the application.

Furthermore, an admission control system is
implemented in a user-space daemon to make
sure no more commitments are made than the
available resources allow. It should be noted
that although our daemon offers a framework
for extensive admission control, only a very ba-
sic system is available at the moment. The ar-
chitecture of our framework as incorporated in
the Linux kernel is shown in Figure 1.

Prior versions of ABISS used very fine-grained
administration and measurement instrumenta-
tion to have very narrowly defined performance
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PROBLEM
disk reads can introduce long
and hard to predict delays

PROBLEM
prefetcher needs bounded
access time

SOLUTION
use elevated I/O priority

SOLUTION
use elevated CPU priority

SOLUTION
prefetch data

PROBLEM
meta−data lookups and writes
delay access

SOLUTION
mount with noatime

PROBLEM
allocation of disk space may
mean significant I/O

SOLUTION
allocate disk space
asynchronously

SOLUTION
cache meta−data

PROBLEM
regular writeback keeps up
poorly with delayed allocation

GOAL
Provide near−zero I/O time

SOLUTION
explicitly write back pages

Figure 2: Overview of the solutions incorporated in ABISS.

characteristics. With time, these demands
on the underlying layers have gotten “softer.”
Since we are covering larger parts of the sys-
tem, leading to influences beyond our full con-
trol like the allocation of disk space, we cannot
predict the involved delays with such precision
as before.

2.2 Service model

When an application requests the services of
ABISS (we call such an application anABISS
user, or, more specifically, anABISS readeror
writer), it informs the system about both the
bit rate as well as the maximum read or write
burst size it is planning to use. A function
which opens a file and sets these parameters
is available in the ABISSmiddleware library.
Given knowledge of the general system respon-
siveness (I/O latencies, system speed and back-
ground load), the buffer can be correctly dimen-
sioned using these variables. This information

is also used in the admission control scheme in
the daemon which oversees the available sys-
tem resources.

As the behavior of a streaming application is
highly predictable, a fairly simple prefetcher
can be used to determine which data should be
available in the buffer. The prefetching policy
is concentrated in the ABISS scheduler. A sep-
arate worker thread performs the actual read-
ing of the data asynchronously, to keep the re-
sponse time to the application to a minimum.

We use the prefetcher mechanism also when
writing, in which case it is not only responsi-
ble for the allocating and possibly loading of
new pages, but also for coordinating writeback.

To minimize the response time during writing
the operations which introduce delays are re-
moved from the calling path of the write opera-
tion of the application. This is done by postpon-
ing the allocation, to make sure this I/O inten-
sive task is done asynchronously at a moment
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the system has time to spare. In our “delayed
allocation” solution, space for new data in the
buffer does not get allocated until the moment
of writeback.

An overview of the above solutions is shown
graphically in Figure 2. The technical imple-
mentations will be elaborated below.

2.3 Formal service definition

The real-time service offered to an application
is characterized by a data rater and a maximum
burst read sizeb. The application sets theplay-
out point to mark the location in the file after
which it will perform accesses. As long as the
playout point moves at rater or less, accesses
to up tob bytes after the playout point will be
guaranteed to be served from memory.

If we consider reading a file as a sequence ofn
single-byte accesses with thei-th access at lo-
cationai at timeti and with the playout point set
to pi , the operating system then guarantees that
all accesses are served from memory as long as
the following conditions are met for alli, j in
1, . . . ,n with ti < t j :

pi ≤ p j < pi +b+ r(t j − ti)
p j ≤ a j < b+min(p j , pi + r(t j − ti))

The infrastructure can also be used to imple-
ment a prioritized best-effort service without
guarantees. Such a service would ensure that,
on average and when measured over a suffi-
ciently long interval, a reader that has always at
least one request pending, will experience bet-
ter latency and throughput, than any reader us-
ing a lower priority.

3 Reading

When reading a page of file data, the kernel first
allocates a free page. Then it determines the

location of the corresponding disk blocks, and
may create so-calledbuffer heads1 for them.
Next, it submits disk I/O requests for the buffer
heads, and waits for these requests to com-
plete. Finally, the data is copied to the appli-
cation’s buffer, theaccess timeis updated, and
the read system call returns. This procedure
is illustrated in Figure 3.

Guaranteed slots

Marginal delay

I/O request enqueuing

Page allocation

Y N
?

P
refetching

Page is already in the page cache ?

Buffer head allocation

Location lookup When opening file

Marginal delay

I/O request completion

Data copy

Meta−data update

Application mlocks buffer

Mount with noatime

Disk I/O priorityI/O

Figure 3: The steps in reading a page, and how
ABISS controls their latency.

If trying to read a page that is already present
in memory (in the so-calledpage cache), the
data becomes available immediately, without
any prior I/O. Thus, to avoid waiting for data
to be read from disk, we make sure that it is
already in the page cache when the application
needs it.

3.1 Prefetching

We can accurately predict which data will be
read, and can therefore initiate the read process
ahead of time. We call thisprefetching. Pages

1A buffer head describes the status and location of
a block of the corresponding file system, and is used to
communicate I/O requests to the block device layer.
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read in advance are placed in aplayout buffer,
illustrated in Figure 4, in which they are kept
until the application has read them. After that,
pages with old data are evicted from the playout
buffer, and new pages with data further into the
file are loaded. This can also be thought of as a
buffer sliding over the file data.

upgrade existing request
Request new page or

Playout point

playout point
Application moves

Drop first page, shift window

Page arrives (in page cache)

Page cache

Playout buffer

Figure 4: Playout buffer movement is initiated
by the application moving its playout point.
More than one page may be “in flight” at once.

The playout buffer maintained by ABISS is not
a buffer with the actual file data, but an array
of pointers to the page structures, which in turn
describe the data pages.

Since the maximum rate at which the applica-
tion will read is known, we can, given knowl-
edge of how long the data retrieval will take,
size the playout buffer accordingly, as shown
in Figure 5. For this, we consider the space de-
termined by the application, and the buffering
needed by the operating system to load data in
time. The application requests the total buffer
size it needs, which comprises the maximum
amount of data it will read at once, and the
space needed to compensate for imperfections
in its scheduling. To this, buffering is added

to cover the maximum time that may pass be-
tween initiating retrieval of a page and its ar-
rival, and the batching described in Section 3.4.

Application jitter

Read size or work area

Kernel latency

IO latency

Application−dependent buffering

Operating system and hardware
dependent buffering

Read batching

Figure 5: The playout buffer of the scheduler
provides for buffering needs resulting from ap-
plication properties and from latencies caused
by the operating system and the hardware.

Prefetching is similar to theread-aheadpro-
cess the kernel performs regularly when se-
quentially reading files. The main differences
are that read-ahead uses heuristics to predict the
application behaviour, while applications ex-
plicitly tell ABISS how they will read files, and
that ABISS keeps a reference to the pages in the
playout buffer, so that they cannot be reclaimed
before they have actually been used.

Prefetching is done in a separate kernel thread,
so the application does not get delayed.

For prefetching to work reliably, and with-
out consuming excessive amounts of memory,
data retrieval must be relatively quick, and the
worst-case retrieval time should not be much
larger than the typical retrieval time. In the fol-
lowing sections, we describe how ABISS ac-
complishes this.
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3.2 Memory allocation

When reading a page from disk, memory allo-
cation happens mainly at three places: (1) when
allocating the page itself, (2) when allocating
the buffer heads, and (3) when allocating disk
I/O request structures.

The first two are regular memory allocation
processes, and we assume that they are not
sources of delays significantly larger than disk
I/O latency.2

The number of disk I/O request structures is
limited by the maximum size of the request
queue of the corresponding device. If the re-
quest queue is full, processes wanting to en-
queue new requests have to wait until there is
room in the queue. Worse yet, once there is
room, all processes waiting for it will be han-
dled in FIFO order, irrespective of their CPU
priority.

In order to admit high priority I/O requests
(see below) instantly to the request queue, the
ABISS elevator can be configured to guarantee
a certain number of requests for any given pri-
ority. Note that this does not affect the actual
allocation of the request data structure, but only
whether a process has to wait before attempting
an allocation.

3.3 Prioritized disk I/O

The key purpose of ABISS is to hide I/O la-
tency from applications. This is accomplished
mainly through the use of prefetching. Now,
in order to make prefetching work properly, we
also have to limit the worst-case duration3 of

2In fact, they are much shorter most of the time, ex-
cept when synchronous memory reclaim is needed.

3We ignore degenerate cases, such as hardware er-
rors.

Application playout point

Beginning of playout buffer

Page is no longer used

Page is accessible and up to date

Page is being loaded

Pending read request

Advances at the requested rate (or less)

Moves freely

Figure 6: Playout buffer movement is con-
trolled by the kernel, and tracks the position of
the playout point, controlled by the application.

I/O requests, independent from what compet-
ing applications may do.

ABISS achieves isolation against applications
not using ABISS by giving I/O requests issued
by the prefetcher thread a higher priority than
requests issued by regular applications. The
priorities are implemented in theelevator:4 re-
quests with a high priority are served before any
requests with a lower priority. We currently use
an elevator specifically designed for ABISS. In
the future, we plan to migrate to Jens Axboe’s
more versatile time-sliced CFQ elevator [2].

An interesting problem occurs if a page enters
an ABISS playout buffer while being read at
a low priority. In order to avoid having to wait
until the low priority requests get processed, the
prefetcherupgradesthe priority of the requests
associated with the page.

We have described the ABISS elevator in more
detail in [3].

4Also called “I/O scheduler.” In this paper, we use
“elevator” to avoid confusion with the CPU scheduler
and the ABISS scheduler.
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Figure 7: Playout buffer movement is limited by a credit that accumulates at the rate requested by
the application, and which is spent when the playout buffer advances through the file.

ABISS users may also compete among each
other for I/O. To ensure that there is enough
time for requests to complete, the playout
buffer must be larger if more ABISS users
are admitted. Dynamically resizing of play-
out buffers is currently not implemented. In-
stead, the initial playout buffer size can be cho-
sen such that it is sufficiently large for the ex-
pected maximum competing load.

3.4 Rate control

Movement of the playout buffer is limited to
the rate the application has requested. Appli-
cation and kernel synchronize through the so-
called playout point: when the application is
done accessing some data, it moves the playout
point after this data. This tells the kernel that
the playout buffer can be shifted such that its

beginning lines up with the playout point again,
as shown in Figure 6.

We require explicit updating of the playout
point, because, when usingread andwrite ,
the file position alone may not give an accurate
indication of what parts of the file the applica-
tion has finished reading. Furthermore, in the
case of memory-mapped files, or when using
pread andpwrite , there is no equivalent of
the file position anyway.

The ABISS scheduler maintains acredit for
playout buffer movements. If enough credit is
available to align the playout buffer with the
playout point, this is done immediately. Oth-
erwise, the playout buffer catches up as far as
it can until all credit is consumed, and then ad-
vances whenever enough new credit becomes
available. This is illustrated in Figure 7.
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The credit allows the playout buffer to “catch
up” after small distortions. Its accumulation is
capped to the batch size described below, plus
the maximum latency for timer-driven playout
buffer movement, as shown in Figure 8.

1 jiffie

Timer latency

Work queue latency

Batch size

1 jiffie

Timer is set

C
re

di
t l

im
it

Maximum delay
between adding
work queue
entry and credit
calculation

Minimum duration
of wait

Maximum delay between
timer tick and addition of
work queue entry

Credit is updated

Figure 8: The limit keeps the scheduler from
accumulating excessive credit, while allowing
it to compensate for the delays occurring when
scheduling operations.

If the file was read into the playout buffer one
page at a time, and there is also concurrent
activity, the disk would spend an inordinate
amount of time seeking. Therefore, prefetch-
ing only starts when a configurablebatching
threshold is exceeded, as shown in Figure 9.
This threshold defaults to ten pages (40 kB).

Furthermore, to avoid interrupting best-
effort activity for every single ABISS reader,
prefetching is done for all files that are at
or near (i.e., half) the batching threshold, as
soon as one file reaches that threshold. This is
illustrated in Figure 10.

3.5 Wrapping up

Copying the data to user space could consume
a significant amount of time if memory for the
buffer needs to be allocated or swapped in at
that time. ABISS makes no special provisions
for this case, because an application can easily
avoid it by mlock ing this address region into
memory.

Finally, the file system may maintain an access
time, which is updated after each read opera-
tion. Typically, the access time is written back
to disk once per second, or less frequently. Up-
dating the access time can introduce particu-
larly large delays if combined with journaling.
Since ABISS currently provides no mechanism
to hide these delays, file systems used with it
should be mounted with thenoatime option.

4 Writing

When writing a page, the overall procedure is
similar to reading, but a little more compli-
cated, as shown in Figure 11: if the page is not
already present in the page cache, a new page is
allocated. If there is already data for this page
in the file, i.e., if the page does not begin be-
yond the end of file, and does not in its entirety
coincide with a hole in the file, the old data is
read from disk.

If we are about to write new data, the file sys-
tem driver looks for free space (which may
involve locking and reading file system meta-
data), allocates it, and updates the correspond-
ing file system meta-data.

Next, the data is copied from the user space
buffer to the page. Finally, the status of the
buffer heads and the page is set to “dirty” to in-
dicate that data needs to be written back to disk,



118 • Active Block I/O Scheduling System (ABISS)

A

B

A

B

Position of disk head

Seek

Position of disk head

Read

Time

Time

Figure 9: Reading a file (A) with ABISS one
page at a time (above) would cause many seeks,
greatly slowing down any concurrent best-
effort reader (B). Therefore, we batch reads
(below).

and to “up to date” to indicate that the buffers,
or even the entire page, are now filled with valid
data. Also file meta-data, such as the file size,
is updated.

At this point, the data has normally not been
written to disk yet. Thiswriteback is done
asynchronously, when the kernel scans fordirty
pages to flush.

If using journaling, some of the steps above in-
volve accesses to the journal, which have to
complete before the write process can continue.

If overwriting already allocated regions of the
file, the steps until after the data has been
copied are the same as when reading data, and
ABISS applies the same mechanisms for con-
trolling delays.

4.1 Delayed allocation

When writing new data, disk space for it would
have to be allocated in thewrite system call.

B

B

A

C

A

C

Position of disk head

Position of disk head

Time

Time

Figure 10: If there are multiple ABISS read-
ers (A andC), further seeks can be avoided if
prefetching is synchronized (below).

It is not possible to do the allocation at prefetch
time, because this would lead to inconsistent
file state, e.g., the nominal end-of-file could dif-
fer from the one effectively stored on disk.

A solution for this problem is to defer the al-
location until after the application has made
the write system call, and the data has been
copied to the page cache. This mechanism is
calleddelayed allocation.

For ABISS, we have implemented experimen-
tal delayed allocation at the VFS level: when
a page is prefetched, the newPG_delalloc
page flag is set. This flag indicates to other VFS
functions that the corresponding on-disk loca-
tion of the data is not known yet.

Furthermore, PG_delalloc indicates to
memory management that no attempt should be
made to write the page to disk, e.g., during nor-
mal writeback or when doing async . If such
a writeback were to happen, the kernel would
automatically perform the allocation, and the
page would also get locked during this. Since
allocation may involve disk I/O, the page may
stay locked for a comparably long time, which
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Figure 11: The steps in writing a page (without
ABISS).

could block an application using ABISS that is
trying to access this page. Therefore, we ensure
that the page does not get locked while it is still
in any playout buffer.

The code to avoid allocation is mainly
in fs/buffer.c , in the functions __
block_commit_write (we set the entire
page dirty), cont_prepare_write and
block_prepare_write (do nothing if us-
ing delayed allocation), and also inmpage_
writepages in fs/mpage.c (skip pages
marked for delayed allocation).

Furthermore, cont_prepare_write and
block_prepare_write may now see
pages that have been prefetched, and thus are
already up to date, but are not marked for
delayed allocation, so these functions must not
zero them.

The prefetching is done inabiss_read_
page in fs/abiss/sched_lib.c , and
writeback in abiss_put_page , using
write_one_page .

Support for delayed allocation in ABISS cur-
rently works with FAT, ext2, and ext3 in
data=writeback mode.

4.2 Writeback

ABISS keeps track of how many playout
buffers share each page, and only clearsPG_
delalloc when the last reference is gone. At
that time, the page is explicitly written back by
the prefetcher. This also implies allocating disk
space for the page.

In order to obtain a predictable upper bound
for the duration of this operation, the prefetcher
uses high disk I/O priority.

We have tried to leave final writeback to the
regular memory scan and writeback process of
the kernel, but could not obtain satisfactory per-
formance, resulting in the system running out
of memory. Therefore, writeback is now done
explicitly when the page is no longer in any
ABISS playout buffer. It would be desirable
to avoid this special case, and more work is
needed to identify why exactly regular write-
back performed poorly.

4.3 Reserving disk space

A severe limitation of our experimental imple-
mentation of delayed allocation is that errors,
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in particular allocation failures due to lack of
disk space or quota, are only detected when a
page is written back to disk, which is long after
thewrite system call has returned, indicating
apparent success.

This could be solved by asking the file system
driver to reserve disk space when considering
a page for delayed allocation, and using this
reservation when making the actual allocation.
Such a mechanism would require file system
drivers to supply the corresponding functional-
ity, e.g., through a new VFS operation.

There is a set of extensions for the ext3 file
system by Alex Tomas [4], which also adds,
among other things, delayed allocation, along
with reservation. Unfortunately, this imple-
mentation is limited to the ext3 file system, and
extending it to support the prefetching done by
ABISS would require invasive changes.

More recent work on delayed allocation with
fewer dependencies on ext3 [4] may be consid-
erably easier to adapt to our needs. However,
actively preventing allocation while a page is
in any playout buffer, which is a requirement
unique to ABISS, may be a controversial addi-
tion.

4.4 Meta-data updates

When writing, file meta-data such as the file
size and the modification time is also changed,
and needs to be written back to disk. When
reading, we could just suppress meta-data up-
dates, but this is not an option when writing.
Instead, we count on these updates to be per-
formed asynchronously, and therefore not to
delay the ABISS user.

This is clearly not an optimal solution, partic-
ularly when considering journaling, which im-
plies synchronous updates of on-disk data, and

we plan to look into whether meta-data up-
dates can be made fully asynchronous, while
still honoring assurances made by journaling.

Figure 12 shows the modified write process
when using ABISS, with all read and write op-
erations moved into the prefetcher.

4.5 FAT’s contiguous files

Files in a FAT file system are always logi-
cally contiguous, i.e., they may not have holes.
If adding data beyond the end of file, the in-
between space must be filled first. This causes
a conflict, if we encounter a page marked for
delayed allocation while filling such a gap. If
we write this page immediately, we may inflict
an unexpected delay upon the ABISS user(s)
whose playout buffer contains this page. On the
other hand, if we defer writing this page until it
has left all playout buffers, we must also block
the process that is trying to extend the file, or
turn also this write into a delayed allocation.

Since our infrastructure for delayed allocations
does not yet work for files accessed without
ABISS, and because a page can be held in a
playout buffer indefinitely, we chose to simply
ignore the delayed allocation flag in this case,
and to write the page immediately.

A more subtle consequence of all files being
contiguous is that new space can only be allo-
cated in awrite call, never when writing back
memory-mapped data. With delayed allocation
this changes, and allocations may now happen
during writeback, triggered by activity of the
allocation code. As a consequence, the locking
in the allocation code of the FAT file system
driver has to be changed to become reentrant.5

5This reorganization is partly completed at the time
of writing.
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Figure 12: The modified sequence of steps in
writing a page using ABISS.

5 Measurements

To be able to assure we have reached our main
goal as stated before, near-zero I/O delays, a
testing setup was created. The machine run-
ning ABISS was deliberately a fairly low-end
machine, to assess the results in the light of em-
bedded consumer devices. The data was gath-
ered byrwrt , a tool in the ABISS distribution
which performs isochronous read or write oper-
ations on a file with a certain specified data rate.
We have compared the results obtained using
ABISS with those obtained using the standard
Linux disk I/O. For fair comparison, we used
the ABISS elevator on all occasions.

The measurements are performed on a system
built around a Transmeta Crusoe TM5800 CPU
[5], running at 800 MHz, equipped with 128
MB of main memory of which about 92 MB is
available for applications, according tofree .
Two hard drives were connected to the system:
the primary drive containing the operating sys-
tem and applications, and a secondary drive
purely for measurement purposes. The drive
on which our tests were performed was a 2.5”
4200 RPM Hitachi Travelstar drive.

We have measured the jitter and the latency of
reads and writes, the latency of advancing the
playout point, the duration of the sleeps of our
measurement tool between the I/O calls and the
effective distance of the playout point move-
ments. Of these values the jitter is the most
interesting one, as it includes both the system
call time as well as any effects on time-keeping.
Therefore it is a realistic view of what an appli-
cation can really expect to get. This is further
explained in Figure 13. Furthermore, the be-
haviour of background best-effort readers was
analyzed.

Last but not least, we made sure that the
streams we read or write are not corrupted in



122 • Active Block I/O Scheduling System (ABISS)

the process. This was done by adding se-
quence numbers in the streams, either in pre-
pared streams for reading or on-the-fly while
writing.

}
    sleep_until(due_time);
        due_time = now;

    due_time = when next read is due;
    // C
    move_playout();
    // B
    read();

while (work_to_do) {
due_time = now;

    if (due_time < now)

    // A (should ideally be due_time)

Figure 13: Main loop in rwrt used for reading.
Latency is the time from A to B, jitter is B−
due_time.6 Playout point advancement latency
is C−B. A similar loop is used for writing.
Missed deadlines are forgiven by making sure
the next due_time will never be in the past.

5.1 Reading and writing performance

The delays of both the read and write system
call with ABISS were measured under heavy
system load, to show we are effectively able
to guarantee our promised real-time behaviour.
Using therwrt tool, we have read or written a
stream of 200 MB with a data rate of 1 MB/s, in
blocks of 10 kB. The playout buffer size was set
to 564 kB for reading and a generous 1 MB for
writing, as the latter stressed the system notice-
ably more. The number of guaranteed real-time
requests in the elevator queue was set to 200.

For the tests involving writing, data was written
to a new file. The system load was generated
by simultaneously running eight greedy best-

6We considered using the interval C− due_time in-
stead, but found no visible difference in preparatory tests.

effort readers or writers7 during the tests, using
separate files with an as high as possible data
rate. The background writers were overwriting
old data to avoid too many allocations.

5.2 Timeshifting scenario test

To show a realistic scenario for applications
mentioned in the introduction of this paper,
we have measured the performance of three
foreground, real-time writers writing new data,
while one foreground real-time reader was
reading the data of one of the writers. This is
comparable with recording two streams while
watching a third one using timeshifting8. We
have used the same setup as with the previous
measurements, i.e., the same bit rate and file
sizes.

5.3 Results

The top two plots in Figure 14 show the mea-
sured jitter for reading operations. The plots
are cumulative proportional, i.e., each point ex-
presses the percentage of requests (on the y-
axis) that got executed after a certain amount
of time (on the x-axis). For example, a point at
(5 ms, 0.1%) on the graph would indicate that
0.1% of all operations took longer than 5 ms.
This nicely shows the clustering of the delays;
a steep part of the graphs indicates a cluster.

It can be seen that only a small percentage
of the requests experience delays significantly
longer than average. However, those measure-
ments are the most interesting ones, as we try

7Greedy readers or writers try to read or write as fast
as possible, in this case in a best-effort way, using a lower
CPU and I/O priority than the ABISS processes.

8Timeshifting is essentially recording a stream and
playing the same stream a few minutes later. For exam-
ple, this can be used for pausing while watching a broad-
cast.
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Figure 14: Cumulative proportional plots of the jitter measurements. In all cases the ABISS eleva-
tor was used and the measurements were performed on a FAT filesystem.
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to bound the experienced delays heuristically.
To be able to focus on these delays, the y-axis
is logarithmic. As the greedy best-effort read-
ers experience delays of orders of magnitude
longer than the real-time delays, the x-axis is
logarithmic as well.

Without using the ABISS prefetching mecha-
nism or I/O priorities, all traffic is basically
unbounded best-effort. Under the load of the
greedy readers, the requested 1 MB/s can defi-
nitely not be provided by the system. Although
the majority of the requests are served within a
few milliseconds, occasional delays of up to a
300 ms were measured. The performance of the
greedy readers is even worse: maximum ser-
vice times of more than a second occurred.

When ABISS is used, we see an enormous de-
crease of the maximum delay: the reading re-
quests of the 1 MB/s foreground reader now get
serviced within less than 5 ms, while the back-
ground readers are hardly influenced.

Similar results were observed when using
ABISS for writing, as can be concluded from
the middle two plots in Figure 14. Using
no buffering, prefetching or real-time efforts,
but with the ABISS elevator, both the 1 MB/s
writer of new data as the greedy background
writers experience delays of up to ten seconds.
ABISS is able to decrease the service times of
the foreground writer to the same level as when
it is used for reading: a maximum delay of less
than 5 ms, while again the background writers
experience little discomfort.

As for the timeshifting scenario with multi-
ple high-priority real-time writers and a ditto
reader, the results conform with the above. The
results are shown in the last two plots in Fig-
ure 14. Without the help of ABISS, especially
the writers cannot keep up at all and some re-
quest only get served after seconds. Again, us-
ing ABISS shortens the delays to less than 5
ms, for both the reader and the writers.

6 Future work

We have briefly experimented with a mecha-
nism based on the NUMA emulator [6], to pro-
vide a guaranteed amount of memory to ABISS
users. With our changes, we generally observed
worse results with than without this mecha-
nism, which suggests that Linux memory man-
agement is usually capable to fend for itself,
and can maintain sufficient free memory re-
serves. In periods of extreme memory pres-
sure, this is not true, and additional help may
be needed.

When additional ABISS users are admitted
or applications close their files, I/O latency
changes. In response to this, playout buffers
should be adjusted. We currently only pro-
vide the basic infrastructure for this, i.e., the
ABISS daemon that oversees system-wide re-
source use, and a set of communication mech-
anisms to affect schedulers, but we do not im-
plement dynamic playout buffer resizing so far.

Since improvements are constantly being made
to the memory management subsystem, it
would be good to avoid the explicit writeback
described in Section 4.2, and use the regu-
lar writeback mechanism instead. We need to
identify why attempts to do so have only caused
out of memory conditions.

As discussed in Section 4.3, error handling
when using delayed allocation is inadequate for
most applications. This is due to the lack of
a reservation mechanism that can presently be
used by ABISS. Possible solutions include ei-
ther the introduction of reservations at the VFS
level, or to try to use file system specific reser-
vation mechanisms, such as the one available
for ext3, also with ABISS.

Since delayed allocation seems to be useful in
many scenarios, it would be worthwhile to try
to implement a general mechanism, that is nei-
ther tied to a specific usage pattern (such as the
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ABISS prefetcher), nor confined to a single file
system. Also, delayed allocation is currently
very experimental in ABISS, and some corner
cases may be handled improperly.

Last but not least, it would be interesting to ex-
plore to what extent the functionality of ABISS
could be moved into user space, e.g., by giving
regular applications limited access to disk I/O
priorities.

7 Conclusion

The ABISS framework is able to provide a
number of different services for controlling the
way reads and writes are executed. It further-
more allows for a highly controlled latency due
to the use of elevated CPU and I/O priorities by
using a custom elevator. These properties have
enabled us to implement a service providing
guaranteed I/O throughput and service times,
without making use of an over-dimensioned
system. Other strategies might also be imple-
mented using ABISS, e.g., a HDD power man-
agement algorithm to extend the battery life of
a portable device.

Reading is a more clearly defined operation
than writing and the solutions for controlling
the latencies involved have matured, yielding
good results with FAT, ext2, and ext3. We
have identified the problem spots of the writ-
ing operation and have implemented partial so-
lutions, including delayed allocation. Although
these implementations are currently in a proof-
of-concept state, the results are good for both
FAT and ext2. The interface complexity of our
framework is hidden from the application re-
questing the service, by introducing a middle-
ware library.

To determine the actual effectiveness and per-
formance of both the framework as well as the

implemented scheduler, we have carried out
several measurements. The results of the stan-
dard Linux I/O system have been compared
with the results of using ABISS. Summarizing,
using ABISS for reading and writing streams
with a maximum bit rate which is knowna pri-
ori leads to heuristically bounded service times
in the order of a few milliseconds. Therefore,
buffering requirements for the application are
greatly reduced or even eliminated, as all data
will be readily available.
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Abstract

Intel has added virtualization extensions (VT)
to the x86 architecture. It adds a new set of
rings, guest rings 0 through 3, to the traditional
rings, which are now called the host rings.

User-mode Linux (UML) is in the process of
being enhanced to make use of these extensions
for greater performance. It will run in guest
ring 0, gaining the ability to directly receive
software interrupts. This will allow it to han-
dle process system calls without needing assis-
tance from the host kernel, which will let UML
handle system calls at hardware speed.

In spite of running in a ring 0, UML will appear
to remain in userspace, making system calls
to the host kernel and receiving signals from
it. So, it will retain its current manageability,
while getting a performance boost from its use
of the hardware.

1 Introduction

Intel’s new Vanderpool Technology1 (VT) adds
virtualization extensions to the IA architecture
which enable hardware support for virtual ma-
chines. A full set of “guest” rings are added to

1AMD subsequently introduced a compatible tech-
nology code-named Pacifica.

the current rings, which are now called “host”
rings. The guest OS will run in the guest ring
0 without perceiving any difference from run-
ning in the host rings 0 (or on a non-VT sys-
tem). The guest is controlled by the host re-
gaining control whenever one of a set of events
happens within the guest.

The architecture is fully virtualized within the
guest rings, so the guest can be an unmodified
OS. However, there is also support for paravir-
tualization in the form of aVMCALL instruc-
tion which may be executed by the guest, which
transers control to the host OS or hypervisor.

The hypervisor has fine-grained control over
when the guest traps out to it (aVMEXIT event
to the host) and over the state of the guest when
it is restarted. The hypervisor can cause the
guest to be re-entered at an arbitrary point, with
arbitrary state.

The paravirtualization support is key to sup-
porting environments other than unmodified
kernels. User-mode Linux (UML) is one such
environment. It is a userspace port of the Linux
kernel, and, as such, would be considered a
“modified” guest. It is heavily paravirtualized,
as it contains a complete reimplementation, in
terms of Linux system calls, of the architecture-
specific layer of the kernel.

The reason to consider making UML use this
support, when it is not obvious that it is use-
ful, is that there are performance benefits to be
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realized by doing so. A sore spot in UML per-
formance is its system call speed. Currently,
UML must rely on ptrace in order to intercept
and handle its process system calls. The con-
text switching between the UML process and
the UML kernel and the host kernel entries and
exits when the process executes a system call
imposes an order of magnitude greater over-
head than a system call executing directly on
the host. As will be described later, the VT ar-
chitecture allows a guest to receive software in-
terrupts directly, without involving the host ker-
nel or hypervisor. This will allow UML/VT to
handle process system calls at hardware speed.

2 Overview of UML/VT support

The VT paravirtualization support can be used
to allow UML to run in a guest ring. For various
reasons that will be discussed later, UML will
be made to run as a real kernel, in guest ring 0.
This would seem to contradict the “user-mode”
part of UML’s name, but as we shall see, the
basic character of UML will remain the same,
and the fact that it’s running in a ring 0 can be
considered an implementation detail.

The essential characteristics of UML are

• It makes system calls to the host kernel.

• It receives signals from the host kernel.

• It resides in a normal, swappable, process
address space.

We are going to preserve the first by using the
VT paravirtualization support to make system
calls to the host kernel from the guest ring 0.
Signals from the host will be injected into the
guest by the host manipulating the guest state
appropriately, and VMENTERing the guest.

The third will be preserved as a side-effect of
the rest of the design. UML/VT will start in
a process address space, and the host will see
page faults in the form of VMEXITs when-
ever the guest causes an access violation. Thus,
the normal page fault mechanism will be used
to populate the UML/VT kernel address space,
and the normal swapping mechanism can be
used to swap it out if necessary.

The fact that UML will be running in kernel
mode means that it can’t make system calls in
the normal way, by calling the glibc system call
wrappers, which executeint 0x80 or sysenter
instructions. Since we can’t use glibc for sys-
tem calls any more, we must implement our
own system call layer in terms ofVMCALL.
glibc is UMLs interface to the host Linux ker-
nel, so replacing that with a different interface
to the underlying OS can be considered a port
of UML to a different OS. Another way of look-
ing at it is to observe that UML will now be a
true kernel, in the sense of running in ring 0,
and must be ported to that environment, mak-
ing this a kernel-mode port of UML.

There must be something in the host kernel to
receive those VMCALLs, interpret them as sys-
tem calls, and invoke the normal system call
mechanism. AVMCALL instruction invokes
the VMEXIT handler in the host kernel, as does
any event which causes a trap out of the guest
to the host. The VMEXIT handler will see all
such events, be they hardware interrupts, pro-
cessor exceptions caused by the guest, or an ex-
plicit VMCALL.

3 Porting UML to VT

The first step in porting UML to VT is to
make UML itself portable between host oper-
ating systems. To date, UML has run only on
Linux, so it is strongly tied to the Linux system
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call interface. To fix this, we must first abstract
out the Linux-specific code and put it under an
interface which is somewhat OS-independent.
Total OS-independence is not possible with
only two examples which are very similar to
each other, and is a more of a process than a
goal in any case. What we are aiming for is
an interface which supports both Linux and VT,
and can be made to support other operating sys-
tems with modest changes.

To this end, we are moving all of the Linux-
specific code to its own directory within the
UML architecture (arch/um/os-Linux) and ex-
posing a somewhat OS-independent interface
to it. This task is simplified to some extent
by the fact that glibc-dependent code had to be
separated from kernel-dependent code anyway.
The reason is that the former needs to include
glibc headers and the latter needs to include
kernel headers. The two sets of headers are
very incompatible with each other—including
both glibc and kernel headers into the same file
will produce something that has no chance of
compiling. So, from the beginning, UML has
been structured such that glibc code and kernel
code have been in separate files.

So, to some extent, this part of the port has in-
volved simply moving those files from the main
UML source, where they are intermingled with
kernel source files, to the os-Linux directory.
There are functions which are neither glibc- or
kernel-dependent, so these need to be recog-
nized and moved to a kernel file.

Once this code movement has happened, and
the resulting interface has been cleaned up and
minimized, the next step is to actually imple-
ment the interface in terms of VT, usingVM-
CALL. So, we will create a new directory, pos-
sibly arch/um/os-vt, and implement this inter-
face there. To actually build a VT-enabled
UML, we will need to tell the kernel build pro-
cess (kbuild) to use the os-vt directory rather

than the os-Linux one. This is currently deter-
mined at runtime by setting a make variable to
the output ofuname -s , and forming the OS
directory from that. We can override this vari-
able on the command line by addingOS=vt to
it, forcing kbuild to use the OS interface imple-
mentation in os-vt rather than os-Linux.

4 Host kernel support

As previously mentioned, there will need to be
support added to the host kernel in order for it
to run UML as a VT guest. Linux currently has
no real support for being a hypervisor, and this
is what is needed for this project.

The host kernel will need to do the following
new things:

• Handle VMEXITs caused by the guest ex-
plicitly executingVMCALLinstructions in
order to make system calls.

• Handle hardware interrupts that happen
while the guest is running, but which the
guest doesn’t need to deal with.

• Handle processor faults caused by the
guest.

• Force the guest to handle whatever signals
it receives from elsewhere on the host.

• Launch the guest and handle its exit.

The design for this calls for a kernel thread in
the host to be created when a UML/VT instance
is launched. This thread will do the VT-specific
work in order to create the guest context and to
start UML within it.

Once the UML instance is launched and run-
ning, this thread will become the VMEXIT
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handler for the instance. It will be invoked
whenever the CPU transfers control from the
guest to the host for any of a number of rea-
sons.

VMCALL The guest will invoke theVMCALL
whenever it wants to make a system call to
the host. The handler will need to interpret
the guest state in order to determine what
system call is requested and what its argu-
ments are. Then it will invoke the normal
system call mechanism. When the system
call returns, it will write the return value
into the guest state and resume it. The VT-
specific system call layer within the guest
will retrieve the return value and pass it
back to its caller within UML.

Hardware interrupts Whenever a hardware
interrupt, such as a timer tick or a device
interrupt, happens while the UML guest is
running, the host kernel will need to han-
dle it. So, the VMEXIT handler will need
to recognize that this was the cause of the
transfer back to the host and invoke the
IRQ system in the host.

Processor faults The guest will cause CPU
faults in the normal course of operation.
Most commonly, these will be page faults
on its own text and data due to the guest
either not having been fully faulted in or
having been swapped out. These inter-
rupts will be handled in the same way as
hardware interrupts—they will be passed
to the normal host interrupt mechanism for
processing.

This thread will be the guest’s representative
within the host kernel. As such, it will be the
target of any signals intended for the guest, and
it must ensure that these signals are passed to
the UML, or not, as appropriate.

In order to see that there is a signal that needs
handling, the thread must explicitly check for
pending signals queued against it. When a sig-
nal is queued to a process, that process is make
runnable, and scheduled. So, if the signal ar-
rives while the guest is not sleeping, then the
thread will see the signal as soon as it has been
scheduled, and deliver it at that point. If the sig-
nal is queued while the guest is running, then
delivery will wait until the next time the thread
regains control, which will be a hardware timer
interrupt, at the latest. This is exactly the same
as a signal being delivered to a normal process,
except that the wakeup and delivery mecha-
nisms are somewhat different.

If the signal is to be handled by the UML in-
stance, as with a timer or I/O interrupt, then the
thread must cause the signal to be delivered to
the guest. This is very similar to normal pro-
cess signal delivery. The existing guest CPU
state must be saved, and that state must be mod-
ified (by changing the IP and SP, among others)
so that when the guest resumes, it is execut-
ing the registered handler for that signal. When
the handler returns, there will be another exit to
the host kernel, analogous to sigreturn, at which
point the thread will restore the state it had pre-
viously saved and resume the guest at the point
at which the signal arrived.

If the signal is fatal, as when aSIGKILL is
sent to the guest, the thread will shut the guest
down. It will destroy the VT context associ-
ated with the guest and then callexit() on
its own behalf. The first step will release any
VT-specific resources held by the guest, and the
second will release any host kernel resources
held by the thread.

This is the same process that will happen on
a normal UML shutdown, when the UML in-
stance is halted, and it callsexit() after per-
forming its own cleanup.

The final thing that the thread must do is check
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for rescheduling. Since it’s in the kernel, it
must do this explicitly. If the guest’s quantum
has expired, or a higher priority task can run,
then a flag will be set in the thread’s task struc-
ture indicating that it must callschedule() .
The thread must check this periodically and
schedule whenever the flag is set.

5 Guest setup

When it is launched, a UML/VT guest must do
some setup which is hardware-dependent since
it is running in ring 0. There are two princi-
pal things which must be initialized, system call
handling and kernel memory protection.

System call handling As mentioned earlier,
this is the area where we expect the great-
est performance benefit from using VT.
Before launching the guest, the host has
specified to the hardware that it does
not want a VMEXIT whenever a process
within the guest causes a soft interrupt, as
happens whenever it makes a system call.
The guest will handle these directly, and
the guest IDT must be initialized so that
the guest’s system call handler is invoked.

This will cause UML process system calls
to be handled by the guest kernel without
any involvement by the host. The host in-
volvement (throughptrace ) is what cur-
rently makes UML system calls so much
slower than host system calls. This VT
support will make UML process system
calls run at hardware speed.

Kernel memory protection Another benefit
of running in ring 0 is that UML gets to
use the same hardware mechanisms as the
host to protect itself from it processes.
This is not available to processes—they
cannot have two protection domains

with the higher one being inaccessible
by something running in the lower one.
However, by initializing the guest GDT
appropriately, UML/VT can install itself
as the kernel within the guest domain.

6 Current status

The port of UML to VT is ongoing, as a project
within Intel. All of the actual work is being
done by two Intel engineers in Moscow, Gen-
nady Sharapov and Mikhail Kharitonov. At this
writing, they have finished the OS abstraction
work, and I have that as patches in my devel-
opment tree. These patches have started to be
included in the mainline kernel.

The VT-specific work is now in progress. They
are making VT system calls to the host and
making the guest handle signals sent from the
host. The next steps are the hardware initial-
ization to handle system calls and to enable the
protection of the kernel.

Following that will be the actual port. The OS
abstraction work will be hooked up to the VT
system calls in the os-vt layer. The host kernel
thread will need to be fleshed out to handle all
of the events it will see. Once this is done, it
will be possible to start booting UML on VT
and to start debugging it.

7 Conclusion

This paper has described the changes needed
to make UML work in guest ring 0 with the
VT extensions. However, a great deal won’t
change, and will continue to work exactly as
it does today.

The UML address space will still be a com-
pletely normal process address space, under the
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full control of the host kernel. In the host, the
address space will be associated with the ker-
nel thread that is standing in for the VT guest.
It will be swappable and demand paged just like
any other process address space.

Because of this, and because UML will create
its own processes as it does today, UML’s copy-
user mechanisms will work just as they do cur-
rently.

Resource accounting will similarly work ex-
actly as it does today. UML/VT will use the ad-
dress space occupied by its host kernel thread,
and its memory consumption will show up in
/proc as usual. Similarly, when the guest is
running, its kernel thread will be shown as run-
ning, and it will accrue time. Thus, CPU ac-
counting, scheduling priority, and other things
which depend on process CPU time will con-
tinue to work normally.

In spite of being run as a kernel, in a ring 0,
UML/VT will continue to maintain the char-
acteristics of a process running within the host
kernel. So, it will gain the performance advan-
tages of using the hardware support provided
by VT, while retaining all of the benefits of be-
ing a process.
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Abstract

Today’s computing mantra is “One keyboard,
one mouse, one display, one computer, one
user, one role, one administration”; in short,
one of everything. However, if several people
try to use the same computer today, or cross
adminstrative boundaries, or change roles from
work to home life, chaos generally ensues.

Several hardware technologies will soon push
this limited model of computing beyond the
breaking point. Projectors and physically large
flat panel displays have become affordable and
are about to take a leap in resolution[12]. Cell-
phone-size devices can now store many giga-
bytes of information, take high resolution pho-
tographs, have significant computation capabil-
ity, and are small enough toalwaysbe with you.

Ask yourself “Why can’t we sit with friends,
family, or coworkers in front of a large display
with audio system, and all use it at once?”

You should be able change roles or move lo-
cations, and reassociate with the local comput-
ing environment. The new mantra must become
‘many’ and ‘mobile’ everywhere ‘one’ has suf-
ficed in the past.

Change will be required in many areas from
base system, through the window system and
toolkits, and in applications to fully capitalize
on this vision.

1 Introduction

As much as three quarters of the cost of com-
puting in enterprise environments now goes to
system management and support; the hardware
and software purchase cost is well under half
of the total expense. In the some parts of the
developing world, expertise may be in shorter
supply than computers. Personally, I now man-
age three systems at home, in addition to three
for work. Clearly something needs to be done.

Project Athena[13], a joint project of Digital,
MIT, and IBM in the mid 1980’s, had the vi-
sion of centrally administrated, personal com-
puting, in which mobile students and faculty
could use whichever computer was most con-
venient or appropriate for their work. Out of
this project was born a number of technolo-
gies that we take for granted today, including
Kerberos[24], the X Window System[31], cen-
tral administration of configuration information
using Hesiod[18] (now mostly supplanted by
LDAP), and Zephyr[17], the first instant mes-
sage system.

Due to the lack of a critical mass of applica-
tions, UNIX divisions, and UNIX workstations
costing more than PC’s, the Athena environ-
ment did not reach critical mass in the market-
place, despite demonstrating much lower cost
of ownership, due to much easier system man-
agement. The Wintel environment has caused
almost everyone to become poor system man-
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agers of an ever-increasing number of comput-
ers, and it is now clear that Athena had more
right than wrong about it. The “solution” of
having to carry laptops everywhere is poor, at
best. Some of Athena’s technologies escaped
and became significant parts of our computing
environment as individual components, but the
overall vision was lost.

Athena’s vision was right on many points:

• People are mobile, the computing infras-
tructure is not.

• People should be able to use any comput-
ing system in the environment so long as
they are authorized.

• There is a mixture of personally owned
and organizationally owned equipment
and facilities.

• Authentication enables an organization to
control its resources.

• Collaborative tools, either realtime or non-
realtime, are central to everyone’s lives.

• Your information should be available to
you wherever you go.

The Fedora Stateless Project[11] is resurrecting
most aspects of the Athena environment and
extending it to the often connected laptop; and
the LTSP project[6] uses X terminal technol-
ogy for low system management overhead, thin
client computing. These technologies reduce
cost of ownership due to system management
to something much closer to proportional to the
number of people served rather than the number
of computers. Deployment of systems based
on these technologies, the continuing declin-
ing cost of hardware, and open source systems’
zero software cost, will enable computers to be
located wherever may be convenient. We need

to go beyond the Athena vision, however, good
as it is for centralized system management.

History also shows Athena’s presumptions in-
correct or insufficient:

• We presumed display technology limited
to one individual at a time, possibly with
someone looking over the shoulder.

• That users play a single role, where in
the adult world we play many roles: job,
home life, church, schools, clubs, and of-
ten more. Computer systems must enable
people to play multiple roles simultane-
ously.

• That universal authentication was pos-
sible. This is probably a chimera
despite efforts of Microsoft and Sun
Microsystems—it implies universal trust,
unlikely between organizations. At best,
you may have a single USB fob or wire-
less device with many keys that authen-
ticate you for your many roles in life; at
worst, many such devices, attached to your
physical keyring.

• That there would be very small wearable
devices, with significant storage and com-
puting power (soon sufficient for most
user’s entire computing environment).

• That wireless networking would become
very cheap and commonplace.

• That the computing environment is a PC,
file, compute and print services: today’s
environments include projectors and large
format displays, (spatial) audio systems,
display walls, and so on.

So long as large displays are few and far be-
tween, and limited in resolution, the pseudo-
solution of the laptop VGA connector attached
to a projector has been a poor but adequate
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solution. Projectors are now cheap and com-
monplace, but with the imminent advent of
1080i and 1080p large screen HDTV displays
and projectors (1080p is 1920x1080 resolu-
tion in computer-speak), we face a near fu-
ture in which we will finally have displays with
enough pixels that sharing of the display makes
sense. We will soon be asking: “Why can’t I
use the environment easily? Why can’t I com-
bine my 100 gig cell phone with the surround-
ing environment to always be able to have my
computing environment with me? Why can’t I
easily shift from work, to home, to school, to
church, to hobby?”

Computing systems should enable the reasso-
ciation of people, any computing devices they
have with them, and the computing infrastruc-
ture available wherever they meet, work, and
play. While many devices can be used by only
one person at a time (e.g. keyboards, mice,
etc.), others, such as large screens and audio
systems can and should be usable by multiple
people simultaneously. It is time we make this
possible.

2 User Scenarios

My great thanks to my colleagues Andrew
Christian et al. for exploring wider insights into
SNAP Computing[15]. Some of the scenarios
below are excerpted from that paper. This pa-
per will provide a concrete proposal for work
on the X Window System, but without provid-
ing background material explaining the SNAP
vision, it would be impossible to understand the
rationale of the design changes proposed.

2.1 Office

You are sitting in your office. Your incoming
frantic call is from your spouse, who is having

problems with a complicated formatting prob-
lem in the word processor of a document that
must be sent before you get home that evening.
You ask that the window be cloned to your dis-
play, so you can help solve the problem to-
gether. When finished, you close the cloned
window and the document is finished by the
deadline.

2.2 Home

In this example Nikki and her friend Chris are
sitting in Nikki’s living room watching tele-
vision on a big, high-resolution video screen,
but also doing a little work and web browsing
(see below). The living room’s personal video
recorder (PVR) is playing a movie on the video
screen and sending audio to the living room au-
dio system. Nikki has pulled out a portable
keyboard, connected to the home office CPU,
and pulled up her e-mail on a corner of the liv-
ing room video screen. As she browses her re-
mote mail store, audio attachments are routed
and mixed in the local audio system and played
through the living room speakers so that they
appear on her side of the room (spatially lo-
cated so as to not distract Chris).
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Meanwhile, Chris has pulled out a wireless
handheld computer. Nikki has previously
granted Chris some access rights for using the
home’s broadband connection and living room
equipment, so Chris grabs a section of the
big video screen and displays output from a
web browser running on the handheld com-
puter. Audio output from Chris’s web browser
is spatially located to help disambiguate it from
Nikki’s e-mail. Without a keyboard Chris
must use the handheld computer for handwrit-
ing recognition and cursor control. To speed
things up, Chris borrows a wireless keyboard
from Nikki’s home office. The keyboard de-
tects it is in the living room and bonds automat-
ically to the big screen. Through the handheld
computer, Chris assigns the keyboard to work
with the web browser and goes back to surfing.

Most of the time Chris and Nikki are working
within the confines of the big video screen. For
example, both may be driving their own private
pointing cursor on the screen. Security poli-
cies prevent them from controlling each others’
applications; Nikki typing at her e-mail is kept
separate from Chris’s web browsing. However,
the big screen also provides high level services
that both can request and access. For example,
a screen window manager service positions the
individual windows and a screen cut-and-paste
service allows data to be shared across users.
Should Chris or Nikki wish to change chan-
nels or control audio volume in the room, ei-
ther can ask for video screen control and use
the shared, built-in video browser to access the
audio volume control or bind it to their local
device (Chris’ handheld or Nikki’s keyboard).

2.3 Conference Room

Functionally, a conference room is not greatly
dissimilar from Nikki’s living room. The con-
ference room provides shared video screens

that multiple users can access from their lap-
top/handheld computers, or via broadband con-
nections back to their desktop machines.

The conference room provides several
business-specific services. First, the room
itself can provide scheduling and journaling
functions. Because the conference room dis-
play screens are intelligent—rather than simple
projectors—it is easy to allow them to record
and store information about what was done in
the room. Each user provides authentication
before accessing services, so a clean record of
users and activities can be journalled and made
available to participants later.

Adding video conferencing introduces a second
interesting feature: virtual proximity. A video
conference establishes a virtual location rela-
tionship between people and devices. For ex-
ample, the remote user may wish to print a file
in the conference room, display and control a
presentation on the video screen, and play au-
dio through the local speakers.

To make this more concrete, imagine you are
at a meeting of a industry working group with
representatives from competitors, to work on
a standards document. Several of you put up
drafts on the conference room display screens
to work on from the laptops you brought with
you. The computer of one of your working
group members has failed entirely, but he has
the information cached in his cellphone, so us-
ing a spare keyboard in the conference room,
he is able to find the needed information using
a corner of the screen for the group.

Such conference rooms were described by
Isaac Asimov in hisFoundationseries, in which
his First Foundation mathematicians work to-
gether in rooms whose wallsaredisplays. Such
conference rooms are no longer science fic-
tion; display wall systems are already being
built[9][2], and their cost will continue to fall.
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3 Design Requirements of the
SNAP Vision

If we are to disassemble, or unsnap, the com-
ponents of the classic computer and allow the
flexible reassociation (or snapping together) of
components, while enabling people to reasso-
ciate with the computing environment as they
move, we require some networking connectors
to snap the components back together. I ar-
gue that the networking connectors now exist,
and if we disassemble our systems and combine
the pieces using these connectors, we can then
easily snap them back together dynamically at
will. I will touch on some of the resulting top-
ics in this section, before diving into X Window
System-specific issues.

These software components include:

• distributed caching file systems (e.g.
Coda[23])

• encryption of all network communication

• roaming between networks

• software which can easily roam among
multiple differing authentication systems

• discovery of network services

• network connectors replacing hard wires
to snap the computing components back
together

• network audio, so that you can easily use
audio facilities in the environment

• the window system that supports multiple
people collaborating, and helps protects
you from other malicious people

3.1 Service Discovery

People need to be able to discover that fa-
cilities are available and take advantage of
them. Open source implementations of the
IETF Zeroconf[10] protocols are now available
such as Howl[4]); zeroconf is also used to good
effect as Apple’s Bonjour[1] in OSX. We can
leverage such protocols to discover file sys-
tems, X Window System servers for large dis-
plays, scanners, printers, and other services that
may be interesting to mobile users in the envi-
ronment; and zeroconf support is beginning to
appear in open source desktop projects.

3.2 Localization

For ease of use, you need to know what de-
vices are in a given physical location. Present-
ing a user with a long list of devices present in
many work environments, even just a local sub-
net, would result in confusion. Research shows
that it may be feasible to localize 802.11[abg]
to roughly the granularity of an office or a con-
ference room, but such systems are not gener-
ally available at this date. Given these results
it is clear that location tracking systems will
become available in the near-term future, and
there are startup companies working actively to
bring them to market.

Bluetooth was intended as a cable replacement,
but experience with it has not been very favor-
able in a SNAP system application. Introduc-
ing a new bluetooth device to its controller is
involved and time-consuming, not something
that is done casually, at least as cumbersome
as dragging a cable across a room and plugging
it in.

The 801.15.4 ZigBee local wireless technology,
just becoming available, does not suffer from
these limitations that make Bluetooth so cum-
bersome. Additionally, IR is ubiquitous can
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be used for local line of sight localization, and
handheld devices often have consumer IR (in-
tended for remote control use), which has much
longer range than that found in laptops.

There are multiple efforts in the research com-
munity to provide location based lookup of re-
sources, and this work and expertise should be
leveraged.

3.3 Audio

There is a long history of inadequate audio
servers on UNIX and Linux.

ESD and NAS are inadequate even for local
multimedia use (lacking any provision for tight
time synchronization), much less low-latency
applications like teleconferencing.

There are a number of possible paths:

• The Media Application Server (MAS)[7]
may be adequate.

• We can build a network layer for the
JACK[5] audio system.

These possibilities are not mutually exclusive
(Jack and MAS could be used in concert), and
we can start from scratch, if they will not serve.

Detailed discussion of the need/requirements
for network audio, needed to complement our
network transparent window system are beyond
the overall scope of this paper. The AF au-
dio server[25] on UNIX of the early 1990’s
showed that both very low latency and tight
synchronization is in fact possible in a network-
transparent audio server.

3.4 Network Roaming

There is much work to be done to take what
is possible and reduce it to practice. Real-time
roaming between networks can be as short as
fractions of a second; we should not accept the
current delays or manual nature we find today
as we DHCP and manually suspend/resume as
we transition between networks. Handoff be-
tween networks can and should be similar in
duration to the cellphone network, so short as
to be effectively unnoticed.

4 X Window System

The ‘One’ mantra is most clearly ingrained in
all of today’s window systems, where one key-
board, one mouse, one user is the norm. Our
base operating system, however, was designed
as a multi-user system, with the operating sys-
tem providing protection between users. The
X Window System has at least been, since its
inception, network transparent, allowing appli-
cations to run on multiple displays, potentially
including displays in our environment.

4.1 Multiple People Systems

X’s current design presumes a single person us-
ing the window system server, and therefore
only provided access control. To allow multi-
ple people, particularly in open environments
where people cannot trust each other, to use a
common screen means that privacy and security
problems must be solved.

The core X protocol allows applications to
spy on input. Furthermore, cut-and-paste can
quickly transfer megabytes of data between ap-
plications. Multiple simultaneous users there-
fore pose a serious security challenge. X needs



2005 Linux Symposium • 139

better access control to input events, pixmap
data, X properties, and other X resources.

During the mid 1990’s, there was work to ex-
tend X for the requirements posed by military
multi-level ‘orange book’ security. The result-
ing extension provided no policy flexibility, and
still presumed a single user. The resulting X Se-
curity extension[35] has remained entirely un-
used, as far as can be determined.

Recently, Eamon Walsh, an intern at the NSA,
implemented an SELinux-style X extension
[34] with the explicit goal of enabling multi-
ple possible security policies, that might pro-
vide the kinds of policy flexibility. Differing
environments, in which different levels of trust
between users exist and different sensitivities
of information displayed on the screen simul-
taneously, will clearly need different policies.
One policy can clearly not fit all needs. Ea-
mon’s work was updated this spring by Bryan
Ericson, Chad Hanson, and others at Trusted
Computing Solutions, Inc., and provides a gen-
eral framework that may be sufficient to explore
the policies required for this use of the window
system.

X has internally noexplicit concept of a ‘user,’
without which it is impossible to devise any se-
curity policy for systems being used by multi-
ple people. Given good security policies and
enforcement, in many environments even un-
known people should have unprivileged access
to a display. An explicit concept of a user, and
the window resources they are using, is clearly
needed in X, and once present, policy develop-
ment using this framework should become fea-
sible. X also lack explicit knowledge of a peo-
ple’s sessions, and since several sessions may
be going on simultaneously, I also expect X will
require this concept as well.

On Linux and some UNIX systems you can de-
termine the person’s identity on the other end
of a local socket. We also need the identity of

the person’s application on the far end of a net-
work connection. In a corporate environment,
this might best be served by the person’s Ker-
beros credentials. In other environments, ssh
keys or certificate-based authentication systems
may be more appropriate. Fortunately, it ap-
pears that Cyrus SASL[19] may fill the authen-
tication bill, as it supports multiple authentica-
tion families.

Even with this work, there is work remaining to
do to define usable security profiles, and work
that should take place in toolkits rather than re-
lying solely in the window system. For exam-
ple, a person cutting from their application and
pasting into another person’s application does
not have the same security consequence as the
opposite situation, of others being able to cut
from your application into their application: in
this case, the person is giving away information
explicitly that they already control. It is easier
to trust the implementation of the toolkit you
are using, than the implementation of a remote
X server that you may have much less reason to
trust.

More subtle questions arise for which there are
not yet obvious answers: How do you know
what security profile is currently in force in
the X server you are using? Why should you
trust that that profile is actually being enforced?
These class of problems are not unique to X, of
course.

Distinguishing different pointing devices ac-
cording to the people using them will require
an extension to X to support multiple mouse
cursors that can be visually distinguished from
each other. Since hardware supports a single
cursor at most, X already commonly uses soft-
ware cursors, and by compositing another im-
age with the cursor shape, we can easily indi-
cate whose cursor it is.
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4.2 Securing the wire and the SSH trap

At the time of X11’s design (1987), and until
just a few years ago, the U.S. government ac-
tively discouraged the use of encryption; the
best we could do was to leave minimal hooks
in the wire protocol to enable a later retrofit.
Even pluggable architectures allowing the easy
addition of encryption were actively opposed
and might cause the U.S. Government to forbid
export of software. Export of encryption with-
out export control only became feasible in open
source projects in the last several years.

In the era of little or no security problems of
the 1980’s and early 1990’s, X was for a time
routinely used unencrypted over the network.
With network sniffers on insecure systems ev-
erywhere today, this usage today is clearly in-
sane.

The Swiss army knife of encryption and au-
thentication, “ssh”[14], appeared as a solution,
which provides authentication, encryption, and
compression by allowing tunneling of arbitrary
streams (including X traffic). While it has been
a wonderful crutch for which we are very grate-
ful, a crutch it is, for the following reasons:

• SSH requires you to have an account on a
machine before tunneling is possible. This
prevents the casual use of remote displays,
even those we might intend for such use.

• SSH requires extra context switches be-
tween the ssh daemon, costing perfor-
mance, memory, latency, and latency vari-
ation, likely an issue on LTSP servers.

• A remote person’s identity cannot be de-
termined; only the identity of their local
account.

IPSEC might seem to be the easiest solution,
and may be necessary to implement as a ‘check

off’ marketing item: however, it does not en-
sure end-to-end encryption of traffic, and even
worse, does not provide user authentication. In
IPSEC’s use in VPN software, the data is of-
ten unencrypted at corporate firewalls and de-
livered unencrypted, unacceptable for use that
involves user keyboard input. It is therefore at
a minimum insufficient for SNAP computing,
and in some uses, in fact completely insecure.

Therefore authentication, encryption, and com-
pression must be integrated into the X Win-
dow System transport to allow for a wider range
of authentication and encryption options, to be
proxyable to enable secure traversal of admin-
istrative boundaries, and to enable use of dis-
play resources on displays where you cannot
be authenticated. Compression can provide a
huge performance benefit over low bandwidth
links[27].

4.3 Remote Devices

It has always been trivial for an X application to
use a remote display, but when the application
is running to a remote X server, there has been
a presumption that the input devices are also at-
tached to the remote machine. Having to drape
input device cables across the room to plug into
the computer driving the display, is clearly lu-
dicrous. We therefore need network transparent
input devices.

People may want to use either spare keyboards,
a laptop they brought with them, their PDA, or
other input devices available in the room to in-
teract with that application. In any case, input
events must be routed from the input device to
the appropriate X server, whether connected via
wires or wireless.

Input devices present security challenges, along
with a further issue: we need some way to asso-
ciate an input device with a particular user. As-
sociation setup needs to be both secure and easy
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to use, which may present the largest single re-
search challenge; most of the other tasks de-
scribed in this paper are simple engineering ef-
forts, applying existing technology in obvious
ways. One might have hoped that USB’s HID
serial numbers on devices would help; how-
ever, due to the very low cost of many input
devices, most manufacturers do not provide ac-
tual serial numbers in their hardware.

4.4 Who is in Control?

The X server implementation has presumed
that it is in control of all of its input devices,
and worse yet, that these do not change during
an X session. It uses a static configuration file,
only read during server reset (which only oc-
curs when a user logs out). This static model of
configuration is clearly wrong, and hotplug is a
necessary. The X server needs (as in all good
server processes) to react to changes in the en-
vironment.

Over the last two years, open source systems
have developed extensive infrastructure to sup-
port hotplug, with kernel facilities, and the D-
BUS[29] and HAL[36] facilities. These should
greatly simplify the problem, and allow the pol-
icy decisions of whether an input device (local
or remote) is connected to a particular X server.

D-BUS can inform the X server of the changes
in configuration of input devices. This itself
poses a further challenge, as the X server must
be able to become a client of the D-BUS dae-
mon. To avoid possible dead-lock situations be-
tween X and the D-BUS daemon, some of the
internal X infrastructure needs updating.

With only slight care, an interface can be de-
signed that will allow input devices to either use
local or remote input devices. Input device as-
sociation policy should be kept outside of the X
server.

4.5 X Input Extension

The X Input Extension[28] provides support
for additional input devices beyond the ‘core’
pointing device (typically mouse) and key-
board. It has a competent design, though it
shows its age. XInput lacks:

• Hotplug notification of devices being con-
nected or disconnected.

• The valuator axes should have abstract
names (e.g. you would like to know that
valuator 0 is the X coordinate, valuator 1
is the Y coordinate, valuator 2 is pressure,
and so on).

• Support for multiple users and devices that
all users might share.

• A modern reimplementation exploiting
the standardization of USB HID (and
the /dev/input abstraction on Linux);
most of the current implementation is
supporting old serial devices with many
strange proprietary protocols.

• A limit on 255 input devices in the wire
encoding (which might become an issue in
an auditorium setting); however, if input
events are augmented by a identity infor-
mation, this should be sufficient.

Whether a upward compatible wire protocol
version is possible or a new major version of the
X Input extension is not yet completely clear,
though an upward compatible API looks very
likely.

4.6 Toolkits

Replication and migration of running applica-
tions has in fact been possible from X’s incep-
tion: GNU emacs has had the capability to both
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share buffers on different X servers, allowing
for shared editing of text, and therefore migra-
tion of emacs from X server to X server for
more than 15 years.

In practice, due to the level of abstraction of
the most commonly used toolkit of X’s first era
(Xt/Motif[22]), migration and/or replication of
windows has been very difficult, as such appli-
cations initially adjust themselves to the visual
types available on the X server and then draw
for the rest of their execution with the same
pixel values.

Modern toolkits (e.g. GTK[21] and Qt[16]) op-
erate at a higher level of abstraction, where
pixel values are typically hidden from appli-
cations, and migration of most applications is
feasible[20]: a prototype of migration capabil-
ity first appeared in GTK+ 2.2.

One to one replication of information is the
wrong level of abstraction, since not only is the
resolution of different screens extremely wide,
but different users on different displays should
be able to control the allocation of the screen
real-estate. A multi-view approach is clearly
correct and to be preferred over the existing
server based pixel sharing solutions such as
xmove[32], useful though such tools are, par-
ticularly for migration of old X applications
that are unlikely to be updated to modern toolk-
its. Work to ease replication of windows for ap-
plication developers awaits suitably motivated
contributors.

Since the resolution between a handheld device
and a display wall is over an order of mag-
nitude, applications often need to be able to
reload their UI layout on the fly for migration
to work really well; again, using the Glade user
interface builder[3], libglade and GTK+, this
capability is already demonstrable for a few ap-
plications.

In the face of unreliable wireless connections,

the X library needs minor additions to allow
toolkits to recover from connection failures.
This work is on hold pending completion of
a new implementation of Xlib called Xcb[26],
which is well underway and now able to run al-
most all applications. Testing connection loss
recovery may be more of a challenge than its
implementation.

Lest you think these facilities are interesting
only to SNAP computing, it also aids migration
of X sessions from one display (say work) to
another (e.g. home). As always, security must
be kept in mind: it would not be good for some-
one to be able to steal one or all of your running
applications.

4.7 Window Management and Applica-
tions

Besides the infrastructure modifications out-
lined above, window managers need some
modification to support a collaborative environ-
ment.

Certain applications may want to be fully aware
of multiple users: a good example is an editor
that keeps changes that each person applies to
a document.

Existing applications can run in such a col-
laborative environment unchanged. Wallace
et al.[33] recently reported experience in a
deployed system using somewhat jury-rigged
support for multiple cursors and using a modi-
fied X window manager on a large shared dis-
play at Princeton’s Plasma Physics Lab’s con-
trol room. They report easier simultaneous
use of existing applications such as GNU Im-
age Manipulation Program (gimp). They also
confirm, as hypothesized above, multiple peo-
ple working independently side-by-side require
sufficient display real-estate to be effective;
here they may be looking at different views of
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the same dataset using separate application in-
stances. And finally, they report that even se-
quential use of the display was improved due
to less dragging of the mouse back and forth.

5 Summary

Most of the problems SNAP computing pose
have obvious solutions; in a few areas, further
research is required, but none of the research
topics appear intractable.

Network display software systems such as Mi-
crosoft’s RDP[8] and Citrix and VNC[30] are
popular, though by operating at a very low
level of abstraction, badly compromise full ap-
plication integration (e.g. cut and paste, selec-
tions, window management meta information)
between applications sharing a display from
many remote systems. They do, however, do
a fine job of simple access to remote applica-
tions, but arefatally flawedif full collaboration
among multiple users is desired.

Open source systems SNAP systems should be
able to exist quickly, not only since our tech-
nology starts off close to the desired end-state,
is more malleable, but also that it does not
threaten our business model in the same way
that such a shift might to commercial systems.

While this paper has primarily explored X Win-
dow System design issues, there is obviously
plenty of work elsewhere to fully exploit the vi-
sion of SNAP Computing.
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Abstract

Linux multipathing provides io failover and
path load sharing for multipathed block de-
vices. In this paper, we provide an overview
of the current device mapper based multi-
pathing capability and describe Enterprise level
requirements for future multipathing enhance-
ments. We describe the interaction amongst
kernel multipathing modules, user mode mul-
tipathing tools, hotplug, udev, and kpartx com-
ponents when considering use cases. Use cases
include path and logical unit re-configuration,
partition management, and path failover for
both active-active and active-passive generic
storage systems. We also describe lessons
learned during testing the MD scheme on high-
end storage.

1 Introduction

Multipathing provides the host-side logic to
transparently utilize the multiple paths of a re-
dundant network to provide highly available
and higher bandwidth connectivity between
hosts and block level devices. Similar to how
TCP/IP re-routes network traffic between 2

hosts, multipathing re-routes block io to an al-
ternate path in the event of one or more path
connectivity failures. Multipathing also trans-
parently shares io load across the multiple paths
to the same block device.

The history of Linux multipathing goes back
at least 3 years and offers a variety of differ-
ent architectures. The multipathing personal-
ity of the multidisk driver first provided block
device multipathing in the 2.4.17 kernel. The
Qlogic FC HBA driver has provided multi-
pathing across Qlogic FC initiators since 2002.
Storage system OEM vendors like IBM, Hi-
tachi, HP, Fujitsu, and EMC have provided
multipathing solutions for Linux for several
years. Strictly software vendors like Veritas
also provide Linux multipathing solutions.

In this paper, we describe the current 2.6 Linux
kernel multipathing solution built around the
kernel’s device mapper block io framework and
consider possible enhancements. We first de-
scribe the high level architecture, focusing on
both control and data flows. We then de-
scribe the key components of the new archi-
tecture residing in both user and kernel space.
This is followed by a description of the in-
teraction amongst these components and other
user/kernel components when considering sev-
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eral key use cases. We then describe several
outstanding architectural issues related to the
multipathing architecture.

2 Architecture Overview

This chapter describes the overall architecture
of Linux multipathing, focusing on the control
and data paths spanning both user and kernel
space multipathing components. Figure 1 is
a block diagram of the kernel and user com-
ponents that support volume management and
multipath management.

Linux multipathing provides path failover and
path load sharing amongst the set of redun-
dant physical paths between a Linux host and
a block device. Linux multipathing services
are applicable to all block type devices, (e.g.,
SCSI, IDE, USB, LOOP, NBD). While the no-
tion of what constitutes a path may vary signif-
icantly across block device types, for the pur-
pose of this paper, we consider only the SCSI
upper level protocol or session layer defini-
tion of a path—that is, one defined solely by
its endpoints and thereby indifferent to the ac-
tual transport and network routing utilized be-
tween endpoints. A SCSI physical path is de-
fined solely by the unique combination of a
SCSI initiator and a SCSI target, whether using
iSCSI, Fiber Channel transport, RDMA, or se-
rial/parallel SCSI. Furthermore, since SCSI tar-
gets typically support multiple devices, a logi-
cal path is defined as the physical path to a par-
ticular logical device managed by a particular
SCSI target. For SCSI, multiple logical paths,
one for each different SCSI logical unit, may
share the same physical path.

For the remainder of this paper, “physical path”
refers to the unique combination of a SCSI ini-
tiator and a SCSI target, “device” refers to a
SCSI logical unit, and a “path” or logical path

refers to the logical connection along a physical
path to a particular device.

The multipath architecture provides a clean
separation of policy and mechanism, a highly
modular design, a framework to accommodate
extending to new storage systems, and well de-
fined interfaces abstracting implementation de-
tails.

An overall philosophy of isolating mechanism
in kernel resident code has led to the creation
of several kernel resident frameworks utilized
by many products including multipathing. A
direct result of this approach has led to the
placement of a significant portion of the multi-
pathing code in user space and to the avoidance
of a monolithic kernel resident multipathing
implementation. For example, while actual
path failover and path load sharing take place
within kernel resident components, path dis-
covery, path configuration, and path testing are
done in user space.

Key multipathing components utilize frame-
works in order to benefit from code sharing
and to facilitate extendibility to new hardware.
Both kernel and user space multipathing frame-
works facilitate the extension of multipathing
services to new storage system types, storage
systems of currently supported types for new
vendors, and new storage system models for
currently supported vendor storage systems.

The device mapper is the foundation of the
multipathing architecture. The device map-
per provides a highly modular framework for
stacking block device filter drivers in the ker-
nel and communicating with these drivers from
user space through a well defined libdevmap-
per API. Automated user space resident de-
vice/path discovery and monitoring compo-
nents continually push configuration and pol-
icy information into the device mapper’s multi-
pathing filter driver and pull configuration and
path state information from this driver.
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Figure 1: Overall architecture

The primary goals of the multipathing driver
are to retry a failed block read/write io on
an alternate path in the event of an io failure
and to distribute io load across a set of paths.
How each goal is achieved is controllable from
user space by associating path failover and load
sharing policy information on a per device ba-
sis.

It should also be understood that the multipath
device mapper target driver and several mul-
tipathing sub-components are the only multi-
path cognizant kernel resident components in
the linux kernel.

3 Component Modules

The following sections describe the kernel and
user mode components of the Linux multi-
pathing implementation, and how those com-
ponents interact.

3.1 Kernel Modules

Figure 2 is a block diagram of the kernel device
mapper. Included in the diagram are compo-
nents used to support volume management as
well as the multipath system. The primary ker-
nel components of the multipathing subsystem
are

• the device mapper pseudo driver

• the multipathing device mapper target
driver

• multipathing storage system Device Spe-
cific Modules (DSMs),

• a multipathing subsystem responsible for
run time path selection.

3.1.1 Device Mapper

The device mapper provides a highly modular
kernel framework for stacking block device fil-
ter drivers. These filter drivers are referred to as



150 • Linux Multipathing

Figure 2: device mapper kernel architecture

target drivers and are comparable to multidisk
personality drivers. Target drivers interact with
the device mapper framework through a well
defined kernel interface. Target drivers add
value by filtering and/or redirecting read and
write block io requests directed to a mapped de-
vice to one or more target devices. Numerous
target drivers already exist, among them ones
for logical volume striping, linear concatena-
tion, and mirroring; software encryption; soft-
ware raid; and various other debug and test ori-
ented drivers.

The device mapper framework promotes a
clean separation of policy and mechanism be-
tween user and kernel space respectively. Tak-
ing this concept even further, this framework
supports the creation of a variety of services
based on adding value to the dispatching and/or
completion handling of block io requests where
the bulk of the policy and control logic can re-
side in user space and only the code actually
required to effectively filter or redirect a block

io request must be kernel resident.

The interaction between user and kernel de-
vice mapper components takes place through
device mapper library interfaces. While the de-
vice mapper library currently utilizes a variety
of synchronous ioctl(2) interfaces for this pur-
pose, fully backward compatible migration to
using Sysfs or Configfs instead is certainly pos-
sible.

The device mapper provides the kernel resident
mechanisms which support the creation of dif-
ferent combinations of stacked target drivers
for different block devices. Each io stack is rep-
resented at the top by a single mapped device.
Mapped device configuration is initiated from
user space via device mapper library interfaces.
Configuration information for each mapped de-
vice is passed into the kernel within a map or ta-
ble containing one or more targets or segments.
Each map segment consists of a start sector and
length and a target driver specific number of
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target driver parameters. Each map segment
identifies one or more target devices. Since all
sectors of a mapped device must be mapped,
there are no mapping holes in a mapped device.

Device mapper io stacks are configured in
bottom-up fashion. Target driver devices are
stacked by referencing a lower level mapped
device as a target device of a higher level
mapped device. Since a single mapped device
may map to one or more target devices, each
of which may themselves be a mapped device,
a device mapper io stack may be more accu-
rately viewed as an inverted device tree with a
single mapped device as the top or root node
of the inverted tree. The leaf nodes of the tree
are the only target devices which are not de-
vice mapper managed devices. The root node
is only a mapped device. Every non-root, non-
leaf node is both a mapped and target device.
The minimum device tree consists of a single
mapped device and a single target device. A
device tree need not be balanced as there may
be device branches which are deeper than oth-
ers. The depth of the tree may be viewed as the
tree branch which has the maximum number of
transitions from the root mapped device to leaf
node target device. There are no design limits
on either the depth or breadth of a device tree.

Although each target device at each level of
a device mapper tree is visible and accessible
outside the scope of the device mapper frame-
work, concurrent open of a target device for
other purposes requiring its exclusive use such
as is required for partition management and
file system mounting is prohibited. Target de-
vices are exclusively recognized or claimed by
a mapped device by being referenced as a tar-
get of a mapped device. That is, a target de-
vice may only be used as a target of a single
mapped device. This restriction prohibits both
the inclusion of the same target device within
multiple device trees and multiple references to
the same target device within the same device

tree, that is, loops within a device tree are not
allowed.

It is strictly the responsibility of user space
components associated with each target driver
to

• discover the set of associated target de-
vices associated with each mapped device
managed by that driver

• create the mapping tables containing this
configuration information

• pass the mapping table information into
the kernel

• possibly save this mapping information in
persistent storage for later retrieval.

The multipath path configurator fulfills this
role for the multipathing target driver. The
lvm(8) , dmraid(8) , and dmsetup(8)
commands perform these tasks for the logical
volume management, software raid, and the de-
vice encryption target drivers respectively.

While the device mapper registers with the ker-
nel as a block device driver, target drivers in
turn register callbacks with the device map-
per for initializing and terminating target de-
vice metadata; suspending and resuming io on
a mapped device; filtering io dispatch and io
completion; and retrieving mapped device con-
figuration and status information. The device
mapper also provides key services, (e.g., io sus-
pension/resumption, bio cloning, and the prop-
agation of io resource restrictions), for use by
all target drivers to facilitate the flow of io dis-
patch and io completion events through the de-
vice mapper framework.

The device mapper framework is itself a com-
ponent driver within the outermostgeneric_
make_request framework for block de-
vices. The generic_make_request
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framework also provides for stacking block de-
vice filter drivers. Therefore, given this archi-
tecture, it should be at least architecturally pos-
sible to stack device mapper drivers both above
and below multidisk drivers for the same target
device.

The device mapper processes all read and write
block io requests which pass through the block
io subsystem’sgeneric_make_request
and/orsubmit_bio interfaces and is directed
to a mapped device. Architectural symmetry
is achieved for io dispatch and io completion
handling since io completion handling within
the device mapper framework is done in the
inverse order of io dispatch. All read/write
bios are treated as asynchronous io within all
portions of the block io subsystem. This de-
sign results in separate, asynchronous and in-
versely ordered code paths through both the
generic_make_request and the device
mapper frameworks for both io dispatch and
completion processing. A major impact of this
design is that it is not necessary to process ei-
ther an io dispatch or completion either imme-
diately or in the same context in which they are
first seen.

Bio movement through a device mapper de-
vice tree may involve fan-out on bio dispatch
and fan-in on bio completion. As a bio is dis-
patched down the device tree at each mapped
device, one or more cloned copies of the bio
are created and sent to target devices. The same
process is repeated at each level of the device
tree where a target device is also a mapped
device. Therefore, assuming a very wide and
deep device tree, a single bio dispatched to a
mapped device can branch out to spawn a prac-
tically unbounded number of bios to be sent
to a practically unbounded number of target
devices. Since bios are potentially coalesced
at the device at the bottom of thegeneric_
make_request framework, the io request(s)
actually queued to one or more target devices

at the bottom may bear little relationship to the
single bio initially sent to a mapped device at
the top. For bio completion, at each level of
the device tree, the target driver managing the
set of target devices at that level consumes the
completion for each bio dispatched to one of its
devices, and passes up a single bio completion
for the single bio dispatched to the mapped de-
vice. This process repeats until the original bio
submitted to the root mapped device is com-
pleted.

The device mapper dispatches bios recursively
from top (root node) to bottom (leaf node)
through the tree of device mapper mapped and
target devices in process context. Each level
of recursion moves down one level of the de-
vice tree from the root mapped device to one
or more leaf target nodes. At each level, the
device mapper clones a single bio to one or
more bios depending on target mapping infor-
mation previously pushed into the kernel for
each mapped device in the io stack since a
bio is not permitted to span multiple map tar-
gets/segments. Also at each level, each cloned
bio is passed to the map callout of the target
driver managing a mapped device. The target
driver has the option of

1. queuing the io internal to that driver to be
serviced at a later time by that driver,

2. redirecting the io to one or more different
target devices and possibly a different sec-
tor on each of those target devices, or

3. returning an error status for the bio to the
device mapper.

Both the first or third options stop the recursion
through the device tree and thegeneric_
make_request framework for that matter.
Otherwise, a bio being directed to the first tar-
get device which is not managed by the device
mapper causes the bio to exit the device mapper
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framework, although the bio continues recurs-
ing through thegeneric_make_request
framework until the bottom device is reached.

The device mapper processes bio completions
recursively from a leaf device to the root
mapped device in soft interrupt context. At
each level in a device tree, bio completions are
filtered by the device mapper as a result of redi-
recting the bio completion callback at that level
during bio dispatch. The device mapper callout
to the target driver responsible for servicing a
mapped device is enabled by associating a tar-
get_io structure with the bi_private field of a
bio, also during bio dispatch. In this fashion,
each bio completion is serviced by the target
driver which dispatched the bio.

The device mapper supports a variety of
push/pull interfaces to enhance communication
across the system call boundary. Each of these
interfaces is accessed from user space via the
device mapper library which currently issues
ioctls to the device mapper character interface.
The occurrence of target driver derived io re-
lated events can be passed to user space via the
device mapper event mechanism. Target driver
specific map contents and mapped device sta-
tus can be pulled from the kernel using device
mapper messages. Typed messages and status
information are encoded as ASCII strings and
decoded back to their original form according
dictated by their type.

3.1.2 Multipath Target Driver

A multipath target driver is a component driver
of the device mapper framework. Currently, the
multipath driver is position dependent within a
stack of device mapper target drivers: it must be
at the bottom of the stack. Furthermore, there
may not be other filter drivers, (e.g., multidisk),
stacked underneath it. It must be stacked im-

mediately atop driver which services a block
request queue, for example,/dev/sda .

The multipath target receives configuration in-
formation for multipath mapped devices in the
form of messages sent from user space through
device mapper library interfaces. Each message
is typed and may contain parameters in a po-
sition dependent format according to message
type. The information is transferred as a sin-
gle ASCII string which must be encoded by the
sender and decoded by the receiver.

The multipath target driver provides path
failover and path load sharing. Io failure on one
path to a device is captured and retried down an
alternate path to the same device. Only after
all paths to the same device have been tried and
failed is an io error actually returned to the io
initiator. Path load sharing enables the distri-
bution of bios amongst the paths to the same
device according to a path load sharing policy.

Abstractions are utilized to represent key en-
tities. A multipath corresponds to a device.
A logical path to a device is represented by a
path. A path group provides a way to associate
paths to the same device which have similar at-
tributes. There may be multiple path groups
associated with the same device. A path selec-
tor represents a path load sharing algorithm and
can be viewed as an attribute of a path group.
Round robin based path selection amongst the
set of paths in the same path group is currently
the only available path selector. Storage sys-
tem specific behavior can be localized within a
multipath hardware handler.

The multipath target driver utilizes two sub-
component frameworks to enable both storage
system specific behavior and path selection al-
gorithms to be localized in separate modules
which may be loaded and managed separately
from the multipath target driver itself.
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3.1.3 Device Specific Module

A storage system specific component can be as-
sociated with each target device type and is re-
ferred to as a hardware handler or Device Spe-
cific Module (DSM). A DSM allows for the
specification of kernel resident storage system
specific path group initialization, io completion
filtering, and message handling. Path group
initialization is used to utilize storage system
specific actions to activate the passive interface
of an active-passive storage system. Storage
system specific io completion filtering enables
storage system specific error handling. Storage
system specific message handling enables stor-
age system specific configuration.

DSM type is specified by name in the multi-
path target driver map configuration string and
must refer to a DSM pre-loaded into the kernel.
A DSM may be passed paramters in the con-
figuration string. A hardware context structure
passed to each DSM enables a DSM to track
state associated with a particular device.

Associating a DSM with a block device type
is optional. The EMC CLARiion DSM is cur-
rently the only DSM.

3.1.4 Path Selection Subsystem

A path selector enables the distribution of io
amongst the set of paths in a single path group.

Path selector type is specified by name in the
multipath target driver map configuration string
and must refer to a path selector pre-loaded
into the kernel. A path selector may be passed
paramters in the configuration string. The path
selector context structure enables a path selec-
tor type to track state across multiple ios to the
paths of a path group.

Each path group must be associated with a path
selector. A single round robin path selector ex-
ists today.

3.2 User Modules

Figure 3 outlines the architecture of the user-
mode multipath tools. Multipath user space
components perform path discovery, path pol-
icy management and configuration, and path
health testing. The multipath configurator is re-
sponsible for discovering the network topology
for multipathed block devices and for updating
kernel resident multipath target driver config-
uration and state information. The multipath
daemon monitors the usability of paths both in
response to actual errors occurring in the kernel
and proactively via periodic path health test-
ing. Both components share path discovery
and path health testing services. Furthermore,
these services are implemented using an exten-
sible framework to facilitate multipath support
for new block device types, block devices from
new vendors, and new models. The kpartx tool
creates mapped devices for partitions of multi-
path managed block devices.

3.2.1 Multipath Configurator

Path discovery involves determining the set of
routes from a host to a particular block device
which is configured for multipathing. Path dis-
covery is implemented by scanning Sysfs look-
ing for block device names from a multipath
configuration file which designate block device
types eligible for multipathing. Each entry in
/sys/block corresponds to the gendisk for a dif-
ferent block device. As such, path discov-
ery is independent of whatever path transport
is used between host and device. Since de-
vices are assumed to have an identifier attribute
which is unique in both time and space, the
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Figure 3: multipath tools architecture
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cumulative set of paths found from Sysfs are
coalesced based on device UID. Configuration
driven multipath attributes are setup for each of
these paths.

The multipath configurator synchronizes path
configuration and path state information across
both user and kernel multipath components.
The current configuration path state is com-
pared with the path state pulled from the mul-
tipath target driver. Most discrepancies are
dealt with by pushing the current configuration
and state information into the multipath target
driver. This includes creating a new multipath
map for a newly discovered device; changing
the contents of an existing multipath map for a
newly discovered path to a known device, for
a path to a known device which is no longer
visible, and for configuration driven multipath
attributes which may have changed; and for up-
dating the state of a path.

Configuration and state information are passed
between user and kernel space multipath com-
ponents as position dependent information as a
single string. The entire map for a mapped de-
vice is transferred as a single string and must be
encoded before and decoded after the transfer.

The multipath configurator can be invoked
manually at any time or automatically in reac-
tion to a hotplug event generated for a configu-
ration change for a block device type managed
by the multipathing subsystem. Configuration
changes involve either the creation of a new
path or removal of an existing path.

3.2.2 Multipath Daemon

The multipath daemon actively tests paths and
reacts to changes in the multipath configura-
tion.

Periodic path testing performed by the multi-
path daemon is responsible for both restoring

failed paths to an active state and proactively
failing active paths which fail a path test. Cur-
rently, while the default is to test all active and
failed paths for all devices every 5 seconds, this
interval can be changed via configuration direc-
tive in the multipath configuration file. The cur-
rent non-optimized design could be enhanced
to reduce path testing overhead by

• testing the physical transport components
instead of the logical ones

• varying the periodic testing interval.

An example of the former for SCSI block de-
vices is to

• associate across all devices those paths
which utilize common SCSI initiators and
targets and

• for each test interval test only one path for
every unique combination of initiator and
target.

An example of the latter is to vary the periodic
test interval in relationship to the recent past
history of the path or physical components, that
is, paths which fail often get tested more fre-
quently.

The multipath daemon learns of and reacts to
changes in both the current block device con-
figuration and the kernel resident multipathing
configuration. The addition of a new path or
the removal of an already existing path to an
already managed block device is detected over
a netlink socket as a uevent triggered callback
which adds or removes the path to or from
the set of paths which will be actively tested.
Changes to the kernel resident multipathing
state are detected as device-mapper generated
event callbacks. Events of this kind invole
block io errors, path state change, and changes
in the highest priority path group for a mapped
device.
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3.2.3 Multipath Framework

The multipath framework enables the use of
block device vendor specific algorithms for

1. deriving a UID for identifying the physical
device associated with a logical path

2. testing the health of a logical path

3. determining how to organize the logical
paths to the same device into separate sets,

4. assigning a priority to each path

5. determining how to select the next path
within the same path set

6. specifying any kernel resident device spe-
cific multipathing capabilities.

While the last two capabilities must be ker-
nel resident, the remaining user resident capa-
bilities are invoked either as functions or ex-
ecutables. All but item four and item six are
mandatory. A built-in table specifying each
of these capabilities for each supported block
device vendor and type may, but need not be,
overridden by configuration directives in a mul-
tipath configuration file. Block device vendor
and type are derived from attributes associated
with the Sysfs device file probed during device
discovery. Configuration file directives may
also be used to configure these capabilities for
a specific storage system instance.

A new storage system is plugged into this
user space multipath framework by specifying
a configuration table or configuration file en-
try for the storage system and providing any of
the necessary, but currently missing mechanism
needed to satisfy the six services mentioned
above for the storage system. The service selec-
tions are specified as string or integer constants.
In some cases, the selection is made from a re-
stricted domain of options. In other cases a new

mechanism can be utilized to provide the re-
quired service. Services which are invoked as
functions must be integrated into the multipath
component libraries while those invoked as ex-
ecutables are not so restricted. Default options
provided for each service may also be overrid-
den in the multipath configuration file.

Since the service which derives a UID for a
multipath device is currently invoked from the
multipath framework as an executable, the ser-
vice may be, and in fact is now external to the
multipath software. All supported storage sys-
tems (keep in mind they are all SCSI at the mo-
ment) utilizescsi_id(8) to derive a UID for
a SCSI logical unit. Almost all of these cases
obtain the UID directly from the Vendor Spec-
ified Identifier field of an extended SCSI in-
quiry command using vital product page 0x83.
This is indeed the default option. Although
scsi_id is invoked as an executable today,
a scsi_id service library appears to be in-
plan, thereby allowing in-context UID genera-
tion from this framework in the near future.

Path health testing is invoked as a service func-
tion built into the libcheckers multipath library.
While SCSI specific path testing functions al-
ready exist in this library based on reading sec-
tor 0 (this is the default) and issuing a TUR,
path health testing can be specified to be stor-
age system specific but must be included within
libcheckers.

The selection of how to divide up the paths to
the same device into groups is restricted to a set
of five options:

• failover

• multibus

• group-by-priority

• group-by-serial



158 • Linux Multipathing

• group-by-node-name.

Failover, the default policy, implies one path
per path group and can be used to disallow path
load sharing while still providing path failover.
Multibus, by far the most commonly selected
option, implies one path group for all paths and
is used in most cases when access is symmet-
ric across all paths, e.g., active-active storage
systems. Group-by-priority implies a group-
ing of paths with the same priority. This op-
tion is currently used only by the active-passive
EMC CLARiion storage array and provides the
capability to assign a higher priority to paths
connecting to the portion of the storage sys-
tem which has previously been assigned to be
the default owner of the SCSI logical unit.
Group-by-serial implies a grouping based on
the Vendor Specified Identifier returned by a
VPD page 0x80 extended SCSI inquiry com-
mand. This is a good way to group paths for an
active-passive storage system based on which
paths are currently connected to the active por-
tion of the storage system for the SCSI logical
unit. Group-by-node-name currently implies a
grouping by by SCSI target.

Paths to the same device can be assigned
priorities in order to both enable the group-
by-priority path grouping policy and to af-
fect path load sharing. Path group priority
is a summation of the priority for each ac-
tive path in the group. An io is always di-
rected to a path in the highest priority path
group. Theget_priority service is cur-
rently invoked as an executable. The de-
fault option is to not assign a priority to any
path, which leads to all path groups being
treated equally. Thepp_balance_paths
executable assigns path priority in order to at-
tempt to balance path usage for all multipath
devices across the SCSI targets to the same
storage system. Several storage system specific
path priority services are also provided.

Path selectors and hardware contexts are spec-
ified by name and must refer to specific kernel
resident services. A path selector is mandatory
and currently the only option is round-robin. A
hardware context is by definition storage sys-
tem specific. Selection of hardware context is
optional and only the EMC CLARiion storage
system currently utilizes a hardware context.
Each may be passed parameters, specified as a
count followed by each parameter.

3.2.4 Kpartx

The kpartx utility creates device-mapper
mapped devices for the partitions of multipath
managed block devices. Doing so allows a
block device partition to be managed within
the device mapper framework as would be
any whole device. This is accomplished by
reading and parsing a target device’s partition
table and setting up the device-mapper table
for the mapped device from the start address
and length fields of the paritition table entry
for the partition in question. Kpartx uses the
same devmapper library interfaces as does the
multipath configurator in order to create and
initialize the mapped device.

4 Interaction Amongst Key Kernel
and User Components

The interaction between key user and kernel
multipath components will be examined while
considering several use cases. Device and
path configuration will be considered first. Io
scheduling and io failover will then be exam-
ined in detail.
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4.1 Block Device and Path Discovery

Device discovery consists of obtaining infor-
mation about both the current and previous
multipath device configurations, resolving any
differences, and pushing the resultant updates
into the multipath target driver. While these
tasks are primarily the responsibility of the
multipath configurator, many of the device dis-
covery services are in fact shared with the mul-
tipath daemon.

The device discovery process utilizes the com-
mon services of the user space multipath frame-
work. Framework components to identify,
test, and prioritize paths are selected from pre-
established table or config driven policy options
based on device attributes obtained from prob-
ing the device’s Sysfs device file.

The discovery of the current configuration is
done by probing block device nodes created
in Sysfs. A block device node is created by
udev in reaction to a hotplug event generated
when a block device’s request queue is regis-
tered with the kernel’s block subsystem. Each
device node corresponds to a logical path to a
block device since no kernel resident compo-
nent other than the multipath target driver is
multipath cognizant.

The set of paths for the current configuration
are coalesced amongst the set of multipath
managed block devices. Current path and de-
vice configuration attributes are retrieved con-
figuration file and/or table entries.

The previous device configuration stored in the
collective set of multipath mapped device maps
is pulled from the multipath target driver using
target driver specific message ioctls issued by
the device-mapper library.

Discrepancies between the old and new device
configuration are settled and the updated device

configuration and state information is pushed
into the multipath target driver one device at a
time. Several use cases are enumerated below.

• A new mapped device is created for a mul-
tipath managed device from the new con-
figuration which does not exist in the old
configuration.

• The contents of an existing multipath map
are updated for a newly discovered path
to a known device, for a path to a known
device which is no longer visible and
for multipath attributes which may have
changed. Examples of multipath attributes
which can initiate an update of the kernel
multipath device configuration are enu-
merated below.

– device size

– hardware handler

– path selector

– multipath feature parameters

– number of path groups

– assignment of paths to path groups

– highest priority path group

• Path state is updated based on path testing
done during device discovery.

Configuration updates to an existing multipath
mapped device involve the suspension and sub-
sequent resumption of io around the complete
replacement of the mapped device’s device-
mapper map. Io suspension both blocks all new
io to the mapped device and flushes all io from
the mapped device’s device tree. Path state up-
dates are done without requiring map replace-
ment.

Hotplug initiated invocation of the multipath
configurator leads to semi-automated multipath
response to post-boot time changes in the block



160 • Linux Multipathing

device configuration. For SCSI target devices,
a hotplug event is generated for a SCSI target
device when the device’s gendisk is registered
after the host attach of a SCSI logical unit and
unregistered after the host detach of a SCSI log-
ical unit.

4.2 Io Scheduling

The scheduling of bios amongst the multiple
multipath target devices for the same multi-
path mapped device is controlled by both a
path grouping policy and a path selection pol-
icy. While both path group membership and
path selection policy assignment tasks are per-
formed in user space, actual io scheduling is
implemented via kernel resident mechanism.

Paths to the same device can be separated into
path groups, where all paths in the same group
have similar path attributes. Both the number
of path groups and path membership within a
group are controlled by the multipath configu-
rator based on one of five possible path group-
ing policies. Each path grouping policy uses
different means to assign a path to a path group
in order to model the different behavior in the
physical configuration. Each path is assigned
a priority via a designated path priority callout.
Path group priority is the summation of the path
priorities for each path in the group. Each path
group is assigned a path selection policy gov-
erning the selection of the next path to use when
scheduling io to a path within that group.

Path group membership and path selection in-
formation are pushed into the kernel where it is
then utilized by multipath kernel resident com-
ponents to schedule each bio on one of mul-
tipath paths. This information consists of the
number of path groups, the highest priority path
group, the path membership for each group
(target devices specified bydev_t ), the name
of the path selection policy for each group, a

count of optional path selection policy param-
eters, and the actually path selection policy pa-
rameters if the count value is not zero. As is
the case for all device mapper map contents
passed between user and kernel space, the col-
lective contents is encoded and passed as a sin-
gle string, and decoded on the other side ac-
cording to its position dependent context.

Path group membership and path selection in-
formation is pushed into the kernel both when a
multipath mapped device is first discovered and
configured and later when the multipath config-
urator detects that any of this information has
changed. Both cases involve pushing the infor-
mation into the multipath target driver within
a device mapper map or table. The latter case
also involves suspending and resuming io to the
mapped device during the time the map is up-
dated.

Path group and path state are also pushed into
the kernel by the multipath configurator inde-
pendently of a multipath mapped device’s map.
A path’s state can be either active or failed. Io
is only directed by the multipath target driver
to a path with an active path state. Currently
a path’s state is set to failed either by the mul-
tipath target driver after a single io failure on
the path or by the multipath configurator after
a path test failure. A path’s state is restored
to active only in user space after a multipath
configurator initiated path test succeeds for that
path. A path group can be placed into bypass
mode, removed from bypass mode, or made the
highest priority path group for a mapped de-
vice. When searching for the next path group to
use when there are no active paths in the highest
priority path group, unless a new path group has
been designated as the highest priority group,
all path groups are searched. Otherwise, path
groups in bypass mode are first skipped over
and selected only if there are no path groups
for the mapped device which are not in bypass
mode.
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The path selection policy name must refer to
an already kernel resident path selection policy
module. Path selection policy modules register
half dozen callbacks with the multipath target
driver’s path selection framework, the most im-
portant of which is invoked in the dispatch path
of a bio by the multipath target driver to select
the next path to use for the bio.

Io scheduling triggered during the multipath
target driver’s bio dispatch callout from the
device mapper framework consists of first se-
lecting a path group for the mapped device in
question, then selecting the active path to use
within that group, followed by redirecting the
bio to the selected path. A cached value of the
path group to use is saved with each multipath
mapped device in order to avoid its recalcula-
tion for each bio redirection to that device. This
cached value is initially set from to the highest
priority path group and is recalculated if either

• the highest priority path group for a
mapped device is changed from user space
or

• the highest priority path group is put into
bypassed mode either from kernel or user
space multipathing components.

A cached value of the path to use within the
highest priority group is recalculated by invok-
ing the path selection callout of a path selection
policy whenever

• a configurable number of bios have al-
ready been redirected on the current path,

• a failure occurs on the current path,

• any other path gets restored to a usable
state, or

• the highest priority path group is changed
via either of the two methods discussed
earlier.

Due to architectural restrictions and the rela-
tively (compared with physical drivers) high
positioning of the multipath target driver in the
block io stack, it is difficult to implement path
selection policies which take into account the
state of shared physical path resources without
implementing significant new kernel resident
mechanism. Path selection policies are limited
in scope to the path members of a particular
path group for a particular multipath mapped
device. This multipath architectural restriction
together with the difficulty in tracking resource
utilization for physical path resources from a
block level filter driver makes it difficult to im-
plement path selection policies which could at-
tempt to minimize the depth of target device re-
quest queues or the utilization of SCSI initia-
tors. Path selectors tracking physical resources
possibly shared amongst multiple hosts, (e.g.,
SCSI targets), face even more difficulties.

The path selection algorithms are also impacted
architecturally by being positioned above the
point at the bottom of the block io layer where
bios are coalesced into io requests. To help
deal with this impact, path reselection within
a priority group is done only for every n bios,
where n is a configurable repeat count value as-
sociated with each use of a path selection pol-
icy for a priority group. Currently the repeat
count value is set to 1000 for all cases in or-
der to limit the adverse throughput effects of
dispersing bios amongst multiple paths to the
same device, thereby negating the ability of the
block io layer to coalesce these bios into larger
io requests submitted to the request queue of
bottom level target devices.

A single round-robin path selection policy ex-
ists today. This policy selects the least recently
used active path in the current path group for
the particular mapped device.
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4.3 Io Failover

While actual failover of io to alternate paths is
performed in the kernel, path failover is con-
trolled via configuration and policy information
pushed into the kernel multipath components
from user space multipath components.

While the multipath target driver filters both
io dispatch and completion for all bios sent to
a multipath mapped device, io failover is trig-
gered when an error is detected while filtering
io completion. An understanding of the error
handling taking place underneath the multipath
target driver is useful at this point. Assuming
SCSI target devices as leaf nodes of the device
mapper device tree, the SCSI mid-layer fol-
lowed by the SCSI disk class driver each parse
the result field of thescsi_cmd structure set
by the SCSI LLDD. While parsing by the SCSI
mid-layer and class driver filter code filter out
some error states as being benign, all other
cases lead to failing all bios associated with the
io request corresponding to the SCSI command
with -EIO. For those SCSI errors which pro-
vide sense information, SCSI sense key, Addi-
tional Sense Code (ASC), and Additional Sense
Code Qualifier (ASCQ) byte values are set in
the bi_error field of each bio. The -EIO,
SCSI sense key, ASC, and ASCQ are propa-
gated to all parent cloned bios and are available
for access by the any target driver managing tar-
get devices as the bio completions recurse back
up to the top of the device tree.

Io failures are first seen as a non-zero error sta-
tus, (i.e., -EIO), in the error parameter passed to
the multipath target driver’s io completion fil-
ter. This filter is called as a callout from the
device mapper’s bio completion callback asso-
ciated with the leaf node bios. Assuming one
exists, all io failures are first parsed by the stor-
age system’s hardware context’s error handler.
Error parsing drives what happens next for the
path, path group, and bio associated with the io

failure. The path can be put into a failed state or
left unaffected. The path group can be placed
into a bypassed state or left unaffected. The
bio can be queued for retry internally within
the multipath target driver or failed. The ac-
tions on the path, the path group, and the bio
are independent of each other. A failed path is
unusable until restored to a usable state from
the user space multipath configurator. A by-
passed path group is skipped over when search-
ing for a usable path, unless there are no usable
paths found in other non-bypassed path groups.
A failed bio leads to the failure of all parent
cloned bios at higher levels in the device tree.

Io retry is done exclusively in a dedicated mul-
tipath worker thread context. Using a worker
thread context allows for blocking in the code
path of an io retry which requires a path
group initialization or which gets dispatched
back to generic_make_request —either
of which may block. This is necessary since
the bio completion code path through the de-
vice mapper is usually done within a soft in-
terrupt context. Using a dedicated multipath
worker thread avoids delaying the servicing of
non-multipath related work queue requests as
would occur by using the kernel’s default work
queue.

Io scheduling for path failover follows basically
the same path selection algorithm as that for an
initial io dispatch which has exhausted its path
repeat count and must select an alternate path.
The path selector for the current path group se-
lects the best alternative path within that path
group. If none are available, the next highest
priority path group is made current and its path
selector selects the best available path. This al-
gorithm iterates until all paths of all path groups
have been tried.

The device mapper’s kernel resident event
mechanism enables user space applications to
determine when io related events occur in the
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kernel for a mapped device. Events are gener-
ated by the target driver managing a particular
mapped device. The event mechanism is ac-
cessed via a synchronous device mapper library
interface which blocks a thread in the kernel in
order to wait for an event associated with a par-
ticular mapped device. Only the event occur-
rence is passed to user space. No other attribute
information of the event is communicated.

The occurrence of a path failure event (along
with path reinstatement and a change in the
highest priority path group) is communicated
from the multipath target driver to the multipath
daemon via this event mechanism. A separate
multipath daemon thread is allocated to wait for
all multipath events associated with each mul-
tipath mapped device. The detection of any
multipath event causes the multipath daemon to
rediscover its path configuration and synchro-
nize its path configuration, path state, and path
group state information with the multipath tar-
get driver’s view of the same.

A previously failed path is restored to an active
state only as a result of passing a periodically
issued path health test issued by the multipath
daemon for all paths, failed or active. This path
state transition is currently enacted by the mul-
tipath daemon invoking the multipath configu-
rator as an executable.

A io failure is visible above the multipathing
mapped device only when all paths to the same
device have been tried once. Even then, it is
possible to configure a mapped device to queue
for an indefinite amount of time such bios on a
queue specific to the multipath mapped device.
This feature is useful for those storage systems
which can possibly enter a transient all-paths-
down state which must be ridden through by
the multipath software. These bios will remain
where they are until the mapped device is sus-
pended, possibly done when the mapped de-
vice’s map is updated, or when a previously
failed path is reinstated. There are no practical

limits on either the amount of bios which may
be queued in this manner nor on the amount
of time which these bios remain queued. Fur-
thermore, there is no congestion control mech-
anism which will limit the number of bios actu-
ally sent to any device. These facts can lead
to a significant amount of dirty pages being
stranded in the page cache thereby setting the
stage for potential system deadlock if memory
resources must be dynamically allocated from
the kernel heap anywhere in the code path of
reinstating either the map or a usable path for
the mapped device.

5 Future Enhancements

This section enumerates some possible en-
hancements to the multipath implementation.

5.1 Persistent Device Naming

The cryptic name used for the device file as-
sociated with a device mapper mapped de-
vice is often renamed by a user space compo-
nent associated with the device mapper target
driver managing the mapped device. The mul-
tipathing subsystem sets up udev configuration
directives to automatically rename this name
when a device mapper device file is first cre-
ated. The dm-<minor #> name is changed to
the ASCII representation of the hexi-decimal
values for each 4-bit nibble of the device’s UID
utilized by multipath. Yet, the resultant multi-
path device names are still cryptic, unwieldly,
and their use is prone to error. Although an
alias name may be linked to each multipath de-
vice, the setup requires manipulcation of the
multipath configuration file for each device.
The automated management of multipath alias
names by both udev and multipath components
seems a reasonable next step.
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It should be noted that the Persistent Storage
Device Naming specification from the Stor-
age Networking SIG of OSDL is attempting to
achieve consistent naming across all block de-
vices.

5.2 Event Mechanism

The device mapper’s event mechanism enables
user space applications to determine when io
related events occur in the kernel for a mapped
device. Events are generated by the target
driver managing a particular mapped device.
The event mechanism is currently accessed via
a synchronous device mapper library interface
which blocks a thread in the kernel in order to
wait for an event associated with a particular
mapped device. Only the event occurrence is
passed back to user space. No other attribute
information of the event is communicated.

Potential enhancements to the device mapper
event mechanism are enumerated below.

1. Associating attributes with an event and
providing an interface for communicating
these attributes to user space will improve
the effectiveness of the event mechanism.
Possible attributes for multipath events in-
clude (1) the cause of the event, (e.g., path
failure or other), (2) error or status in-
formation associated with the event, (e.g.,
SCSI sense key/ASC/ASCQ for a SCSI er-
ror), and (3) an indication of the target de-
vice on which the error occurred.

2. Providing a multi-event wait synchronous
interface similar to select(2) or poll(2) will
significantly reduce the thread and mem-
ory resources required to use the event
mechanism. This enhancement will allow
a single user thread to wait on events for
multiple mapped devices.

3. A more radical change would be to inte-
greate the device-mappers event mecha-
nism with the kernel’s kobject subsystem.
Events could be send as uevents to be re-
ceived over anAF_NETLINK socket.

5.3 Monitoring of io via Iostat(1)

Block io to device mapper mapped devices can-
not currently be monitored viaiostat(1)
or /proc/diskstats . Although an io to
a mapped device is tracked on the actual tar-
get device(s) at the bottom of thegeneric_
make_request device tree, io statistics are
not tracked for any device mapper mapped de-
vices positioned within the device tree.

Io statistics should be tracked for each device
mapper mapped device positioned on an io
stack. Multipathing must account for possibly
multiple io failures and subsequent io retry.

5.4 IO Load Sharing

Additional path selectors will be implemented.
These will likely include state based ones
which select a path based on the minimum
number of outstanding bios or minimum round
trip latency. While the domain for this criteria
is likely a path group for one mapped device, it
may be worth looking sharing io load across ac-
tual physical components, (e.g., SCSI initiator
or target), instead.

5.5 Protocol Agnostic Multipathing

Achieving protocol agnostic multipathing will
require the removal of some SCSI specific
affinity in the kernel, (e.g., SCSI-specific error
information in the bio), and user, (e.g., path dis-
covery), multipath components.
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5.6 Scalable Path Testing

Proactive path testing could be enhanced to
support multiple path testing policies and new
policies created which provide improved re-
source scalability and improve the predictabil-
ity of path failures. Path testing could empha-
size the testing of the physical components uti-
lized by paths instead of simply exhaustively
testing every logical path. For example, the
availability through Sysfs of path transport spe-
cific attributes for SCSI paths could will make
it easier to group paths which utilize common
physical components. Additionally, the fre-
quency of path testing can be based on the re-
cent reliability of a path, that is, frequently and
recently failed paths are more often.

6 Architectural Issues

This section describes several critical architec-
tural issues.

6.1 Elevator Function Location

The linux block layer performs the sorting and
merging of IO requests (elevator modules) in
a layer just above the device driver. The dm
device mapper supports the modular stacking
of multipath and RAID functionality above this
layer.

At least for the device mapper multipath mod-
ule, it is desirable to either relocate the elevator
functionality to a layer above the device map-
per in the IO stack, or at least to add an elevator
at that level.

An example of this need can be seen with a
multipath configuration where there are four

equivalent paths between the host and each tar-
get. Assume also there is no penalty for switch-
ing paths. In this case, the multipath module
wants to spread IO evenly across the four paths.
For each IO, it may choose a path based on
which path is most lightly loaded.

With the current placement of the elevator then,
IO requests for a given target tend to be spread
evenly across each of the four paths to that tar-
get. This reduces the chances for request sort-
ing and merging.

If an elevator were placed in the IO stack above
the multipath layer, the IO requests coming
into the multipath would already be sorted and
merged. IO requests on each path would at least
have been merged. When IO requests on differ-
ent paths reach their common target, the IO’s
will may nolonger be in perfect sorted order.
But they will tend to be near each other. This
should reduce seeking at the target.

At this point, there doesn’t seem to be any
advantage to retaining the elevator above the
device driver, on each path in the multi-
path. Aside from the additional overhead
(more memory occupied by the queue, more
plug/unplug delay, additional cpu cycles) there
doesn’t seem to be any harm from invoking the
elevator at this level either. So it may be sat-
isfactory to just allow multiple elevators in the
IO stack.

Regarding other device mapper targets, it is not
yet clear whether software RAID would benefit
from having elevators higher in the IO stack, in-
terspersed between RAID levels. So, it maybe
be sufficient to just adapt the multipath layer to
incorporate an elevator interface.

Further investigation is needed to determine
what elevator algorithms are best for multi-
path. At first glance, the Anticipatory sched-
uler seems inappropriate. It’s less clear how
the deadline scheduler of CFQ scheduler would
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perform in conjunction with multipath. Con-
sideration should be given to whether a new IO
scheduler type could produce benefits to multi-
path IO performance.

6.2 Memory Pressure

There are scenarios where all paths to a logical
unit on a SCSI storage system will appear to be
failed for a transient period of time. One such
expected and transient all paths down use case
involves an application transparent upgrade of
the micro-code of a SCSI storage system. Dur-
ing this operation, it is expected that for a rea-
sonably short period of time likely bounded by
a few minutes, all paths to a logical unit on the
storage system in question will appear to a host
to be failed. It is expected that a multipathing
product will be capable of riding through this
scenario without failing ios back to applica-
tions. It is expected that the multipathing soft-
ware will both detect when one or more of the
paths to such a device become physically us-
able again, do what it takes to make the paths
usable, and retry ios which failed during the all
paths down time period.

If this period coincides with a period of ex-
treme physical memory congestion it must still
be possible for multipath components to enable
the use of these paths as they become physi-
cally usable. While a kernel resident conges-
tion control mechanism based on block request
allocation exists to ward off the over commit-
tal of page cache memory to any one target
device, there are no congestion control mech-
anisms that take into account either the use of
multiple target devices for the same mapped de-
vice or the internal queuing of bios within de-
vice mapper target drivers.

The multipath configuration for several stor-
age systems must include the multipath feature
queue_if_no_path in order to not imme-
diately return to an application an io request

whose transfer has failed on every path to its
device. Yet, the use of this configuration direc-
tive can result in the queuing of an indefinite
number of bios each for an indefinite period of
time when there are no usable paths to a de-
vice. When coincident with a period of heavy
asynchronous write-behind in the page cache,
this can lead to lots of dirty page cache pages
for the duration of the transient all paths down
period.

Since memory congestion states like this can-
not be detected accurately, the kernel and user
code paths involved with restoring a path to
a device must not ever execute code which
could result in blocking while an io is issued to
this device. A blockable (i.e.,__GFP_WAIT)
memory allocation request in this code path
could block for write-out of dirty pages to this
device from the synchronous page reclaim al-
gorithm of__alloc_pages . Any modifica-
tion to file system metadata or data could block
flushing modified pages to this device. Any of
these actions have the potential of deadlocking
the multipathing software.

These requirements are difficult to satisfy for
multipathing software since user space inter-
vention is required to restore a path to a usable
state. These requirements apply to all user and
kernel space multipathing code (and code in-
voked by this code) which is involved in testing
a path and restoring it to a usable state. This
precludes the use of fork, clone, or exec in the
user portion of this code path. Path testing ini-
tiated from user space and performed via ioctl
entry to the block scsi ioctl code must also con-
form to these requirements.

The pre-allocation of memory resources in or-
der to make progress for a single device at a
time is a common solution to this problem.
This approach may require special case code
for tasks such as the kernel resident path test-
ing. Furthermore, in addition to being “locked
to core,” the user space components must only
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invoke system calls and library functions which
also abide by these requirements. Possibly
combining these approaches with a bit of con-
gestion control applied against bios (to account
for the ones internally queued in device-mapper
target drivers) instead of or in addition to block
io requests and/or a mechanism for timing out
bios queued within the multipath target driver
as a result of thequeue_if_no_path mul-
tipath feature is a reasonable starting point.

7 Conclusion

This paper has analyzed both architecture and
design of the block device multipathing indige-
nous to linux. Several architectural issues and
potential enhancements have been discussed.

The multipathing architecture described in this
paper is actually implemented in several linux
distributions to be released around the time this
paper is being written. For example, SuSE
SLES 9 service pack 2 and Red Hat AS 4 up-
date 1 each support Linux multipathing. Fur-
thermore, several enhancements described in
this paper are actively being pursued.

Please referencehttp://christophe.
varoqui.free.fr and http:
//sources.redhat.com/dm for the
most up-to-date development versions of the
user- and kernel-space resident multipathing
software respectively. The first web site listed
also provides a detailed description of the
syntax for a multipathing device-mapper map.
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Abstract

Kdump is a kexec based kernel crash dump-
ing mechanism, which is being perceived as
a reliable crash dumping solution for LinuxR©.
This paper begins with brief description of what
kexec is and what it can do in general case, and
then details how kexec has been modified to
boot a new kernel even in a system crash event.

Kexec enables booting into a new kernel while
preserving the memory contents in a crash sce-
nario, and kdump uses this feature to capture
the kernel crash dump. Physical memory lay-
out and processor state are encoded in ELF core
format, and these headers are stored in a re-
served section of memory. Upon a crash, new
kernel boots up from reserved memory and pro-
vides a platform to retrieve stored ELF headers
and capture the crash dump. Also detailed are
ELF core header creation, dump capture mech-
anism, and how to configure and use the kdump
feature.

1 Introduction

Various crash dumping solutions have been
evolving over a period of time for Linux and
other UNIXR© like operating systems. All so-
lutions have their pros and cons, but the most

important consideration for the success of a so-
lution has been the reliability and ease of use.
Kdump is a crash dumping solution that pro-
vides a very reliable dump generation and cap-
turing mechanism [01]. It is simple, easy to
configure and provides a great deal of flexibility
in terms of dump device selection, dump saving
mechanism, and plugging-in filtering mecha-
nism.

The idea of kdump has been around for
quite some time now, and initial patches for
kdump implementation were posted to the
Linux kernel mailing list last year [03]. Since
then, kdump has undergone significant design
changes to ensure improved reliability, en-
hanced ease of use and cleaner interfaces. This
paper starts with an overview of the kdump de-
sign and development history. Then the limi-
tations of existing designs are highlighted and
this paper goes on to detail the new design and
enhancements.

Section 2 provides background of kexec and
kdump development. Details regarding how
kexec has been enhanced to boot-into a new
kernel in panic events are covered in section 3.
Section 4 details the new kdump design. De-
tails about how to configure and use this mech-
anism are captured in Section 5. Briefly dis-
cussed are advantages and limitations of this
approach in section 6. A concise description
of current status of project and TODOs are in-

• 169 •
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cluded in Section 7.

2 Background

This section provides an overview of the kexec
and original kdump design philosophy and im-
plementation approach. It also brings forward
the design deficiencies of kdump approach so
far, and highlights the requirements that justi-
fied kexec and kdump design enhancements.

2.1 Kexec

Kexec is a kernel-to-kernel boot-loader [07],
which provides the functionality to boot into
a new kernel, over a reboot, without going
through the BIOS. Essentially, kexec pre-loads
the new kernel and stores the kernel image in
RAM. Memory required to store the new kernel
image need not be contiguous and kexec keeps
a track of pages where new kernel image has
been stored. When a reboot is initiated, kexec
copies the new kernel image to destination lo-
cation from where the new kernel is supposed
to run, and after executing some setup code,
kexec transfers the control to the new kernel.

Kexec functionality is constituted of mainly
two components; kernel space [08] and user
space [02]. Kernel space component imple-
ments a new system callkexec_load()
which facilitates pre-loading of new kernel.
User space component, here onwards called
kexec tools, parses the new kernel image, pre-
pares the appropriate parameter segment, and
setup code segment and passes the this data to
the running kernel through newly implemented
system call for further processing.

2.2 A Brief History of Kdump Develop-
ment

The core design principle behind this approach
is that dump is captured with the help of a cus-
tom built kernel that runs with a small amount
of memory. This custom built kernel is called
capture kernel and is booted into upon a sys-
tem crash event without clearing crashed ker-
nel’s memory. Here onwards, for discussion
purposes, crashing kernel is referred to as first
kernel and the kernel which captures the dump
after a system crash is called capture kernel.

While capture kernel boots, first kernel’s mem-
ory is not overwritten except for the small
amount of memory used by new kernel for its
execution. Kdump used this feature of kexec
and added hooks in kexec code to boot into a
capture kernel in a panic event without stomp-
ing crashed kernel’s memory.

Capture kernel used the first 16 MB of memory
for booting and this region of memory needed
to be preserved before booting into capture ker-
nel. Kdump added the functionality to copy the
contents of the first 16 MB to a reserved mem-
ory area called backup region. Memory for the
backup region was reserved during the first ker-
nel’s boot time, and location and size of the
backup region was specified using kernel con-
fig options. Kdump also copied over the CPU
register states to an area immediately after the
backup region during a crash event [03].

After the crash event, the system is unstable
and usual device shutdown methods can not be
relied upon, hence, devices are not shutdown
after a crash. This essentially means that any
ongoing DMAs at the time of crash are not
stopped. In the above approach, the capture
kernel was booting from the same memory lo-
cation as the first kernel (1 MB) and used first
16 MB to boot, hence, it was prone to cor-
ruption due to any on-going DMA in that re-
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gion. An idea was proposed and a prototype
patch was provided for booting the capture ker-
nel from a reserved region of memory instead
of a default location. This reduced the chances
of corruption of the capture kernel due to on-
going DMA [04] [05]. Kdump’s design was up-
dated to accommodate this change and now the
capture kernel booted from reserved location.
This reserved region was still being determined
by kernel config options [06].

Despite the fact that the capture kernel was
booting from a reserved region of memory, it
needed first 640 KB of memory to boot for
SMP configurations. This memory was re-
quired to retrieve configuration data like the
MP configuration table saved by BIOS while
booting the first kernel. It was also required to
place the trampoline code needed to kick-start
application processors in the system. Kdump
reserved 640 KB of memory (backup region)
immediately after the reserved region, and pre-
served the first 640 KB of memory contents by
copying it to a backup region just before trans-
ferring control to capture kernel. CPU register
states were being stored immediately after the
backup region [06].

After booting, capture kernel retrieved the
saved register states and backup region con-
tents, and made available the old kernel’s dump
image through two kernel interfaces. The
first one was through the/proc/vmcore in-
terface, which exported the dump image in
ELF core format, and other one being the
/dev/oldmem , which provided a linear raw
view of memory.

2.3 Need for Design Enhancement

Following are some of the key limitations of
the above approach that triggered the design en-
hancement of kdump.

1. In the design above, kexec pre-loads the
capture kernel wherever it can manage to
grab a page frame. At the time of crash,
the capture kernel image is copied to the
destination location and control is trans-
ferred to the new kernel. Given the fact
that the capture kernel runs from a re-
served area of memory, it can be loaded
there directly and extra copying of kernel
can be avoided. In general terms, kexec
can be enhanced to provide a fast reboot
path to handle booting into a new kernel
in crash events also.

2. Capture kernel and the associated data is
pre-loaded and stored in the kernel mem-
ory, but there is no way to detect any data
corruption due to faulty kernel program-
ming.

3. During the first kernel boot, kdump re-
serves a chunk of memory for booting the
capture kernel. The location of this region
is determined during kernel compilation
time with the help of config options. De-
termining the location of reserved region
through config options is a little cumber-
some. It brings in hard-coding in many
places, at the same time it is static in na-
ture and a user has to compile the kernel
again if he decides to change the location
of reserved region.

4. Capture kernel has to boot into a lim-
ited amount of memory, and to achieve
this, the capture kernel is booted with
user defined memory map with the help of
memmap=exactmap command line op-
tions. User has to provide this user de-
fined memory map while pre-loading the
capture kernel and need to be explicitly
aware of memory region reserved for cap-
ture kernel. This process can be automated
by kexec tools and these details can be
made opaque to the user.



172 • Kdump, A Kexec-based Kernel Crash Dumping Mechanism

5. When the capture kernel boots up, it needs
to determine the location of the backup re-
gion to access the crashed kernel’s backed-
up memory contents. Capture kernel re-
ceives this information through hard coded
config options. It also retrieves the saved
register states assuming these to be stored
immediately after the backup region and
this introduces another level of hard-
coding.

In this approach, the capture kernel is
explicitly aware of the presence of the
backup region, which can be done away
with. In general, there is no stan-
dard format for the exchange of infor-
mation between two kernels which essen-
tially makes two kernel dependent on each
other, and it might now allow kernel skew
between the first kernel and the capture
kernel as kernel development progresses.

6. The /proc/vmcore implementation
does not support discontiguous memory
systems and assumes memory is contigu-
ous, hence exports only one ELF program
header for the whole of the memory.

3 Kexec On Panic

Initially, kexec was designed to allow booting
a new kernel from a sane kernel over a reboot.
Emergence of kdump called for kexec to allow
booting a new kernel even in a crash scenario.
Kexec has now been modified to handle system
crash events, and it provides a separate reboot
path to a new kernel in panic situations.

Kexec as a boot-loader supports loading of var-
ious kinds of images for a particular platform.
For i386, vmlinux, bzImage, and multiboot im-
ages can be loaded. Capture kernel is compiled
to load and run from a reserved memory loca-
tion which does not overlap with the first ker-

nel’s memory location (1 MB). However, cur-
rently only a vmlinux image can be used as a
capture kernel. A bzImage can not be used as
capture kernel because even if it is compiled
to run from a reserved location, it always first
loads at 1 MB and later it relocates itself to
the memory location it was compiled to run
from. This essentially means that loading bz-
Image shall overwrite the first kernel’s memory
contents at 1 MB location and that is not the
desired behavior.

From here on out the discussion is limited to
the loading of a vmlinux image for i386 plat-
form. Details regarding loading of other kind
of images is outside the scope of this paper.

3.1 Capture Kernel Space Reservation

On i386, the default location a kernel runs from
is 1 MB. The capture kernel is compiled and
linked to run from a non default location like 16
MB. The first kernel needs to reserve a chunk
of memory where the capture kernel and as-
sociated data can be pre-loaded. Capture ker-
nel will directly run from this reserved mem-
ory location. This space reservation is done
with the help of crashkernel=X@Y boot
time parameter to first kernel, whereX is the
the amount of memory to be reserved andY
indicates the location where reserved memory
section starts.

3.2 Pre-loading the Capture Kernel

Capture kernel and associated data are pre-
loaded in the reserved region of memory.
Kexec tools parses the capture kernel image
and loads it in reserved region of memory us-
ing kexec_load() system call. Kexec tools
manage a contiguous chunk of data belonging
to the same group in the form of segment. For
example, bzImage code is considered as one
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segment, parameter block is treated as another
segment and so on. Kexec tools parses the cap-
ture kernel image and prepares a list of seg-
ments and passes the list to kernel. This list
basically conveys the information like location
of various data blocks in user space and where
these blocks have to be loaded in reserved re-
gion of memory.kexec_load() system call
does the verification on destination location of
a segments and copies the segment data from
user space to kernel space. Capture kernel is
directly loaded into the memory where it is sup-
posed to run from and no extra copying of cap-
ture kernel is required.

purgatory is an ELF relocatable object that
runs between the kernels. Apart from setup
code, purgatory also implements a sha256 hash
to verify that loaded kernel is not corrupt. In
addition,purgatory also saves the contents
to backup region after the crash (section 4.3).

Figure 1 depicts one of the possible arrange-
ments of various segments after being loaded
into a reserved region of memory. In this ex-
ample, memory from 16 MB to 48 MB has been
reserved for loading capture kernel.

      Backup Region

  Capture Kernel Image

 Parameter Segment 

         Purgatory

Reserved
Region

16M

 48M

  4G

  0K

Figure 1: Various Data Segments in Reserved
Region

3.3 Post Crash Processing

Upon a crash, kexec performs a minimum ma-
chine shutdown procedure and then jumps to
the purgatory code. During machine shut-
down, crashing CPU sends the NMI IPIs to
other processors to halt them. Upon receiving
NMI, the processor saves the register state, dis-
ables the local APIC and goes into halt state.
After stopping the other CPUs, crashing CPU
disables its local APIC, disables IOAPIC, and
saves its register states.

CPU register states are saved in ELF note sec-
tion format [09]. Currently the processor sta-
tus is stored in note type NT_PRSTATUS at
the time of crash. Framework provides enough
flexibility to store more information down the
line, if needed. One kilobyte of memory is re-
served for every CPU for storing information in
the form of notes. A final null note is appended
at the end to mark the end of notes. Memory
for the note section is allocated statically in the
kernel and the memory address is exported to
user space throughsysfs . This address is in
turn used by kexec tools while generating the
ELF headers (Section 4.2).

cpu[0] cpu[1] cpu[NR_CPUS]

1K 1K 1K

NT_PRSTATUS Null
Note

Empty Space
filled with zero

Figure 2: Saving CPU Register States

After saving register states, control is trans-
ferred to purgatory . purgatory runs
sha256 hash to verify the integrity of the cap-
ture kernel and associated data. If no corruption
is detected, purgatory goes on to copy the first
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640 KB of memory to the backup region (Sec-
tion 4.3). Once the backup is completed control
flow jumps to start of the new kernel image and
the new kernel starts execution.

4 Kdump

Previous kdump design had certain drawbacks
which have been overcome in the new design.
Following section captures the details of the
new kdump design.

4.1 Design Overview

Most of the older crash dumping solutions have
had the drawback of capturing/writing out the
dump in the context of crashing kernel, which
is inherently unreliable. This led to the idea of
first booting into a sane kernel after the crash
and then capturing the dump. Kexec enables
kdump to boot into the already loaded capture
kernel without clearing the memory contents
and this sets the stage for a reliable dump cap-
ture.

The dump image can be represented in many
ways. It can be a raw snapshot of memory read
from a device interface similar to/dev/mem ,
or it can be exported in ELF core format. Ex-
porting a dump image in ELF core format car-
ries the advantage of being a standard approach
for representing core dumps and provides the
compatibility with existing analysis tools like
gdb , crash , and so on. Kdump provides ELF
core view of a dump through/proc/vmcore
interface and at the same time it also provides
/dev/oldmem interface presenting linear raw
view of memory.

ELF core headers encapsulate the information
like processor registers, valid RAM locations,

and backup region, if any. ELF headers are pre-
pared by kexec tools and stored in a reserved
memory location along with other segments as
shown in Figure 3.

      Backup Region

  Capture Kernel Image

 Parameter Segment 

         Purgatory

Reserved
Region

16M

  4G

  0K

 ELF Core Headers

 48M

Figure 3: ELF Core Headers in Reserved Re-
gion

Memory for ELF core headers is reserved by
bootmem allocator during first kernel boot us-
ing thereserve_bootmem() function call.
Upon crash, system boots into new kernel and
stored ELF headers are retrieved and exported
through/proc/vmcore interface.

This provides a platform for capturing the
dump image and storing it for later analysis.
Implementation details are discussed in follow-
ing sections of this paper.

4.2 ELF Core Header Generation

Kdump uses the ELF core format to exchange
the information about dump image, between
two kernels. ELF core format provides a
generic and flexible framework for exchange
of dump information. The address of the start
of these headers is passed to the new kernel
through a command line option. This provides
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a cleaner interface between the two kernels, and
at the same time ensures that the two kernels
are independent of each other. It also allows
kernel skew between the crashing kernel and
the capture kernel, which essentially means that
version of the crashing kernel and the capture
kernel do not need to be the same. Also, an
older capture kernel should be able to capture
the dump for a relatively newer first kernel.

Kexec tools are responsible for ELF core
header generation. ELF64 headers are suffi-
cient to encode all the required information, but
gdb can not open a ELF64 core file for 32 bit
systems. Hence, kexec also provides a com-
mand line option to force preparation of ELF32
headers. This is useful for the users with non-
PAE systems.

One PT_LOAD type program header is created
for every contiguous memory chunk present in
the system. Information regarding valid RAM
locations is obtained from/proc/iomem .
Considering system RAM as a file, physical ad-
dress represents the offset in the file. Hence the
p_offset field of program header is set to
actual physical address of the memory chunk.
p_paddr is the same asp_offset except in
case of a backup region (Section 4.3). Virtual
address (p_vaddr ) is set to zero except for the
linearly mapped region as virtual addresses for
this region can be determined easily at the time
of header creation. This allows a restricted de-
bugging withgdb directly, without assistance
from any other utility used to fill in virtual ad-
dresses during post crash processing.

One PT_NOTE type program header is cre-
ated per CPU for representing note informa-
tion associated with that CPU. Actual notes in-
formation is saved at the time of crash (Sec-
tion 3.3), but PT_NOTE type program header
is created in advance at the time of loading
the capture kernel. The only information re-
quired at this point is the address of location

where actual notes section reside. This ad-
dress is exported to user space throughsysfs
by kexec. Kexec user space tools read in the
/sys/kernel/crash_notes file and pre-
pare the PT_NOTE headers accordingly.

In the event of memory hotplug, the cap-
ture kernel needs to be reloaded so that the
ELF headers are generated again reflecting the
changes.

4.3 Backup Region

Capture kernel boots from the reserved area of
memory after a crash event. Depending on the
architecture, it may still need to use some fixed
memory locations that were used by the first
kernel. For example, on i386, it needs to use the
first 640 KB of memory for trampoline code for
booting SMP kernel. Some architectures like
ppc64 need fixed memory locations for stor-
ing exception vectors and other data structures.
Contents of these memory locations are copied
to a reserved memory area (backup region) just
after crash to avoid any stomping by the capture
kernel.purgatory takes care of copying the
contents to backup region (Section 3.2).

Capture kernel/capture tool need to be aware
of the presence of a backup region because ef-
fectively some portion of the physical mem-
ory has been relocated. ELF format comes in
handy here as it allows to envelop this informa-
tion without creating any dependencies. A sep-
arate PT_LOAD type program header is gener-
ated for the backup region. Thep_paddr field
is filled with the original physical address and
the p_offset field is populated with the re-
located physical address as shown in Figure 4.

Currently, kexec user space tools provide the
backup region handling for i386, and the first
640 KB of memory is backed-up. This code is
more or less architecture dependent. Other ar-
chitectures can define their own backup regions
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Figure 4: Saving Contents To Backup Region

and plug-in the implementations into existing
kexec user space code.

4.4 Booting into Capture Kernel

The capture kernel is compiled to boot from
a non-default memory location. It should not
stomp over crashed kernel’s memory contents
to be able to retrieve a sane dump. Hence, cap-
ture kernel is booted with an user defined mem-
ory map instead of the one provided by BIOS or
one passed in parameter segment by kexec. The
command line optionmemmap=exactmap
along with memmap=X@Yis used to override
BIOS provided memory map and define user
memory map.

These boot time parameters are automatically
added to command line by kexec tools while
loading the capture kernel and it’s details are
opaque to user. Internally, kexec prepares a

list of memory regions that the capture ker-
nel can safely use to boot into, and appropriate
memmapoptions are appended to the command
line accordingly. The backup region and ELF
header segments are excluded from this list to
avoid stomping of these memory areas by new
kernel.

Address of start of ELF header segment is
passed to the capture kernel through the
elfcorehdr= command line option. This
option is also added automatically to command
line by kexec tools.

4.5 Dump Capture Mechanism

Once the capture kernel has booted there are
multiple design options for dump capturing
mechanism. Few of them are as following.

• Kernel Space

Export ELF core image through the
/proc/vmcore interface which can be
directly used by ELF core format aware
analysis tools such asgdb . Also export
raw linear view of memory through device
interface /dev/oldmem . Other crash
analysis tools can undergo required modi-
fications to adapt to these formats.

This is an easy to use solution which of-
fers a wide variety of choices. Standard
tools like cp , scp , andftp can be used
to copy the image to the disk either locally
or over the network.gdb can be used di-
rectly for limited debugging. The flip side
is that the/proc/vmcore code is in the
kernel and debugging the kernel code is
relatively harder.

• User Space
User space utilities which read the raw
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physical memory through suitable inter-
faces like/dev/oldmem and write out
the dump image.

• Early User Space
Utilities that run from initial ramdisk and
perform a raw dump to pre-configured
disk. This approach is especially useful in
a scenario when root file system happens
to be corrupted after the crash.

For now, we stick to kernel space implemen-
tation and other solutions (user space or early
user space) can evolve slowly to cater to wide
variety of requirements. The following sections
cover implementation details.

4.5.1 Accessing Dump Image in ELF Core
Format

ELF core headers, as stored by crashed ker-
nel, are parsed and the dump image is ex-
ported to user space through/proc/vmcore .
Backup region details are abstracted in ELF
headers, and/proc/vmcore implementa-
tion is not even aware of the presence of the
backup region. The physical address of the
start of the ELF header is passed to the cap-
ture kernel through theelfcorehdr= com-
mand line option. Stored ELF headers undergo
a sanity check during the/proc/vmcore
initialization and if valid headers are found
then initialization process continues otherwise
/proc/vmcore initializaiton is aborted and
thevmcore file size is set to zero.

CPU register states are saved in note sections
by crashing kernel and one PT_NOTE type pro-
gram header is created for every CPU. To be
fully compatible with ELF core format, all the
PT_NOTE program headers are merged into
one during the/proc/vmcore initialization.
Figure 5 depicts what a/proc/vmcore ex-
ported ELF core images looks like.

Header PT_NOTE PT_LOAD

Per Cpu
Register  ELF

 Program
  Header

  States

   Dump
 Memory
   Image

  Program
   Header

Figure 5: ELF Core Format Dump Image

Physical memory can be discontiguous and this
means that offset in the core file can not di-
rectly map to a physical address unless memory
holes are filled with zeros in the core file. On
some architectures like IA64, holes can be big
enough to deter one from taking this approach.

This new approach does not fill memory holes
with zeros, instead it prepares one program
header for every contiguous memory chunk.
It maintains a linked list in which each ele-
ment represents one contiguous memory re-
gion. This list is prepared during init time and
also contains the data to map a given offset
to respective physical address. This enables
/proc/vmcore to determine where to get the
contents from associated with a given offset in
ELF core file when a read is performed.

gdb can be directly used with
/proc/vmcore for limited debugging.
This includes processor status at the time of
crash as well as analyzing linearly mapped
region memory contents. Non-linearly mapped
areas like vmalloced memory regions can not
be directly analyzed because kernel virtual
addresses for these regions have not been filled
in ELF headers. Probably a user space utility
can be written to read in the dump image,
determine the virtual to physical address
mapping for vmalloced regions and export the
modified ELF headers accordingly.

Alternatively, the /proc/vmcore interface
can be enhanced to fill in the virtual addresses
in exported ELF headers. Extra care needs to
be taken while handling it in kernel space be-
cause determining the virtual to physical map-
ping shall involve accessing VM data structures
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of the crashed kernel, which are inherently un-
reliable.

4.5.2 Accessing Dump Image in linear raw
Format

The dump image can also be accessed in lin-
ear raw format through the/dev/oldmem in-
terface. This can be especially useful for the
users who want to selectively read out portions
of the dump image without having to write
out the entire dump. This implementation of
/dev/oldmem does not possess any knowl-
edge of the backup region. It’s a raw dummy
interface that treats the old kernel’s memory
as high memory and accesses its contents by
stitching up a temporary page table entry for
the requested page frame. User space applica-
tion needs to be intelligent enough to read in
the stored ELF headers first, and based on these
headers retrieve rest of the contents.

5 How to Configure and Use

Following is the detailed procedure to configure
and use the kdump feature.

1. Obtain a kernel source tree containing
kexec and kdump patches.

2. Obtain appropriate version of kexec-tools.

3. Two kernels need to be built in order to get
this feature working. The first kernel is the
production kernel and the second kernel is
the capture kernel. Build the first kernel as
follows.

• Enable kexec system call
feature.

• Enable sysfs file system
support feature.

4. Build the capture kernel as follows.

• Enable kernel crash dumps
feature.

• The capture kernel needs to boot
from the memory area reserved by
the first kernel. Specify a suitable
value for Physical address
where kernel is loaded .

• Enable /proc/vmcore support.
(Optional)

5. Boot into the first kernel with the com-
mandlinecrashkernel=Y@X . Pass ap-
propriate values for X and Y. Y de-
notes how much memory to reserve
for the second kernel and X denotes
at what physical address the reserved
memory section starts. For example,
crashkernel=32M@16M

6. Preload the capture kernel using following
commandline.

kexec -p <capture kernel>
--crash-dump --args-linux
--append="root=<root-dev>
maxcpus=1 init 1"

7. Either force a panic or pressAlt SysRq
c to force execution of kexec on panic.
System reboots into the capture kernel.

8. Access and save the dump file either
through the/proc/vmcore interface or
the/dev/oldmem interface.

9. Use appropriate analysis tool for debug-
ging. Currentlygdb can be used with the
/proc/vmcore for limited debugging.

6 Advantages and Limitations

Every solution has its advantages and limita-
tions and kdump is no exception. Section 6.1
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highlights the advantages of this approach and
limitations have been captured in Section 6.2.

6.1 Advantages

• More reliable as it allows capturing the
dump from a freshly booted kernel as
opposed to some of other methods like
LKCD, where dump is saved from the con-
text of crashing kernel, which is inherently
unreliable.

• Offers much more flexibility in terms of
choosing the dump device. As dump is
captured from a newly booted kernel, vir-
tually it can be saved to any storage media
supported by kernel.

• Framework is flexible enough to accom-
modate filtering mechanism. User space
or kernel space based filtering solutions
can be plugged in, unlike firmware based
solutions. For example, a kernel pages
only filter can be implemented on top of
the existing infrastructure.

6.2 Limitations

• Devices are not shutdown/reset after a
crash, which might result in driver initial-
ization failure in capture kernel.

• Non-disruptive dumping is not possible.

7 Status and TODOS

Kdump has been implemented for i386 and ini-
tial set of patches are in -mm tree. Following
are some of the TODO items.

• Harden the device drivers to initialize
properly in the capture kernel after a crash
event.

• Modify crash to be able to analyze
kdump generated crash dumps.

• Port kdump to other platforms like x86_64
and ppc64.

• Implement a kernel pages only filtering
mechanism.

8 Conclusions

Kdump has made significant progress in terms
of overcoming some of the past limitations, and
is on its way to become a mature crash dump-
ing solution. Reliability of the approach is fur-
ther bolstered with the capture kernel now boot-
ing from a reserved area of memory, making
it safe from any DMA going on at the time
of crash. Dump information between the two
kernels is being exchanged via ELF headers,
providing more flexibility and allowing kernel
skew. Usability of the solution has been fur-
ther enhanced by enabling the kdump to sup-
port PAE systems and discontiguous memory.

Capture kernel provides/proc/vmcore and
/dev/oldmem interfaces for retrieving the
dump image, and more dump capturing mech-
anisms can evolve based on wide variety of re-
quirements.

There are still issues with driver initialization
in the capture kernel, which need to be looked
into.
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Abstract

In this paper we introduce the Novell Linux
Kernel Debugger. After a brief introduction we
will go into an in-depth discussion of NLKD’s
architecture. Following the architecture dis-
cussion we will cover some of the features
supported by NLKD and its supported debug
agents. We wrap up the discussion with some
of the work items that still need to be done and
follow with a brief conclusion.

1 Introduction

NLKD began its life as an R&D project in 1998
by Novell engineers Jan Beulich and Clyde
Griffin. The effort to build a new debugger was
driven by a need for a robust kernel debugger
for future operating systems running on Intel’s
Itanium Processor Family.

The project was a success and soon there was
demand for similar functionality on other hard-
ware architectures. The debugger has since
been ported for use on x86, x86-64, and
EM64T.

Novell has never formally shipped this debug-
ger as a stand-alone product or with any other
Novell products or operating systems. To dis-
pel any myths about its origin, it was never tar-
geted for or used with Novell NetWare. It re-
mained a research effort until the summer of

2004 when Novell engineering determined that
the capabilities of this tool would be a boost to
Linux development and support teams.

At the time of the publication of this pa-
per, NLKD is functional on x86, x86-64, and
EM64T SUSE Linux platforms. A port to IA64
Linux is pending.

1.1 Non-Goals

While we believe NLKD is one of the most sta-
ble and capable kernel debuggers available on
Linux, we in no way want to force other de-
velopers to use this tool. We, like most devel-
opers on Linux, have our personal preferences
and enjoy the freedom to use the right tool for
the job at hand. To this end, NLKD is separated
into layers, any of which could benefit exist-
ing debugging practices. At the lowest level,
our exception handling framework could add
stability and flexibility to existing Linux ker-
nel debuggers. The Core Debug Engine can be
controlled by add-on debug agents. As a final
example, NLKD ships with a module that un-
derstands GDB’s wire protocol, so that remote
kernel debugging can be done with GDB or one
of the many GDB interfaces.

1.2 Goals

Novell’s primary interest in promoting NLKD
is to provide a robust debugging experience
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for kernel development engineers and enable
support organizations to provide quick re-
sponse times on critical customer support is-
sues. While Novell development may favor
NLKD as its primary kernel debugger, Novell
will continue to support other kernel debugger
offerings as long as sufficient demand exists.

NLKD has been released under the GPL with
Novell retaining the copyright for the original
work. Novell plans to ship NLKD as part of the
SUSE distribution and at the same time enable
it for inclusion into the mainline Linux kernel.

2 NLKD Architecture

Like any kernel debugger, at the core of NLKD
is a special purpose exception handler. How-
ever, unlike many exception handlers, kernel
debuggers must be able to control the state of
other processors in the system in order to en-
sure a stable debugging experience. The fact
that all processors in the system can generate
simultaneous exceptions complicates the issue
and makes the solution even more interesting.

Getting all processors into a quiescent state
for examination has been a common challenge
for multiprocessor kernel debuggers. Sending
these processors back to the run state with a va-
riety of debug conditions attached can be even
more challenging, especially when processors
are in critical sections of kernel code or operat-
ing on the same set of instructions.

The architecture that we describe here deals
with this complex set of issues in a unique way,
providing the user with a stable debugging ex-
perience.

In the following discussion we introduce the
major components comprising NLKD. These
include the exception handling framework sup-
porting NLKD, the Core Debug Engine (CDE),

and the debug agents that plug into CDE. CDE
is a complex piece, so we spend extra time dis-
cussing its state machine and breakpoint logic.
Figure 1 depicts these components and their in-
teractions.

So let’s start with the exception handling frame-
work.

2.1 Exception Handling Framework

The first task in providing a robust debug-
ging experience is to get an exception handling
framework in place that properly serializes ex-
ception handlers according to function and pri-
ority.

While NLKD does not define the exception
handling framework, our research at Novell has
led us to a solution that solves the problem in a
simple and elegant way.

The first thing to recognize is that not all excep-
tion handlers are created equal. For some ex-
ceptions, all registered handlers must be called
no matter what. The best example of this is the
x86 NMI. Other handlers are best called seri-
ally and others round robin. We should also
note that interrupt handlers sharing a single in-
terrupt vector should be called round robin to
avoid priority inversion or starvation. Some ex-
ception handlers are passive and do nothing but
monitor events and these, too, must be called in
the right order.

To enable this flexibility, we defined a variety
of exception handler types. They are: Excep-
tion Entry Notifiers, Registered Exception Han-
dlers, Debug Exception Handler, Default Ex-
ception Handler, and Exception Exit Notifiers.
Each of these handler types have strict seman-
tics, such as how many handlers of each type
may be registered, and whether all or just one
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Figure 1: Architecture and state transitions

is called when an exception occurs. The vari-
ous exception handler types are called in a well-
defined order. Taken together, these rules en-
sure the system remains stable, and event coun-
ters remain correct, in all debugging situations.

The following sections describe the registration
and calling conventions for each of these han-
dler types. The handler types are listed in the
order they are called.

Exception Entry Notifiers An exception en-
try notifier is a passive handler that does not

change the state of the stack frame. It is typi-
cally used for monitors that want to know when
an exception has occurred and what type it is.
Zero or more such handlers may be registered,
and all will be called.

Registered Exception Handlers These ex-
ception handlers are dynamically registered at
runtime. If any of these handlers claim the ex-
ception, then no other registered exception han-
dlers, nor the debug handler, are called. Zero or
more such handlers may be registered.
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Debug Exception Handler The debug ex-
ception handler invokes the debugger. (This
may be NLKD or any other kernel debugger.)
At most, one such handler may exist. If no de-
bugger was registered, the exception is passed
on to the default exception handler.

Default Exception Handler The kernel’s de-
fault exception handler is included at compile
time. Depending upon the exception type, it
may cause the kernel to panic if no other han-
dlers have claimed the exception.

Exception Exit Notifiers This is a passive
handler that does not change the state of the
stack frame. It is typically used for monitors
wanting to know that an exception has been
completed and what type it was. Zero or more
such handlers may be registered, and all will be
called.

The overhead of such an exception handler
framework is extremely lightweight. For exam-
ple:

// Multiple handlers test/call loop
while (ptr1) {

if (ptr1->handler() == HANDLED)
break;

ptr1 = ptr1->next;
}
// Single handler test/call
if (ptr2)

ptr2->handler();

There is very little overhead in this scheme, yet
great flexibility is achieved.

With the framework in place allowing for ex-
ception handlers to be prioritized according to
purpose, and by allowing those handlers to be
registered at run time, we have enabled the ker-
nel to load NLKD at run time. Note that the

usefulness of such an exception system extends
beyond just NLKD, as it enables a whole class
of debuggers and monitors to be loaded dynam-
ically.

Our current implementation does not actually
load the Core Debug Engine (CDE) at run-
time. CDE is currently a compile time op-
tion. However, with CDE in place, the debug
agents (which we will discuss later) are load-
able/unloadable at run time. This allows a user
to switch from no debugger to an on-box kernel
debugger or a remote source level debugger by
simply loading the appropriate modules.

There have been many customer support sce-
narios that require debugging, monitoring, or
profiling on production boxes in live environ-
ments. This must happen without taking the
box down or changing the environment by re-
building the kernel to enable a debugger.

There is some argument that a loadable kernel
debugger is a security risk. To some degree this
is true, but only insomuch as the root user is a
security risk. Since root is the only user that can
load kernel modules, such security concerns are
negated.

It could easily be argued that the benefit of be-
ing able to load and then unload a debugger on
demand provides even greater security in situa-
tions where a debugger is needed, since we can
easily restrict the actual time that the debugger
is available.

Let us reiterate that in our current implementa-
tion, adding support for CDE is a compile time
option, like KDB, not a runtime option. But
with CDE in place, kernel modules to support
local or remote debugging can easily be loaded.
Without a corresponding debug agent attached,
CDE is inactive.

Let’s now turn our attention to the next layer in
the stack, the Core Debug Engine (CDE).
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2.2 Core Debug Engine (CDE)

Sitting on top of the exception handling frame-
work is a debugger infrastructure piece we have
named the Core Debug Engine. This layer
of the debugger provides three main functions.
First, all NLKD state machine logic is located
within CDE. Second, CDE provides a frame-
work against which debug agents load and as-
sume responsibility for driving the state ma-
chine and for providing interaction with the
user. Finally, CDE provides a means of extend-
ing the functionality of the debugger.

The state machine also provides the infrastruc-
ture supporting the breakpoint logic, which is a
key component and distinguishing capability of
NLKD.

We will now examine each of these in turn.

2.2.1 CDE State Machine

NLKD divides the state of each processor in the
system into four simple yet well-defined states.
These states are: RUN state, FOCUS PROCES-
SOR state, RENDEZVOUS state, and FOCUS
PROCESSOR COMMIT state.

Run State The RUN state is defined as the
state in which the operating system is normally
running. This is the time when the proces-
sor is in user and kernel modes, including the
time spent in interruptions such as IO interrupts
and processor exceptions. It does not include
the debug exception handler where CDE will
change the state from the RUN state to one of
the other three defined states.

Focus Processor State When an exception
occurs that results in a processor entering

the debug exception handler and subsequently
CDE, CDE determines whether this is the first
processor to come into CDE. If it is the first
processor, it becomes the focus processor and
its state is changed from the RUN state to the
FOCUS PROCESSOR state.

The focus processor controls the machine from
this point on, until it yields to another processor
or returns to the RUN state.

Once the focus processor has entered CDE, its
first responsibility is to rendezvous all other
processors in the system before debug opera-
tions are allowed by the registered debug agent.
Rendezvous operations are typically accom-
plished by hardware specific methods and may
be unique to each processor architecture. On
x86, this is typically a cross-processor NMI.

After sending the rendezvous command to all
other processors, the focus processor waits for
all processors to respond to the request to
rendezvous. As these processors come into
CDE they are immediately sent to the REN-
DEZVOUS state where they remain until the
focus processor yields control.

Once all processors are safely placed in the
RENDEZVOUS state, the focus processor
transfers control to the debug agent that was
registered with CDE for subsequent control of
the system.

Rendezvous State The RENDEZVOUS
state is sort of a corral or holding pen for
processors while a debug agent examines the
processor currently in the FOCUS PROCES-
SOR state. Processors in the RENDEZVOUS
state do nothing but await a command to
change state or to deliver information about
their state to the focus processor.

It should be noted at this point that processors
could have entered the debugger for reasons
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other than being asked to rendezvous. This hap-
pens when there are exceptions occurring si-
multaneously on more than one processor. This
is to be expected. A processor could, in fact,
receive a rendezvous request just before enter-
ing CDE on is own accord. This can result in
spurious rendezvous requests that are detected
and handled by the state machine. Again, this
is normal. These sorts of race conditions are
gracefully handled by CDE, such that those
processors end up in the RENDEZVOUS state
just as any other processor does.

As stated above, a processor may end up in the
RENDEZVOUS state when it has a valid ex-
ception condition that needs evaluation by the
active debug agent. Before ever sending any
processor back to the RUN state, CDE exam-
ines the reason for which all other processors
have entered the debugger. This may result
in the processor in the FOCUS PROCESSOR
state moving to the RENDEZVOUS state and a
processor in the RENDEZVOUS state becom-
ing the focus processor for further examination.

This careful examination of each processor’s
exception status forces all pending exceptions
to be evaluated by the debug agent before al-
lowing any processor to continue execution.
This further contributes to the stability of the
debugger.

Once all processors have been examined, any
processors that have been in the FOCUS PRO-
CESSOR state are moved to the FOCUS PRO-
CESSOR COMMIT state, which we will now
discuss.

Focus Processor Commit State The logic in
this state is potentially the most complex part of
CDE. Processors that have been moved to this
state may need to adjust the breakpoint state in
order to resume execution without re-triggering
the breakpoint that caused the debugger to be
entered.

The FOCUS PROCESSOR COMMIT state is
the state that ensures that no processor is run or
is further examined by the debug agents until
the conditions specified by CDE are met. This
contributes greatly to the stability of the debug-
ger.

2.2.2 Breakpoint Logic

A distinguishing feature of NLKD is its rich
breakpoint capability. NLKD supports the no-
tion of qualifying breakpoints. Breakpoints can
be set to qualify when a number of conditions
are met. These conditions are:

• execute/read/write

• address/symbol, optionally with a length

• agent-evaluated condition (e.g. expres-
sion)

• global/engine/process/thread

• rings 0, 1, 2, 3

• count

This allows for a number of restrictions to be
placed on the breakpoint before it would actu-
ally be considered as “qualifying,” resulting in
the debug agent being invoked.

The number of supported read/write break
points is restricted by hardware, while the num-
ber of supported execute breakpoints is limited
by software and is currently a#define in the
code. NLKD uses the debug exception, INT3
on x86, for execute breakpoints and the pro-
cessor’s watch/debug registers for read/write
breakpoints.

The debug agents work in cooperation with
CDE to provide breakpoint capabilities. The
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debug agents define the conditions that will
trigger a debug event and CDE modifies the
code with debug patterns (INT3 on x86) as nec-
essary. When the breakpoint occurs, CDE de-
termines if it actually qualifies before calling
the debug agent.

CDE’s breakpoint logic is one of the most pow-
erful features of the tool and a distinguishing
feature of NLKD. CDE’s breakpoint logic com-
bined with CDE’s state machine sets the stage
for a stable on-box or remote debugging expe-
rience.

2.2.3 CDE APIs

CDE exports a number of useful APIs. These
interfaces allow the rest of the system to inter-
act with the debugger and allow debug agents
to be extended with new functionality.

CDE supports an API to perform
DWARF2 frame-pointer-less reli-
able stack unwinding, using the
-fasynchronous-unwind-tables func-
tionality available with gcc.

The programmatic interfaces to the debugger
also include support for various debug events
(such as assertions and explicit requests to en-
ter the debugger) and the ability to register and
unregister debugger extensions. Extensions can
be either loadable binaries or statically linked
modules.

APIs also exist to support pluggable debug
agents, which we will discuss in the next sec-
tion.

2.2.4 Debug Agents

In earlier discussions, we briefly introduced the
notion of debug agents. Debug agents plug into

CDE and provide some sort of interface to the
user. Debug agents can be loadable kernel mod-
ules or statically linked into the kernel.

NLKD provides two debug agents: the Con-
sole Debug Agent (CDA) for on-box kernel de-
bugging, and the Remote Debug Agent (RDA)
for remote debugging including remote source
level debugging.

Other debug agents can be written and plugged
into CDE’s framework, thus benefiting from the
state logic provided by CDE.

It should be noted that CDE only allows one
agent to be active at a time. However, a new
agent can be loaded on the fly and replace the
currently active one. This scenario commonly
happens when a server is being debugged on-
site (using CDA), but is then enabled for debug-
ging by a remote support team (using RDA).
This is possible by simply unloading CDA and
loading RDA.

Console Debug Agent (CDA) CDA is
NLKD’s on-box kernel debugger component.
It accepts keyboard input and interacts with the
screen to allow users to do on-box kernel de-
bugging.

Remote Debug Agent (RDA) RDA is an
agent that sits on-box and communicates with
a remote debug client. RDA would typically
be used by users who want to do remote source
level debugging.

Other Agent Types It should be noted that
NLKD’s architecture does not limit itself to the
use of these two agents. CDE allows for other
agent types to plug in and take advantage of the
environment provided by CDE.
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NLKD’s agents support the ability to apply cer-
tain settings to the debug environment before
the debugger is initialized. Some examples
are a request to break at the earliest possible
moment during system boot, or setting screen
color preferences for CDA. These configura-
tion settings are held in a file made available
early in the boot process, but only if the agent
is built into the kernel.

2.3 Architecture Summary

At this point we have introduced the exception
handling framework and NLKD’s architecture,
including CDE with its state machine, debug
agents, breakpoint logic, and finally NLKD’s
ability to be extended.

Further discussion of the NLKD will follow but
will not be presented as an architectural discus-
sion. The remainder of this discussion will fo-
cus on features provided by NLKD and the de-
bug agents CDA and RDA.

3 Console Debug Agent (CDA) Fea-
tures

This section discusses the features of the Con-
sole Debug Agent. We should note that this
section lists features, but it is not meant to be
a user’s guide. To see the full user’s guide
for NLKD, go tohttp://forge.novell.
com and then search for “NLKD”.

3.1 User Interface Overview

CDA supports on-box debugging. Interaction
with the debugger is via the keyboard and
screen.

3.1.1 Keyboard

Input from PS2 keyboards and the 8042 key-
board controller is currently supported. The de-
bugger can be invoked by a special keystroke
when CDA is loaded.

3.1.2 Screen IO

CDA can operate in text or graphics mode. The
mode CDA uses is determined by the mode that
the kernel switched to during boot.

Since CDA has the ability to display data in
graphics mode, we also have the ability to en-
ter the debugger directly from graphics mode at
run time. This is extremely useful but requires
that the screen resolution and color depth of
the user graphics environment match the screen
resolution and color depth of the kernel console
environment.

3.1.3 Screen Layout

CDA supports both command line and window-
pane based debugging. The debugging screen
is divided into six window panes as shown in
Figure 2. One of these panes hosts a command
line. All panes are resizable.

Each pane’s features can be accessed via a
number of keystroke combinations. These
keystrokes are documented in the user’s guide,
and are also available by pressing F1 while in
the debugger. Help can also be obtained by typ-
ing h in the command line pane.

Code Pane The code pane shows instruction
disassembly. There are a variety of format
specifier commands that can alter the way the
information is displayed. Currently CDA sup-
ports the Intel assembly format.
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Figure 2: Screen layout of CDA

Data Pane The data pane supports the dis-
play and modification of logical and physical
memory addresses, including IO ports and PCI
config space. Data can be displayed in a variety
of formats.

Register Pane The register pane supports the
display and modification of processor registers.
Registers with special bitmap definitions are
decoded.

On some architectures, IA64 for example, there
are too many registers to view all at once in the
register pane. Hence, support exists to scroll
up or down through the registers in the register
pane.

Stack Pane / Predicate Pane (IA64) A spe-
cial pane exists for displaying the stack pointed
to by the processor’s stack pointer. Since on
IA64 the register stack engine is used instead of
a normal stack, CDA uses this pane to display
the IA64 predicate registers instead of stack in-
formation.

Code or data browsing can be initiated directly
from the stack.

Floating Point Register Pane The floating
point register pane supports the display and

modification of floating point registers. The
data can be displayed in a variety of formats.
Since kernel debugging rarely requires access
to floating point registers, this pane is normally
hidden.

Command Line Pane The command line
pane supports a command line parser that al-
lows access to most of the capabilities found in
other CDA panes. This pane can assume the
size of the entire screen, and it can also be en-
tirely hidden.

The command line pane exports APIs so that
other modules can further extend the debugger.

3.2 CDA User Interface Features

3.2.1 Viewing Program Screens

The screen that was active when the debugger
was invoked can be viewed from the debugger.
Viewing both text and graphics (such as an X
session) is supported.

3.2.2 Processor Selection

Support to switch processors and view infor-
mation specific to that processor is supported.
Some information is processor specific such as
the registers, per processor data, etc. CDA also
supports viewing the results of such commands
as the CPUID instruction on x86.

3.2.3 Command Invocation

There are a number of pane-sensitive hot keys
and pane-sensitive context menus available for
command execution. Additionally, there is a
global context menu for commands common to
all panes.
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3.2.4 Expression Evaluation

Support for expression evaluation exists. The
expressions use mostly C-style operators, oper-
ating on symbolic or numeric addresses.

3.2.5 Browsing

The code, data, and stack panes support the
ability to browse. For example, in the code
pane we can browse (follow) branch instruc-
tions, including call and return statements.

In the data pane we can follow data as either
code pointers or data pointers. The same is true
for the register and stack panes.

Functionality exists to follow a pointer, to go to
the previously visited location, or to go to the
place of origin where we started.

Of course, we can always browse to a specific
code or data address.

3.2.6 Stepping

CDA supports typical processor stepping capa-
bilities.

• Single Step

• Branch Step

• Step Over

• Step Out

• Continue Execution (Go)

3.2.7 Symbols

Provided that symbols are available from the
kernel, support for symbolic debugging is sup-
ported throughout the debugger.

3.2.8 Smart Register Mode

A mode exists to make it easier to watch only
the registers that change as the code is stepped
through. This is particularly useful on architec-
tures like IA64 that have many more registers
that we can display at once.

3.2.9 Aliases

Aliases are supported in the code and register
panes. For example, on IA64 a register named
cr12 may also be a the stack pointer. With
aliasing off, the namecr12 will be displayed
everywhere. With aliasing on,sp will be dis-
played.

3.2.10 Special Registers

Support exists for viewing (and in some cases,
setting) special processor and platform regis-
ters. On x86, these are:

• CPUID

• Debug Registers

• Data Translation Registers

• Last Branch

• MSR

• MTTR

3.2.11 Debugger Events

NLKD has a level of interaction with the host
operating system, enabling certain operating
system events or code to invoke the debugger.
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APIs exist to generate debug messages from
source code. When a message event is hit, CDA
displays the message on the screen. The user
then enters a keystroke to resume execution.

CDA also can notify the user when a kernel
module is loaded or unloaded, as well as when
a thread is created or destroyed.

The user may enable and disable each event no-
tification type at run-time.

On a per processor basis, CDA can display the
most recent event that caused the debugger to
be invoked.

3.2.12 OS Structures

CDA understands certain Linux kernel data
structures. In particular, CDA can list all
threads in the system. It also can list all kernel
modules that are currently loaded, and informa-
tion about them.

3.2.13 Linked List Browsing

A useful feature in the data pane is the ability
for the user to inform the debugger which off-
sets from the current address are forward and
backward pointers. This features enables users
to easily browse singly and doubly linked lists.

3.2.14 Set Display Format

CDA is very flexible with how data is dis-
played.

Code Pane The code pane allows a variety of
formating options.

• Show Address

• Show Aliases

• Show NOPs (Mainly used for IA64 tem-
plates.)

• Set Opcode Display Width

• Display Symbolic Information

• Show Templates/Bundles (IA64)

Data Pane Data sizing, format, and radix can
be set. CDA provides support for displaying or
operating on logical and physical memory.

Floating Point Pane Data sizing and format
can be set.

3.2.15 Search

CDA can search for a set of bytes in memory.
The search can start at any location in memory,
and can be restricted to a range. Both forward
and backward searches are supported.

3.2.16 List PCI Devices

On architectures that support PCI buses, CDA
has knowledge of the PCI config space and al-
lows browsing of the config space of all the de-
vices.

3.2.17 System Reboot

NLKD can perform a warm and/or cold boot.
Cold boot is dependent upon hardware support.
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4 Remote Debug Agent (RDA) Fea-
tures

RDA provides a means whereby a remote de-
bugger can communicate with NLKD break-
point logic and drive NLKD’s abilities to sup-
port debugging.

As expected, there are a number of verbs and
events supported by RDA that enable remote
source level debuggers to drive the system.
Some examples include setting and clearing
breakpoints, controlling processors’ execution,
and reading and writing registers and memory.

4.1 Protocol Support

RDA currently supports the gdbtransport proto-
col.

Novell has an additional protocol, Novell De-
bug Interface (NDI) 2.0, which we hope to in-
troduce into a new remote debug agent. NDI
provides advantages in three areas:

• NDI has support for describing multipro-
cessor configurations.

• When debugging architectures with a large
register set, NDI allows the debugger to
transfer only a portion of the full register
set. This is especially important when de-
bugging over slow serial lines.

• NDI fully supports control registers,
model specific registers, and indirect or
architecture-specific registers.

4.2 Wire Protocols

RDA currently supports RS232 serial port con-
nections to the debugger.

5 Work To Do

Currently, a number of things still need to be
worked on. We welcome help from interested
and capable persons in these areas.

5.1 USB Keyboards

Support for other keyboard types, mainly USB,
will be added to CDA.

5.2 AT&T Assembler Format

CDA currently supports the Intel assembler for-
mat. We would like to add support for the
AT&T assembler format.

5.3 Additional Command Line Parsers

There is a native command line interface pro-
vided by CDA. We would also like to see a
KDB command line parser and a GDB com-
mand line parser for those familiar with these
debuggers and who prefer command line de-
bugging to pane-based debugging.

5.4 Novell Debug Interface 2.0

We plan to create a new debug agent supporting
the NDI 2.0 protocol. We also need support for
NDI in a remote source level debugger.

5.5 Additional Wire Protocols

We would like to support additional wire pro-
tocols for remote debugging, such as LAN,
IPMI/BMC LAN, and USB.
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5.6 Additional Architectures

We would like to finish the NLKD port to IA64
Linux, and port it to Power PC Linux.

6 Conclusion

We recognize that no one tool fits all, and that
user familiarity with a tool often dictates what
is used in spite of the existence of tools that
may offer more features and capabilities. In in-
troducing this tool, we make no claim to supe-
riority over existing tools. Each and every user
will make that decision themselves.

As we stated earlier, our goal is to provide de-
velopers and support engineers a robust kernel
development tool enabling them to be success-
ful in their respective roles. We believe we have
introduced a debug architecture that needs no
apology. At the same time, we welcome input
as to how to improve upon this foundation.

Our hope is that kernel debugging with this ar-
chitecture will become standard and that the ca-
pabilities of NLKD will find broad acceptance
with the goal of creating a better Linux for ev-
eryone.
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Abstract

The benefits of TSO (Transmit Side Offload)
implementation in Ethernet ASICs and device
drivers are well known. TSO is ade factostan-
dard in version 2.6 Linux kernel and provides
a significant reduction in CPU utilization, es-
pecially with 1500 MTU frames. When a sys-
tem is CPU-bound, these cycles translate into a
dramatic increase in throughput. Unlike TOE
(TCP Offload Engine) implementations, state-
less offloads do not break the Linux stack and
do not introduce either security or support is-
sues. The benefits of stateless offloads are espe-
cially apparent at 10 Gigabit rates. TSO hard-
ware support on a 10GbE sender uses a frac-
tion of a single CPU to achieve full line rate,
still leaving plenty of cycles for applications.
On the receiver side, however, the Linux stack
presently does not support an equivalent state-
less offload. Receiver CPU utilization, as a
consequience, becomes the bottleneck that pre-
vents 10GbE adapters from reaching line rate
with 1500 MTU. Neterion Xframe adapter, im-
plementing a LRO (Large Receive Offload) ap-
proach, was designed to address this bottleneck
and reduce TCP processing overhead on the re-
ceiver. Both design and performance results
will be presented.

1 Introduction

With the introduction of 10 Gigabit Ethernet,
server I/O re-entered the “fast network, slow
host” scenario that occurred with both the tran-
sitions to 100Base-T and 1G Ethernet.

Specifically, 10GbE has exposed three major
system bottlenecks that limit the efficiently of
high-performance I/O Adapters:

• PCI-X bus bandwidth

• CPU utilization

• Memory bandwidth

Despite Moore’s law and other advances
in server technology, completely overcoming
these bottlenecks will take time. In the interim,
network developers and designers need to find
reliable ways to work around these limitations.

One approach to improve system I/O perfor-
mance has come through the introduction of
Jumbo frames. Increasing the maximum frame
size to 9600 byte reduces the number of pack-
ets a system has to process and transfer across
the bus.

While Jumbo frames have became universally
supported in all operating systems, they have
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not been universally deployed outside of the
datacenter.

As a consequence, for the foreseeable future,
networks will still need some kind of offloading
relief in order to process existing 1500 MTU
traffic.

As occurred in previous “fast network, slow
host” scenarios, the need to improve perfor-
mance has triggered renewed industry interest
in developing NIC (Network Interface Card)
hardware assists, including stateless and state-
ful TCP assists, as well as the all-critical op-
erating system support required for widespread
deployment of these NIC assists.

To date, the acceptance of stateless and stateful
TCP assist has varied.

Stateful TCP Offload Engines (TOE) imple-
mentations never achieved any significant mar-
ket traction or OS support. Primary reasons for
lack of adoption include cost, implementation
complexity, lack of native OS support, secu-
rity/TCO concerns, and Moores law. On the
other hand, stateless assists, including check-
sum offload and TSO (Transmit Side Offload)
have achieved universal support in all major
operating systems and became a de-facto stan-
dard for high-end server NICs. TSO is espe-
cially effective for 10GbE applications since it
provides a dramatic reduction in CPU utiliza-
tion and supports 10Gbps line rate for normal
frames on current server systems.

Unfortunately, TSO offloads the transmit-side
only, and there is no similar stateless offload
OS support today on the receive side. To a large
degree, this negates the overall effect of imple-
menting LSO, especially in 10GbE applications
like single TCP session and back-to-back se-
tups.

This is not surprising, since receive-side of-
floads are less straightforward to implement

due to potential out-of-order receive and other
reasons. However, there are several NIC hard-
ware assists that have existed for some time and
could be quite effective, once Linux support is
in place.

For example, some of the current receive-side
assists that are shipped in Neterion 10GbE
NICs and can be used for receive-side stateless
offload include:

• MAC, IP, and TCP IPv4 and IPv6 header
separation; used for header pre-fetching
and LRO (Large Receive Offload). Also
improves PCI bus utilization by providing
better data alignment.

• RTH (Receive Traffic Hashing), based on
Jenkins Hash, and SPDM (Socket Pair Di-
rect Match); used for LRO and RTD (Re-
ceive Traffic Distribution).

• Multiple transmit and receive queues with
advanced steering criteria; used for RTD,
as well as for NIC virtualization, NIC
sharing, and operations on multi-core
CPU architectures.

• MSI and MSI-X interrupts; used in RTD,
as well as for reducing interrupt overhead

• Dynamic utilization-based and timer-
based interrupt moderation schemes; used
to reduce CPU utilization.

2 PCI-X bus bandwidth bottleneck

Theoretically, a PCI-X 1.0 slot is limited in
throughput to 8+Gbps, with a practical TCP
limit (unidirectional or bidirectional) around
7.6Gbps. PCI-X 2.0 and PCI-Express slots
support unidirectional 10Gbps traffic at line
rate Neterion has measured 9.96Gbps (unidi-
rectional) with PCI-X 2.0 Xframe-II adapters.
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In order to saturate the PCI bus, a high-end
10GbE NIC needs to implement an efficient
DMA engine, as well as support Jumbo frames,
TSO, and data alignment.

3 Memory bandwidth bottleneck

Typically, memory bandwidth is not a limita-
tion in Opteron and Itanium systems, at least
not for TCP traffic. Xeon systems, however,
encounter memory bandwidth limitations be-
fore either PCI bus or CPU saturation occurs.
This can be demonstrated on Xeon systems
with 533Mhz FSB vs. 800Mhz FSB. In any
case, memory bandwidth will increase as a bot-
tleneck concern since advances in silicon mem-
ory architectures proceed at a much slower pace
than CPU advances. Neither stateful nor state-
less TCP offload addresses this problem. Up-
coming RDMA over Ethernet RNIC adapters
will ease memory bandwidth issues, and if
RNIC technology is successful in the market,
this will be one application where TOE can
be deployed (most likely, without exposing the
TOE as a separate interface)

4 CPU utilization bottleneck

On the transmit side, LSO and interrupt mod-
eration provide the desired result Neterion has
achieved utilization in the range of 10-15% of a
single Opteron CPU in order to saturate a PCI-
X 1.0 bus with TCP traffic. On the receive
side, however, CPU utilization emerged as the
biggest bottleneck to achieving 10GbE line rate
with 1500 bytes frames. With current NICs and
operating systems, using multiple processors
doesnt help much because in order to support
cache locality and optimize CPU utilization, a
TCP session needs to be kept on the same CPU.

Without achieving the cache locality, additional
CPU cycles are being used in a very inefficient
fashion. Moores law is often cited as a main ar-
gument against deploying TCP assists and of-
floads. However, the industry wants to deploy
full-rate 10GbE and cannot wait for CPUs that
don’t required offloading. Also, from an ap-
plication prospective CPU utilization expended
on stack processing must drop to single digits,
and on current systems, the only way to achieve
such a low utilization rate for 10GbE process-
ing is to bring in some sort of hardware assist.
The resolution to the CPU bottleneck is to add
Linux support for header separation and pre-
fetching, as well as for Receive Traffic Distri-
bution and Receive Side Offload.

5 Header separation and pre-
fetching

Neterion’s Xframe-II supports several flavors
of true hardware separation of Ethernet, IP and
TCP (both IPv4 and IPv6) headers. This has
been proven to be effective in achieving opti-
mal data alignment, but since cache misses on
headers represent one of the most significant
sources of TCP processing overhead, the real
benefit is expected to come from the ability to
support OS header pre-fetching and LRO.

6 Receive Traffic Distribution

The key to efficient distribution of TCP pro-
cessing across multiple CPUs is maintaining
an even load between processors while at the
same time keeping each TCP session on the
same CPU. In order to accomplish this, the host
must be able to identify each TCP flow and
dynamically associate the flow to its particular
hardware receive queue, particular MSI, DPC,
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and CPU. In this way, load-balancing multi-
ple TCP sessions across CPUs while preserving
cache locality is possible. Neterion’s Xframe-II
10GbE ASIC achieves this through receive de-
scriptors that carry SPDM or RTH information
on a per packet basis, giving the host enough
visibility into packets to identify and associate
flows.

7 Large Receive Offload

In short, LRO assists the host in processing in-
coming network packets by aggregating them
on-the-fly into fewer but larger packets. This
is done with some hardware assist from the
NIC. It’s important that an LRO implementa-
tion avoid a very expensive state-aware TOE
implementation that would break compatibil-
ity with current operating systems and therefore
have only limited application.

To illustrate the effectiveness of LRO, con-
sider a network passing 1500 MTU packets at
a data rate of 10 Gigabit per second. In this
best possible case network traffic consists of
universally full-sized packets the host-resident
network stack will have to process more than
800,000 packets per second. If it takes on av-
erage 2000 instructions to process each packet
and one CPU clock cycle to execute each in-
struction, processing in the best case will take
consume more than 80% of a 2Ghz CPU, leav-
ing little for doing anything other than receiv-
ing data. This simplified calculation demon-
strates the critical characteristic of networks
that the performance of transport protocols is
dependent upon the granularity of data pack-
ets. The fewer packets presented to the protocol
stacks, the less CPU utilization required leav-
ing more cycle for the host to run applications.

The idea of Large Receive Offload, as the name
implies, is to give the host the same amount of

data but in bigger “chunks.” Reducing the num-
ber of packets the stacks have to process lowers
the load on the CPU. LRO implementation re-
lies on the bursty nature of TCP traffic, as well
as the low packet loss rates that are typical for
10GbE datacenter applications.

To implement Large Receive Offload, Nete-
rion’s Xframe-II 10GbE ASIC separates TCP
headers from the payload and calculates SPDM
or RTH information on a per packet basis. In
this way, it is possible to identify a burst of
consecutive packets that belong to the same
TCP session and can be aggregated into a single
oversized packet. Additionally, the LRO engine
must perform a number of checks on the packet
to ensure that it can be added to an LRO frame.

The initial implementation of Neterion’s LRO
is a combination of hardware (NIC) and soft-
ware (Linux driver). The NIC provides the fol-
lowing:

• multiple hardware-supported receive
queues

• link-layer, IP, and UDP/TCP checksum of-
floading

• header and data split, with link, IP, TCP,
and UDP headers placed in the host-
provided buffers separately from their cor-
responding packet datas

• SPDM or RTH “flow identifier.”

The Linux driver controls the NIC and coordi-
nates operation with the host-resident protocol
stack. It is the driver that links payloads to-
gether and builds a single header for the LRO
packet. If the flow is “interrupted,” such as a se-
quence gap, the driver signals the host-resident
network stack and sends all the accumulated re-
ceive data.
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The simple algorithm below capitilizes on the
fact that the receive handling code at any point
in time potentially “sees” multiple new frames.
This is because of the interrupt coalescing,
which may or may not be used in combination
with polling (NAPI).

Depending on the interrupt moderation scheme
configured “into” the adapter, at high through-
put we are seeing batches of 10s or 100s re-
ceived frames within a context of a single inter-
rupt.

The same is true for NAPI, except that the re-
ceived “batch” tends to be even bigger, and
the processing is done in thenet_device->
poll() softirq context.

Within this received batch the LRO logic looks
for multiple back-to-back frames that belong to
the same stream.

The 12-step algorithm below is essentially a set
of simple hardware-friendly checks (see check
A, check B, etc. below) and a simple hardware-
friendly header manipulation.

Note that by virtue of being a pseudo-code cer-
tain low-level details were simplified out.

8 Large Receive Offload algorithm

1) for each (Rx descriptor, Rx frame) pair from
the received “batch”:

2) get LRO object that corresponds to the
descriptor->ring.

3) check A:
- should the frame be dropped? (check FCS and
a number of other conditions, including ECC)
if the frame is bad then drop it, increment the
stats, and continue to 1).

4) is the LRO object (located at step 2) empty?
if it contains previously accumulated data, goto
step 6); otherwise proceed with a series of
checks on the first to-be-LROed frame (next).

5) check B:
- is it IP frame?
- IP fragmented?
- passes a check for IP options?
- either TCP or UDP?
- both L3 and L4 offloaded checksums are
good?
- for TCP: passes a check for flags?
- for TCP: passes a check for TCP options? if
any check fails - goto step 11). otherwise goto
to step 10).

6) use hardware-assisted Receive Traffic Hash-
ing (RTH) to check whether the frame belongs
to the same stream; if not (i.e. cannot be LRO-
ed), goto 11).

7) check C:
- IP fragmented?
- passes a check for IP options?
- offloaded checksums are good?
- for TCP: passes a check for flags?
- for TCP: passes a check for TCP options? if
any of the checks fail, goto step 11).

8) check D:
- in-order TCP segment? if not, goto step 11).

9) append the new (the current) frame; update
the header of the first frame in the already LRO-
ed sequence; update LRO state (for the given
ring->LRO) accordingly.

10) check E:
- too much LRO data accumulated? (in terms
of both total size and number of “fragments”)
- is it the last frame in this received “batch”? if
‘no’ on both checks, continue to 1).

11) call netif_rx() or netif_receive_skb() (the
latter for NAPI) for the LRO-ed frame, if ex-
ists; call netif_rx() or netif_receive_skb() for
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the current frame, if not “appended” within this
iteration (at step 9).

12) reset the LRO object and continue to 1).

9 Conclusion

Stateless hardware assists and TCP offloads
have become a de-facto standard feature in
both high-end Server NICs and operating sys-
tems. Support for additional stateless offloads
on the receive-side, with native driver support
in Linux, is required in order to provide 10Gbps
Ethernet data rates in efficient manner.

10 References

• Xframe 10GbE Programming manual

• The latest Neterion Linux driver code
(available in 2.6 kernel)
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Abstract

eCryptfs is a cryptographic filesystem for
Linux that stacks on top of existing filesys-
tems. It provides functionality similar to that of
GnuPG, except the process of encrypting and
decrypting the data is done transparently from
the perspective of the application. eCryptfs
leverages the recently introduced Linux ker-
nel keyring service, the kernel cryptographic
API, the Linux Pluggable Authentication Mod-
ules (PAM) framework, OpenSSL/GPGME,
the Trusted Platform Module (TPM), and the
GnuPG keyring in order to make the process
of key and authentication token management
seamless to the end user.

1 Enterprise Requirements

Any cryptographic application is hard to imple-
ment correctly and hard to effectively deploy.
When key management and interaction with the
cryptographic processes are cumbersome and
unwieldy, people will tend to ignore, disable,
or circumvent the security measures. They will
select insecure passphrases, mishandle their se-
cret keys, or fail to encrypt their sensitive data
altogether. This places the confidentiality and

the integrity of the data in jeopardy of compro-
mise in the event of unauthorized access to the
media on which the data is stored.

While users and administrators take great
pains to configure access control mecha-
nisms, including measures such as user ac-
count and privilege separation, Mandatory Ac-
cess Control[13], and biometric identification,
they often fail to fully consider the circum-
stances where none of these technologies can
have any effect – for example, when the me-
dia itself is separated from the control of its
host environment. In these cases, access con-
trol must be enforced via cryptography.

When a business process incorporates a cryp-
tographic solution, it must take several issues
into account. How will this affect incremental
backups? What sort of mitigation is in place
to address key loss? What sort of education is
required on the part of the employees? What
should the policies be? Who should decide
them, and how are they expressed? How dis-
ruptive or costly will this technology be? What
class of cryptography is appropriate, given the
risks? Just what are the risks, anyway? When-
ever sensitive data is involved, it is incumbent
upon those responsible for the information to
reflect on these sorts of questions and to take
action accordingly.

We see today that far too many businesses ne-
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glect to effectively utilize on-disk encryption.
We often see news reports of computer equip-
ment that is stolen in trivial cases of burglary[5]
or of backup tapes with sensitive customer data
that people lose track of.[10] While the physi-
cal security measures in place in these business
establishments are usually sufficient given the
dollar value of the actual equipment, businesses
often underrate the value of the data contained
on the media in that equipment. Encryption can
effectively protect the data, but there there exist
a variety of practical barriers to using it effec-
tively. eCryptfs directly addresses these issues.

1.1 Integration of File Encryption into the
Filesystem

Cryptography extends access control beyond
the trusted domain. Within the trusted do-
main, physical control, authentication mecha-
nisms, DAC/MAC[14][13], and other technolo-
gies regulate what sort of behaviors users can
take with respect to data. Through various
mathematical operations, cryptographic appli-
cations can enforce the confidentiality and the
integrity of the data when it is not under these
forms of protection. The mathematics, how-
ever, is not enough. The cryptographic solu-
tion must take human behavior into account and
compensate for tendencies to take actions that
compromise the security afforded by the cryp-
tographic application.

Several solutions exist that solve separate
pieces of the data encryption problem. In one
example highlighting transparency, employees
within an organization that uses IBMTM Lo-
tus NotesTM [11] for its email will not even
notice the complex PKI or the encryption pro-
cess that is integrated into the product. En-
cryption and decryption of sensitive email mes-
sages is seamless to the end user; it involves
checking an “Encrypt” box, specifying a recip-
ient, and sending the message. This effectively

addresses a significant file in-transit confiden-
tiality problem. If the local replicated mail-
box database is also encrypted, then this ad-
dresses confidentiality (to some extent) on the
local storage device, but the protection is lost
once the data leaves the domain of Notes (for
example, if an attached file is saved to disk).
The process must be seamlessly integrated into
all relevant aspects of the user’s operating en-
vironment.

We learn from this particular application that
environments that embody strong hierarchical
structures can more easily provide the infras-
tructure necessary to facilitate an easy-to-use
and effective organization-wide cryptographic
solution. Wherever possible, systems should
leverage this infrastructure to protect sensitive
information. Furthermore, when organizations
with differing key management infrastructures
exchange data, the cryptographic application
should be flexible enough to support alternate
forms of key management.

Current cryptographic solutions that ship with
Linux distributions do not fully leverage ex-
isting Linux security technologies to make the
process seamless and transparent. Surprisingly
few filesystem-level solutions utilize public key
cryptography. eCryptfs brings together the
kernel cryptographic API, the kernel keyring,
PAM, the TPM, and GnuPG in such a way so
as to fill many of the gaps[3] that exist with cur-
rent popular cryptographic technologies.

1.2 Universal Applicability

Although eCryptfs is geared toward securing
data in enterprise environments, we explored
how eCryptfs can be flexible for use in a wide
variety of circumstances. The basic passphrase
mode of operation provides equivalent func-
tionality to that of EncFS[23] or CFS[20], with
the added advantage of the ability to copy an
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encrypted file, as an autonomic unit, between
hosts while preserving the associated crypto-
graphic contexts. eCryptfs includes a pluggable
Public Key Infrastructure API through which
it can utilize arbitrary sources for public key
management. One such plugin interfaces with
GnuPG (see Section 5.7) in order to leverage
the web-of-trust mechanism already in wide
use among participants on the Internet.

1.3 Enterprise-class

We designed and implemented eCryptfs with
the enterprise environment in mind. These en-
vironments entail a host of unique opportunities
and requirements.

1.3.1 Ease of Deployment

eCryptfs does not require any modifications to
the Linux kernel itself.1 It is deployable as
a stand-alone kernel module that utilizes a set
of userspace tools to perform key management
functions.

Many other cryptographic filesystem solutions,
such as dm-crypt, require that a fixed partition
(or image) be established upon which to write
the encrypted data. This provides the flexi-
bility of block-layer encryption; any applica-
tion, such as swap, a database application, or
a filesystem, can use it without any modifica-
tion to the application itself. However, it is lim-
ited in that the amount of space allocated for
the encrypted data is fixed. It is an inconve-
nient task to increase or decrease the amount of
space available on the encrypted partition.

Cryptographic filesystems like EncFS[23] and
CFS[20] are more easily deployable, as they

1Note that thekey_type_usersymbol must be ex-
ported by the kernel keyring module, which may require
a one-line patch for older versions of the module.

operate at the VFS layer and can mount on
top of any previously existing directory. These
filesystems store cryptographic metadata in
special files stored in the location mounted.
Thus, the files themselves cannot be decrypted
unless the user copies that metadata along with
the encrypted files.

eCryptfs goes one step beyond other filesys-
tems by storing cryptographic metadata di-
rectly in the files. This information is associ-
ated on a per-file basis, in a manner dictated
by policies that are contained in special files on
the target. These policies specify the behavior
of eCryptfs as it works with individual files at
the target. These policies are not required in or-
der for the user to work with the files, but the
policies can provide enhanced transparency of
operation. Planned enhancements include utili-
ties to aid in policy generation (see Section 7).

1.3.2 PKI Integration

Through its pluggable PKI interface (see Sec-
tion 5.7), eCryptfs aims to be integrable with
existing Public Key Infrastructures.

1.3.3 TPM Utilization

The Trusted Computing Group has published
an architecture standard for hardware support
for various secure operations.[7] Several ven-
dors, including IBM, implement this standard
in their products today. As an example, more
recent IBM Thinkpad and workstation prod-
ucts ship with an integrated Trusted Computing
Platform (TPM) chip.

The TPM can be configured to generate a pub-
lic/private keypair in which the private expo-
nent cannot be obtained from the chip. The ses-
sion key to be encrypted or decrypted with this



204 • eCryptfs: An Enterprise-class Encrypted Filesystem for Linux

key must be passed to the chip itself, which will
then use the protected private key to perform
the operation. This hardware support provides
a strong level of protection for the key that is
beyond that which can be provided by a soft-
ware implementation alone.

Using a TPM, eCryptfs can essentially “bind”
a set of files to a particular host. Should the
media ever be separated from the host which
contains the TPM chip, the session keys (see
Section 5.1) of the file will be irretrievable. The
user can even configure the TPM in such a man-
ner so that the TPM will refuse to decrypt data
unless the machine is booted in a certain con-
figuration; this helps to address attacks that in-
volve booting the machine from untrusted me-
dia.

1.3.4 Key Escrow

Employees often forget or otherwise lose their
credentials, and it is subsequently necessary for
the administrator to reset or restore those cre-
dentials. Organizations expect this to happen
and have processes in place to rectify the sit-
uations with a minimal amount of overhead.
When strong cryptographic processes are in
place to enforce data integrity and confidential-
ity, however, the administrator is no more ca-
pable of retrieving the keys than anyone else is,
unless some steps are taken to store the key in
a trustworthy escrow.

1.3.5 Incremental Backups

Cryptographic filesystem solutions that oper-
ate at the block layer do not provide adequate
security when interoperating with incremental
backup utilities. Solutions that store crypto-
graphic contexts separately from the files to

which they apply, as EncFS or CFS do, al-
low for incremental backup utilities to oper-
ate while maintaining the security of the data,
but the administrator must take caution to as-
sure that the backup tools are also recording the
cryptographic metadata. Since eCryptfs stores
this data in the body of the files themselves, the
backup utilities do not need to take any addi-
tional measures to make a functional backup of
the encrypted files.

2 Related Work

eCryptfs extends cryptfs, which is one of
the filesystems instantiated by the stackable
filesystem framework FiST.[9] Erez Zadok
heads a research lab at Stony Brook University,
where FiST development takes place. Cryptfs
is an in-kernel implementation; another option
would be to extend EncFS, a userspace crypto-
graphic filesystem that utilizes FUSE to inter-
act with the kernel VFS, to behave in a similar
manner. Much of the functionality of eCryptfs
revolves around key management, which can
be integrated, without significant modification,
into a filesystem like EncFS.

Other cryptographic filesystem solutions
available under Linux include dm-crypt[18]
(preceded by Cryptoloop and Loop-AES),
CFS[20], BestCrypt[21], PPDD[19],
TCFS[22], and CryptoFS[24]. Reiser4[25]
provides a plugin framework whereby crypto-
graphic operations can be implemented.

3 Design Structure

eCryptfs is unique from most other crypto-
graphic filesystem solutions in that it stores
a complete set of cryptographic metadata to-
gether with each individual file, much like
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Figure 1: Overview of eCryptfs architecture

PGP-encrypted files are formatted. This al-
lows for encrypted files to be transferred across
trusted domains while maintaining the ability
for those with the proper credentials to gain ac-
cess to those files. Because the encryption and
decryption takes place at the VFS layer, the
process is made transparent from the applica-
tion’s perspective.

eCryptfs is implemented as a kernel module
augmented with various userspace utilities for
performing key management functions. The
kernel module performs the bulk encryption of
the file contents via the kernel cryptographic
API. A keystore component extracts the header
information from individual files2 and forwards
this data to a callout application. The call-
out application evaluates the header informa-
tion against the target policy and performs var-
ious operations, such as prompting the user for
a passphrase or decrypting a session key with a

2Note that the initial prototype of eCryptfs, demon-
strated at OLS 2004, utilized Extended Attributes (EA)
to store the cryptographic context. Due to the fact that
EA’s are not ubiquitously and consistently supported,
this information was moved directly into the file con-
tents. eCryptfs now uses EA’s to cache cryptographic
contexts, but EA support is not required for correct oper-
ation.

private key.

eCryptfs performs key management operations
at the time that an application either opens or
closes a file (see Figure 2). Since these events
occur relatively infrequently in comparison to
page reads and writes, the overhead involved in
transferring data and control flow between the
kernel and userspace is relatively insignificant.
Furthermore, pushing key management func-
tions out into userspace reduces the amount and
the complexity of code that must run in kernel
space.

4 Cryptographic Operations

eCryptfs performs the bulk symmetric encryp-
tion of the file contents in the kernel module
portion itself. It utilizes the kernel crypto-
graphic API.

4.1 File Format

The underlying file format for eCryptfs is based
on the OpenPGP format described in RFC
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vfs_open()

cryptfs_open()

Allocate new crypt_stats struct

Consult the cryptographic policy for this file
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Construct set of valid authentication
token struct signatures

Associate authentication tokens
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Kernel User

Write the file headers

No

Yes

Figure 2: New file process

2440[2] (see Figure 3). In order to accommo-
date random access, eCryptfs necessarily de-
viates from that standard to some extent. The
OpenPGP standard assumes that the encryption
and decryption is done as an atomic operation
over the entire data contents of the file; there is
no concept of a partially encrypted or decrypted
file. Since the data is encrypted using a chained
block cipher, it would be impossible to read the
very last byte of a file without first decrypting
the entire contents of the file up to that point.
Likewise, writing the very first byte of the file

would require re-encrypting the entire contents
of the file from that point.

To compensate for this particular issue while
maintaining the security afforded by a cipher
operating in block chaining mode[6], eCryptfs
breaks the data into extents. These extents, by
default, span the page size (as specified for each
kernel build). Data is dealt with on a per-extent
basis; any data read from the middle of an ex-
tent causes that entire extent to be decrypted,
and any data written to that extent causes that
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Data
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Crypto Context
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Initialization
Vectors

Encrypted
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Initialization
Vectors

Encrypted
Data Extent ...

Figure 3: Underlying file format

entire extent to be encrypted.

Each extent has a unique initialization vector
(IV) associated with it. One extent containing
IV’s precedes a group of extents to which those
IV’s apply. Whenever data is written to an ex-
tent, its associated IV is rotated and rewritten to
the IV extent before the associated data extent
is encrypted. The extents are encrypted with
the block cipher selected by policy for that file
and employ CBC mode to chain the blocks.

4.1.1 Sparse Files

Sparse files present a challenge for eCryptfs.
Under UNIX semantics, a file becomes sparse
when an application seeks past the end of a file.
The regions of the file where no data is written
representholes. No data is actually written to
the disk for these regions; the filesystem “fakes
it” by specially marking the regions and setting
the reported filesize accordingly. The space oc-
cupied on the disk winds up being less than the
size of the file as reported by the file’s inodes.
When sparse regions are read, the filesystem
simply pretends to be reading the data from the
disk by filling in zero’s for the data.

The underlying file structure for eCryptfs is
amenable to accommodating this behavior;
IV’s consisting of all zero’s can indicate that the
underlying region that corresponds is sparse.
The obvious problem with this approach is that
it is readily apparent to an attacker which re-
gions of the file consist of holes, and this may

constitute an unacceptable breach of confiden-
tiality. It makes sense to relegate eCryptfs’s be-
havior with respect to sparse files as something
that policy decides.

4.2 Kernel Crypto API

eCryptfs performs the bulk data encryption in
the kernel module, and hence it takes advantage
of the kernel cryptographic API to perform the
encryption and the decryption. One of the pri-
mary motivators in implementing eCryptfs in
the kernel is to avoid the overhead of context
switches between userspace and kernel space,
which is frequent when dealing with pages in
file I/O. Any symmetric ciphers supported by
the Linux kernel are candidates for usage as the
bulk data ciphers for the eCryptfs files.

4.3 Header Information

eCryptfs stores the cryptographic context for
each file as header information contained di-
rectly in the underlying file (see Figure 4).
Thus, all of the information necessary for users
with the appropriate credentials to access the
file is readily available. This makes files
amenable to transfer across untrusted domains
while preserving the information necessary to
decrypt and/or verify the contents of the file.
In this respect, eCryptfs operates much like an
OpenPGP application.

Most encrypted filesystem solutions either op-
erate on the entire block device or operate on
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Figure 4: Writing file headers

entire directories. There are several advantages
to implementing filesystem encryption at the
filesystem level and storing encryption meta-
data in the headers of each file:

• Granularity: Keys can be mapped to in-
dividual files, rather than entire block de-
vices or entire directories.

• Backup Utilities: Incremental backup
tools can correctly operate without having
to have access to the decrypted content of
the files it is backing up.

• Performance: In most cases, only certain
files need to be encrypted. System li-
braries and executables, in general, do not
need to be encrypted. By limiting the
actual encryption and decryption to only

those files that really need it, system re-
sources will not be taxed as much.

• Transparent Operation: Individual en-
crypted files can be easily transferred off
of the block device without any extra
transformation, and others with authoriza-
tion will be able to decrypt those files. The
userspace applications and libraries do not
need to be modified and recompiled to
support this transparency.

4.4 Rotating Initialization Vectors

eCryptfs extents span page lengths. For most
architectures, this is 4096 bytes. Subsequent
writes within extents may provide information
to an attacker who aims to perform linear crypt-
analysis against the file. In order to mitigate
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this risk, eCryptfs associates a unique Initial-
ization Vector with each extent. These IV’s are
interspersed throughout each file. In order to
simplify and streamline the mapping of the un-
derlying file data with the overlying file, IV’s
are currently grouped on a per-page basis.

4.5 HMAC’s Over Extents

Integrity verification can be accomplished via
sets of keyed hashes over extents within the
file. Keyed hashes are used to prove that
whoever modified the data had access to the
shared secret, which is, in this case, the session
key. Since hashes apply on a per-extent basis,
eCryptfs need not generate the hash over the
entire file before it can begin reading the file.
If, at any time in the process of reading the file,
eCryptfs detects a hash mismatch for an extent,
it can flag the read operation as failing in the
return code for the VFS syscall.

This technique can be applied to generate
a built-in digital signature structure for files
downloaded over the Internet. Given that an
eCryptfs key management module is able to as-
certain the trustworthiness of a particular key,
then that key can be used to encode a verifi-
cation packet into the file via HMAC’s. This
is accomplished by generating hashes over the
extents of the files, as eCryptfs normally does
when operating in integrity verification mode.
When the file is closed, an HMAC is gen-
erated by hashing the concatenation of all of
the hashes in the file, along with a secret key.
This HMAC is then encrypted with the distrib-
utor’s private key and written to an HMAC-
type packet. The recipients of the file can pro-
ceed then to retrieve the secret key by decrypt-
ing it with the distributor’s trusted public key
and performing the hash operations to gener-
ate the final HMAC, which can be compared
then against the HMAC that is stored in the file
header in order to verify the file’s integrity.

4.6 File Context

Each eCryptfs inode correlates with an inode
from the underlying filesystem and has a cryp-
tographic context associated with it. This con-
text contains, but is not limited to, the following
information:

• The session key for the file

• Whether the file is encrypted

• A pointer to the kernel crypto API context
for that file

• The signatures of the authentication to-
kens associated with that file

• The size of the extents

eCryptfs can cache each file’s cryptographic
context in the user’s session keyring in order to
facilitate faster repeat access by bypassing the
process of reading and interpreting of authenti-
cation token header information from the file.

4.7 Revocation

Since anyone with the proper credentials can
extract a file’s session key, revocation of access
for any given credential to future versions of
the file will necessitate regeneration of a ses-
sion key and re-encryption of the file data with
that key.

5 Key Management

eCryptfs aims to operate in a manner that is as
transparent as possible to the applications and
the end users of the system. Under most cir-
cumstances, when access control over the data



210 • eCryptfs: An Enterprise-class Encrypted Filesystem for Linux

Userspace callout to process session key portions of authentication tokens

Have we added all the 
authentication tokens 

to the list?

Add another auth tok to
the list

Process the salt

No

Was a salt
found?

Generate a new salt

Replicate the salt across
all auth toks

Process public key operations

Process private key operation

Is the flag set requesting
the session key to be

encrypted?

Does the auth tok
contain a decrypted key?

Encrypt session key with public key

Is the flag set requesting
the session key to be

decrypted?

Does the auth tok
contain a encrypted key?

Decrypt with the private key
(possible hand-off to TPM)

Do we have any
auth toks left?

Do we have any
auth toks left?

Prompt for passphrase
procedure

No

No

No

No

No

According to the policy,
should we prompt for a

passphrase?

Write/update all authentication
tokens in the kernel keyring

Return set of valid authentication
token key signatures

No

No

No

Yes

Yes

Yes
Yes

Yes

Yes

Yes

Yes

Yes

Figure 5: Key management

cannot be provided at all times by the host, the
fact that the files are being encrypted should not
be a concern for the user. Encryption must pro-
tect the confidentiality and the integrity of the
files in these cases, and the system is config-
ured to do just that, using the user’s authentica-
tion credentials to generate or access the keys.

5.1 Session Keys

Every file receives a randomly generated ses-
sion key, which eCryptfs uses in the bulk data
encryption of the file contents. eCryptfs stores
this session key in the cryptographic metadata
for the file, which is in turn cached in the user’s

session keyring. When an application closes
a newly created file, the eCryptfs encrypts the
session key once for each authentication token
associated with that file, as dictated by policy,
then writes these encrypted session keys into
packets in the header of the underlying file.

When an application later opens the file,
eCryptfs reads in the encrypted session keys
and chains them off of the cryptographic meta-
data for the file. eCryptfs looks through the
user’s authentication tokens to attempt to find
a match with the encrypted session keys; it
uses the first one found to decrypt the session
key. In the event that no authentication tokens
in the user’s session keyring can decrypt any
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of the encrypted session key packets, eCryptfs
falls back on policy. This policy can dictate ac-
tions such as querying PKI modules for the ex-
istence of private keys or prompting the user for
a passphrase.

5.2 Passphrase

Passwords just don’t work anymore.
– Bruce Schneier

Many cryptographic applications in Linux rely
too heavily on passphrases to protect data.
Technology that employs public key cryp-
tography provides stronger protection against
brute force attacks, given that the passphrase-
protected private keys are not as easily accessi-
ble as the encrypted data files themselves.

Passphrase authentication tokens in eCryptfs
exist in three forms: non-passphrased, salt-
less, and salted. In order to address the threat
of passphrase dictionary attacks, eCryptfs uti-
lizes the method whereby a salt value is con-
catenated with a passphrase to generate a
passphrase identifier. The concatenated value is
iteratively hashed (65,537 times by default) to
generate the identifying signature for the salted
authentication token.

On the other hand, saltless authentication to-
kens exist only in the kernel keyring and are not
at any time written out to disk. The userspace
callout application combines these saltless au-
thentication tokens with non-passphrased au-
thentication tokens to generate candidate salted
authentication tokens, whose signatures are
compared against those in file headers.

While eCryptfs supports passphrase-based pro-
tection of files, we do not recommend using
passphrases for relatively high-value data that
requires more than casual protection. Most

passphrases that people are capable of remem-
bering are becoming increasingly vulnerable to
brute force attacks. eCryptfs takes measures
to make such attacks more difficult, but these
measures can only be so effective against a de-
termined and properly equipped adversary.

Every effort should be made to employ the use
of a TPM and public key cryptography to pro-
vide strong protection of data. Keep in mind
that using a passphrase authentication token in
addition to a public key authentication token
does not in any way combine the security of
both; rather, it combines theinsecurityof both.
This is due to the fact that, given two authen-
tication tokens, eCryptfs will encrypt and store
two copies of the session key (see Section 5.1)
that can individually be attacked.

5.3 Kernel Keyring

David Howells recently authored the keyring
service, which kernel versions 2.6.10 and later
now include. This keyring provides a host of
features to manage and protect keys and au-
thentication tokens. eCryptfs takes advantage
of the kernel keyring, utilizing it to store au-
thentication tokens, inode cryptographic con-
texts, and keys.

5.4 Callout and Daemon

The primary contact between the eCryptfs ker-
nel module and the userspace key manage-
ment code is the request-key callout applica-
tion, which the kernel keyring invokes. This
callout application parses policy information
from the target, which it interprets in relation to
the header information in each file. It may then
make calls through the PKI API in order to sat-
isfy pending public key requests, or it may go
searching for a salted passphrase with a partic-
ular signature.
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In order to be able to prompt the user for a
passphrase via a dialog box, eCryptfs must
have an avenue whereby it can get to the user’s
X session. The user can provide this means by
simply running a daemon. The eCryptfs dae-
mon listens to a socket (for which the location
is written to the user’s session keyring). When-
ever policy calls for the user to be prompted
for a passphrase, the callout application can re-
trieve the socket’s location and use it to request
the daemon to prompt the user; the daemon
then returns the user’s passphrase to the callout
application.

5.5 Userspace Utilities

To accommodate those who are not running the
eCryptfs layer on their systems, userspace util-
ities to handle the encrypted content comprise
part of the eCryptfs package. These utilities act
much like scaled-down versions of GnuPG.

5.6 Pluggable Authentication Module

Pluggable Authentication Modules (PAM) pro-
vide a Discretionary Access Control (DAC)[14]
mechanism whereby administrators can param-
eterize how a user is authenticated and what
happens at the time of authentication. eCryptfs
includes a module that captures the user’s lo-
gin passphrase and stores it in the user’s ses-
sion keyring. This passphrase is stored in the
user’s session keyring as a saltless passphrase
authentication token.

Future actions by eCryptfs, based on policy,
can then use this passphrase to perform cryp-
tographic operations. For example, the login
passphrase can be used to extract the user’s pri-
vate key from his GnuPG keyring. It could be
used to derive a key (via a string-to-key oper-
ation) that is directly used to protect a session
key for a set of files. Furthermore, this derived

key could be combined with a key stored in a
TPM in order to offer two-factor authentication
(i.e., in order to access a file, the user must have
(1) logged into a particular host (2) using a par-
ticular passphrase).

Due to PAM’s flexibility, these operations do
not need to be restricted to a passphrase. There
is no reason, for example, that a key contained
on a SmartCard or USB device could not be
used to help authenticate the user, after which
point that key is used in the above named cryp-
tographic operations.

5.7 PKI

eCryptfs offers a pluggable Public Key Infras-
tructure (PKI) interface. PKI modules accept
key identifiers and data, and they return en-
crypted or decrypted data. Whether any partic-
ular key associated with an identifier is avail-
able, trustworthy, etc., is up to the PKI module
to determine.

eCryptfs PKI modules need to implement a set
of functions that accept as input the key identi-
fier and a blob of data. The modules have the
responsibility to take whatever course of action
is necessary to retrieve the requisite key, evalu-
ate the trustworthiness of that key, and perform
the public key operation.

eCryptfs includes a PKI module that utilizes the
GnuPG Made Easy (GPGME) interface to ac-
cess and utilize the user’s GnuPG keyring. This
module can utilize the user’s login passphrase
credential, which is stored in the user’s ses-
sion keyring by the eCryptfs PAM (see Section
5.6), to decrypt and utilize the user’s private key
stored on the user’s keyring.

The eCryptfs TPM PKI module utilizes the
TrouSerS[26] interface to communicate with
the Trusted Platform Module. This allows for
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the use of a private key that is locked in the
hardware, binding a file to a particular host.

The eCryptfs openCryptoki PKCS#11[15]
framework PKI provides a mechanism for per-
forming public key operations via various hard-
ware devices supported by openCryptoki, in-
cluding the IBM Cryptographic Accelerator
(ICA) Model 2058, the IBM 4758 PCI Cryp-
tographic Coprocessor, the Broadcom Crypto
Accelerator, the AEP Crypto Accelerator, and
the TPM.

It is easy to write additional PKI modules for
eCryptfs. Such modules can interface with
existing PKI’s that utilize x.509 certificates,
with certificate authorities, revocation lists, and
other elements that help manage keys within an
organization.

5.8 Key Escrow/Secret Sharing

In enterprise environments, it often makes
sense for data confidentiality and integrity to be
a shared responsibility. Just as prudent business
organizations entail backup plans in the event
of the sudden loss of any one employee, the
data associated with business operations must
survive any one individual in the company. In
the vast majority of the cases, it is acceptable
for all members of the business to have access
to a set of data, while it is not acceptable for
someone outside the company who steals a ma-
chine or a USB pen drive to have access to that
data. In such cases, some forms of key escrow
within the company are appropriate.

In enterprise environments where corporate and
customer data are being protected cryptograph-
ically, key management and key recovery is an
especially critical issue. Techniques such as se-
cret splitting or (m,n)-threshold schemes[4] can
be used within an organization to balance the
need for key secrecy with the need for key re-
covery.

5.9 Target-centric Policies

When an application creates a new file,
eCryptfs must make a number of decisions with
regard to that file. Should the file be encrypted
or unencrypted? If encrypted, which symmetric
block cipher should be used to encrypt the data?
Should the file contain HMAC’s in addition to
IV’s? What should the session key length be?
How should the session key be protected?

Protecting the session key on disk requires even
more policy decisions. Should a passphrase be
used? Which one, and how should it be re-
trieved? What should be the string-to-key pa-
rameters (i.e., which hash algorithm and the
number of hash iterations)? Should any pub-
lic keys be used? If so, which ones, and how
should they be retrieved?

eCryptfs currently supports Apache-like policy
definition files3 that contain the policies that ap-
ply to the target in which they exist. For exam-
ple, if the root directory on a USB pen drive
device contains a .ecryptfsrc file, then eCryptfs
will parse the policy from that file and apply
it to all files under the mount point associated
with that USB pen drive device.

Key definitions associate labels with(PKI, Id)
tuples (see Figure 6).

Application directive definitions override de-
fault policies for the target, dependent upon the
application performing the action and the type
of action the application is performing (see Fig-
ure 7).

The action definitions associate labels with
(Action,Cipher,SessionKeySize) tuples.
eCryptfs uses these directives to set crypto-
graphic context parameters for files (see Figure
8).

3XML formats are currently being worked on.
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<ApplicationDirectiveDef mutt_prompt_on_read_encrypted>
Application /usr/bin/mutt
Scenario OPEN_FOR_READ
FileState ENCRYPTED
Action PROMPT

</ApplicationDirectiveDef>

<ApplicationDirectiveDef mutt_decrypt>
Application /usr/bin/mutt
Scenario ALL
FileState ENCRYPTED
Action DECRYPT

</ApplicationDirectiveDef>

<ApplicationDirectiveDef openoffice_strong_encrypt>
Application /usr/bin/ooffice
Scenario OPEN_FOR_CREATE
Action encrypt_strong

</ApplicationDirective>

Figure 7: Example policy: application directives

The directory policy definitions give default ac-
tions for files created under the specified direc-
tory location, along with application directives
that apply to the directory location (see Figure
9).

6 Additional Measures

eCryptfs concerns itself mainly with protect-
ing data that leaves trusted domains. Addi-
tional measures are necessary to address vari-
ous threats outside the scope of eCryptfs’s in-
fluence. For example, swap space should be
encrypted; this can be easily accomplished with
dm-crypt.[18]

Strong access control is outside the scope of
the eCryptfs project, yet it is absolutely neces-
sary to provide a comprehensive security solu-
tion for sensitive data. SE Linux[16] provides

a robust Mandatory Access Control framework
that can be leveraged with policies to protect
the user’s data and keys.

Furthermore, the system should judiciously
employ timeouts or periods of accessibil-
ity/applicability of credentials. The kernel
keyring provides a convenient and powerful
mechanism for handling key permissions and
expirations. These features must be used appro-
priately in order to address human oversight,
such as failing to lock down a terminal or other-
wise exit or invalidate a security context when
the user is finished with a task.

7 Future Work

eCryptfs is currently in an experimental stage
of development. While the majority of the VFS
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<Directory />
DefaultAction blowfish_encrypt
DefaultState PROMPT
DefaultPublicKeys mhalcrow legal
DefaultPassphrase LOGIN
# This directives for files under this location
# that meet this criteria
<FilePattern \.mutt_.*>

ApplicationDirective mutt_decrypt
</FilePattern>
ApplicationDirective mutt_prompt_on_read_encrypted

</Directory>

# Overrides the prior set of policies
<Directory /gnucash>

DefaultAction encrypt_strong
DefaultPublicKeys host_tpm

</Directory>

Figure 9: Example policy: directory policies

functionality is implemented and functioning,
eCryptfs requires testing and debugging across
a wide range of platforms under a variety of
workload conditions.

eCryptfs has the potential to provide weak file
size secrecy in that the size of the file would
only be determinable to the granularity of one
extent size, given that the file size field in
the header is encrypted with the session key.
Strong file size secrecy is much more easily ob-
tained through block device layer encryption,
where everything about the filesystem is en-
crypted. eCryptfs only encrypts the data con-
tents of the files; additional secrecy measures
must address dentry’s, filenames, and Extended
Attributes, which are all within the realm of
what eCryptfs can influence.

At this stage, eCryptfs requires extensive pro-
filing and streamlining in order to optimize
its performance. We need to investigate op-

portunities for caching cryptographic metadata,
and variations on such attributes as the size of
the extents could have a significant impact on
speed.

eCryptfs policy files are equivalent to the
Apache configuration files in form and com-
plexity. eCryptfs policy files are amenable to
guided generation via user utilities. Another
significant area of future development includes
the development of such utilities to aid in the
generation of these policy files.

Desktop environments such as GNOME or
KDE can provide users with a convenient in-
terface through which to work with the cryp-
tographic properties of the files. In one sce-
nario, by right-clicking on an icon represent-
ing the file and selecting “Security”, the user
will be presented with a window that can be
used to control the encryption status of the file.
Such options will include whether or not the
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<Key mhalcrow>
PKI GPG
Id 3F5C22A9

</Key>

<Key legal>
PKI GPG
Id 7AB1FF25

</Key>

<Key host_tpm>
PKI TPM
Id DEFAULT

</Key>

Figure 6: Example policy: key defs

file is encrypted, which users should be able
to encrypt and decrypt the file (identified by
their public keys as reported by the PKI plugin
module), what cipher is used, what keylength
is used, an optional passphrase that is used to
encrypt the symmetric key, whether or not to
use keyed hashing over extents of the file for
integrity, the hash algorithms to use, whether
accesses to the file when no key is available
should result in an error or in the encrypted
blocks being returned (as dictated by target-
centric policies; see Section 5.9), and other
properties that are interpreted and used by the
eCryptfs layer.

8 Recognitions

We would like to express our appreciation for
the contributions and input on the part of all
those who have laid the groundwork for an ef-
fort toward transparent filesystem encryption.
This includes contributors to FiST and Cryptfs,
GnuPG, PAM, and many others from which

<ActionDef blowfish_encrypt>
Action ENCRYPT
Cipher blowfish
SessionKeySize 128

</ActionDef>

<ActionDef encrypt_strong>
Action ENCRYPT
Cipher aes
SessionKeySize 256

</ActionDef>

Figure 8: Example policy: action defs

we are basing our development efforts, as well
as several members of the kernel development
community.

9 Conclusion

eCryptfs is an effort to reduce the barriers that
stand in the way of the effective and ubiqui-
tous utilization of file encryption. This is es-
pecially relevant as physical media remains ex-
posed to theft and unauthorized access. When-
ever sensitive data is being handled, it should be
themodus operandithat the data be encrypted
at all times when it is not directly being ac-
cessed in an authorized manner by the appli-
cations. Through strong and transparent key
management that includes public key support,
key->file association, and target-centric poli-
cies, eCryptfs provides the means whereby a
cryptographic filesystem solution can be more
easily and effectively deployed.
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10 Availability

eCryptfs is licensed under the GNU
General Public License (GPL). Source-
Forge is hosting the eCryptfs code base
at http://sourceforge.net/
projects/ecryptfs . We welcome
any interested parties to become involved in
the testing and development of eCryptfs.

11 Legal Statement

This work represents the view of the author and does
not necessarily represent the view of IBM.

IBM and Lotus Notes are registered trademarks of
International Business Machines Corporation in the
United States, other countries, or both.

Other company, product, and service names may be
trademarks or service marks of others.
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Abstract

The LinuxR© time subsystem, which once pro-
vided only tick granularity via a simple pe-
riodic addition to xtime, now must provide
nanosecond resolution. As more and more
unique timekeeping hardware becomes avail-
able, and as virtualization and low-latency de-
mands grow, the complexity of maintenance
and bug resolution increases.

We are proposing a significant re-work of the
time keeping subsystem of the kernel. Ad-
ditionally, we demonstrate some possible en-
hancements this re-work facilitates: a more
flexible soft-timer subsystem and dynamic in-
terrupt source management.

1 The Newtimeofday Subsystem

The functionality required of thetimeofday
subsystem is deceptively simple. We must
provide a monotonically increasing system
clock, a fast and accurate method for gen-
erating the time of day, and a method for
making small adjustments to compensate for
clock drift. In the existing code, these
are provided by thewall_to_monotonic

offset to do_gettimeofday() , the do_

gettimeofday() function and the Network

Time Protocal(NTP)adjtimex() interface.
This basic functionality, however, is required to
meet increasingly stringent demands. Perfor-
mance must improve and time resolution must
increase, while keeping correctness. Meeting
these demands with the current code has be-
come difficult, thus new methods for time keep-
ing must be considered.

1.1 Terminology

Before we get into the paper, let us just cover
some quick terminology used, so there is no
confusion.

System Time A monotonically increasing
value that represents the amount of time
the system has been running.

Wall Time (Time of Day) A value represent-
ing the the human time of day, as seen on
a wrist-watch.

Timesource A representation of a free running
counter running at a known frequency,
usually in hardware.

Hardware-Timer (Interrupt Source) A bit
of hardware that can be programmed to
generate an interrupt at a specific point in
time. Frequently the hardware-timer can
be used as a timesource as well.

• 219 •
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Soft-Timer A software kernel construct that
runs a callback at a specified time.

Tick A periodic interrupt generated by a
hardware-timer, typically with a fixed in-
terval defined byHZ. Normally used for
timekeeping and soft-timer management.

1.2 Reasons for Change

1.2.1 Correctness

So, why are we proposing these changes?
There are many reasons, but the most important
one is correctness. It is critical that time flow
smoothly, accurately and does not go back-
wards at any point. The existing interpolation-
based timekeeping used by most arches1 is er-
ror prone.

Quickly, let us review how the existing time-
keeping code works. The code is tick-based,
so thetimeofday is incremented a constant
amount (plus a minor adjustment for NTP) ev-
ery tick. A simplified pseudo-code example
of this tick-based scheme would look like Fig-
ure 1.

Since, in this code,abs(ntp_adjustment)

is always smaller thenNSECS_PER_TICK, time
cannot go backwards. Thus, the only issue
with this example is that the resolution of time
is not very granular, e.g. only 1 millisecond
when HZ = 1000. To solve this, the existing
timeofday code uses a high-resolution time-
source to interpolate with the tick-based time
keeping. Again, using a simplified pseudo-
code example we get something like Figure 2.

The idea is that the interpolation function
(cycles2ns(now - hi_res_base) ) will

1Throughout this paper, we will refer to the software
architecture(s), i.e. those found inlinux-source/
arch , as arch(es) and to hardware architecture(s) as ar-
chitecture(s).

smoothly give the inter-tick position in time.
Now, a sharp eye will notice that this has
some potential problems. If the interpolation
function does not cover the entire tick interval
(NSECS_PER_TICK + ntp_adjustment ),
time will jump forward. More worrisome
though, if at any time the value of the inter-
polation function grows to be larger than the
tick interval, there is the potential for time to
go backwards. These two conditions can be
caused by a number of factors: calibration
error, changes tontp_adjustment ’s value,
interrupt handler delay, timesource frequency
changes, and lost ticks.

The first three cases typically lead to a small
single-digit microsecond error, and thus, a
small window for inconsistency. As proces-
sor speeds increase,gettimeofday takes less
time and small interpolation errors become
more apparent.

Timesource frequency changes are more diffi-
cult to deal with. While they are less common,
some laptops do not notify thecpufreq sub-
system when they change processor frequency.
Should the user boot off of battery power, and
the system calibrate the timesource at the slow
speed then later plug into the wall, the TSC fre-
quency can triple causing much more obvious
(two tick length) errors.

Lost timer interrupts also cause large and eas-
ily visible time inconsistencies. If a bad driver
blocks interrupts for too long, or a BIOS SMI
interrupt blocks the OS from running, it is pos-
sible for the value of the interpolation func-
tion to grow to multiple tick intervals in length.
When a timer interrupt is finally taken though,
only one interval is accumulated. Since chang-
ing HZ to 1000 on most systems, missed timer
interrupts have become more common, causing
large time inconsistencies and clock drift.

Attempts have been made (in many cases by
one of the authors of this paper) to reduce the
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timer_interrupt():
xtime += NSECS_PER_TICK + ntp_adjustment

gettimeofday():
return xtime

Figure 1: A tick-basedtimeofday implementation

timer_interrupt():
hi_res_base = read_timesource()
xtime += NSECS_PER_TICK + ntp_adjustment

gettimeofday():
now = read_timesource()
return xtime + cycles2ns(now - hi_res_base)

Figure 2: An interpolatedgettimeofday()

impact of lost ticks by trying to detect and com-
pensate for them. At interrupt time, the interpo-
lation function is used to see how much time
has passed, and any lost ticks are then emu-
lated. One problem with this method of de-
tecting lost ticks is that it results in false pos-
itives when timesource frequency changes oc-
cur. Thus, instead of time inconsistencies, time
races three times faster on those systems, ne-
cessitating additional heuristics.

In summary, the kernel uses a buggy method
for calculating time using both ticks and time-
sources, neither of which can be trusted in all
situations. This is not good.

1.2.2 A Much Needed Cleanup

Another problem with the current time keep-
ing code is how fractured the code base has
become. Every arch calculates time in basi-
cally the same manner, however, each one has
its own implementation with minor differences.
In many cases bugs have been fixed in one
or two arches but not in the rest. The arch
independent code is fragmented over a num-
ber of files (time.c, timer.c, time.h, timer.h,

times.h, timex.h), where the divisions have lost
any meaning or reason. Without clear and ex-
plicit purpose to these files, new code has been
added to these files haphazardly, making it even
more difficult to make sense of what is chang-
ing.

The lack of opacity in the current timekeeping
code is an issue as well. Since almost all of
the timekeeping variables are global and have
no clear interface, they are accessed in a num-
ber of different ways in a number of different
places in the code. This has caused much con-
fusion in the way kernel code accesses time.
For example, consider the many possible ways
to calculate uptime shown in Figure 3.

Clearly some of these examples are more cor-
rect than others, but there is not one clear way
of doing it. Since different ways to calculate
time are used in the kernel, bugs caused by mix-
ing methods are common.

1.2.3 Needed Flexibility

The current system also lacks flexibility. Cur-
rent workarounds for things like lost ticks cause
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uptime = jiffies * HZ
uptime = (jiffies - INITIAL_JIFFIES) * HZ
uptime = ((jiffies - INITIAL_JIFFIES) * ACTHZ) >> 8
uptime = xtime.tv_sec + wall_to_monotonic.tv_sec
uptime = monotonic_clock() / NSEC_PER_SEC;

Figure 3: Possible ways to calculate uptime

bugs elsewhere. One such place is virtualiza-
tion, where the guest OS may be halted for
many ticks while another OS runs. This re-
quires the hypervisor to emulate a number of
successive ticks when the guest OS runs. The
lost tick compensation code notes the hang
and tries to compensate on the first tick, but
then the next ticks arrive causing time to run
too fast. Needless to say, this dependency on
ticks increases the difficulty of correctly imple-
menting deeper kernel changes like those pro-
posed in other patches such as: Dynamic Ticks,
NO_IDLE_HZ, Variable System Tick, and High
Res Timers.

1.3 Related Work

1.3.1 timer_opts

Now that we are done complaining about all
the problems of the current timekeeping sub-
system, one of the authors should stand up and
claim his portion of the responsibility. John
Stultz has been working in this area off and
on for the last three years. His largest set of
changes was the i386-specifictimer_opts re-
organization. The main purpose of that code
was to modularize the high-resolution interpo-
lator to allow for easy addition of alternative
timesources. At that time the i386 arch sup-
ported the PIT and the TSC, and it was nec-
essary to add support for a third timesource,
the Cyclone counter. Thanks, in part, to to the
timer_opts changes the kernel now supports
the ACPI PM and HPET timesources, so in a

sense the code did what was needed, but it is
not without its problems.

The first and most irritating issue is the name.
While it is calledtimer_opts , nothing in the
structure actually uses any of the underlying
hardware as a hardware-timer. Part of this
confusion comes from the fact that hardware-
timers can frequently be used as counters or
timesources, but not the other way around, as
timesources do not necessarilly generate inter-
rupts. The lack of precision in naming and
speaking about the code has caused continuing
difficulty in discussing the issues surrounding
it.

The other problem with thetimer_opts

structure is that its interface is too flexible and
openly defined. It is unclear for those writ-
ing new timer_opt modules, how to use the
interface as intended. Additionally, fixing a
bug or adding a feature requires implementing
the same code across eachtimer_opt mod-
ule, leading to excessive code duplication. That
along with additional interfaces being added
(each needing their own implementation) has
caused thetimer_opts modules to become
ugly and confusing. A cleanup is in order.

Finally, while the timer_opts structure is
somewhat modular, the list of available time-
sources becomes fixed at build-time. Hav-
ing the “clock=” boot-time parameter is use-
ful, allowing users to override the default time-
source; however, more flexibility in providing
new timesources at run-time would be helpful.
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1.3.2 time_interpolator

Right about the time thetimer_opts struc-
ture got into the kernel, a similar bit of code
called “time interpolation hooks” showed up
implementing a somewhat similar interface. An
additional benefit of this code was that it was
arch independent, promising the ability to share
interpolator “drivers” between different arches
that had the same hardware. John followed a
bit of its discussion and intended to move the
i386 code over to it, but was distracted by other
work requirements. That and the never-ending
2.6 freeze kept him from actually attempting
the change.

John finally got a chance to really look at the
code when he implemented the Cyclone inter-
polator driver. The code was nice and more
modular than thetimer_opts interface, but
still had some of the same faults: it left too
much up to the driver to implement and the
getoffset() , update() , and reset()
interfaces were not intuitive. Impressively,
much of the time-interpolator code has been re-
cently re-written, resolving many of issues and
influencing this proposal. However, the time-
interpolator design is still less than ideal. NTP
adjustments are done by intentionally under-
shooting in converting from cycles to nanosec-
onds, causing time to run just a touch slow, and
thus, forcing NTP to only make adjustments
forward in time. This trick avoids time incon-
sistencies from NTP adjustments, but causes
time drift on systems that do not run NTP.
Additionally, while interpolation errors are no
longer an issue, the code is still tick based,
which makes it more difficult to understand and
extend.

1.4 Our Proposal

Before we get into the implementation details
of our proposal, let us review the goals:

1. Clean up and simplify time related code.
2. Provide clean and cleartimeofday in-

terfaces.
3. Use nanoseconds as the fundamental time

unit.
4. Stop using tick-based time and avoid in-

terpolation.
5. Make much of the implementation arch in-

dependent.
6. Use a modular design, allowing time-

source drivers to be installed at runtime.

The core implementation has three main com-
ponents: thetimeofday code, timesource
management, and the NTP state machine.

1.4.1 timeofday Core

The core of the timekeeping code provides
methods for getting a monotonically increasing
system time and the wall time. To avoid unnec-
essary complication, we layer these two values
in a simple way. The monotonically increas-
ing system time, accessed viamonotonic_

clock() is the base layer. On top of that
we add a constant offsetwall_time_offset

to calculate the wall time value returned by
do_gettimeofday() . The code looks like
Figure 4.

The first thing to note in Figure 4, is that
the timeofday code is not using interpo-
lation. The amount of time accumulated in
the periodic_hook() function is the exact
same as would be calculated inmonotonic_

clock() . This means thetimeofday code
is no longer dependent on timer interrupts be-
ing received at a regular interval. If a tick
arrives late, that is okay, we will just ac-
cumulate the actual amount of time that has
past and reset theoffset_base . In fact,
periodic_hook() does not need to be called
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nsec_t system_time
nsec_t wall_time_offset
cycle_t offset_base
int ntp_adj
struct timesource_t ts

monotonic_clock():
now = read_timesource(ts)
return system_time + cycles2ns(ts, now - offset_base, ntp_adj)

gettimeofday():
return monotonic_clock() + wall_time_offset

periodic_hook():
now = read_timesource(ts)
interval = cycles2ns(ts, now - offset_base, ntp_adj)
system_time += interval
offset_base = now
ntp_adj = ntp_advance(interval)

Figure 4: The new timekeeping psuedo-code

from timer_interrupt() , instead it can be
called from a soft-timer scheduled to run ev-
ery number of ticks. Additionally, notice that
NTP adjustments are done smoothly and con-
sistenetly throughout the time interval between
periodic_hook() calls. This avoids the in-
terpolation error that occurs with the current
code when the NTP adjustment is only applied
at tick time. Another benefit is that the core al-
gorithm is shared between all arches. This con-
solidates a large amount of redundant arch spe-
cific code, which simplifies maintenance and
reduces the number of arch specific time bugs.

1.4.2 Timesource Management

The timesource management code defines a
timesource, and provides accessor functions for
reading and converting timesource cycle val-
ues to nanoseconds. Additionally, it provides
the interface for timesources to be registered,
and then selected by the kernel. The timesoure
structure is defined in Figure 5.

In this structure, thepriority field allows
for the best available timesource to be chosen.
The type defines if the timesource can be di-
rectly accessed from the on-CPU cycle counter,
via MMIO, or via a function call, which are de-
fined by theread_fnct andmmio_ptr point-
ers respectively. Themask value ensures that
subtraction between counter values from coun-
ters that are less then 64 bits do not need spe-
cial overflow logic. Themult andshift ap-
proximate the frequency value of cycles over
nanoseconds, wherefrequency ≈ mult

2shift
Finally, theupdate_callback() is used as
a notifier for a safe point where the time-
source can change itsmult or shift values
if needed, e.g. in the case ofcpufreq scaling.

A simple exampletimesource structure can
be seen in Figure 6. This small HPET driver
can even be shared between i386, x86-64 and
ia64 arches (or any arch that supports HPET).
All that is necessary is an initialization function
that sets themmio_ptr and mult then calls
register_timesource() . This can be done
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struct timesource_t {
char* name;
int priority;
enum {

TIMESOURCE_FUNCTION,
TIMESOURCE_CYCLES,
TIMESOURCE_MMIO_32,
TIMESOURCE_MMIO_64

} type;
cycle_t (*read_fnct)(void);
void __iomem *mmio_ptr;
cycle_t mask;
u32 mult;
u32 shift;
void (*update_callback)(void);

};

Figure 5: Thetimesource structure

struct timesource_t timesource_hpet = {
.name = ‘‘hpet’’,
.priority = 300,
.type = TIMESOURCE_MMIO_32,
.mmio_ptr = NULL,
.mask = (cycle_t)HPET_MASK,
.mult = 0,
.shift = HPET_SHIFT,

};

Figure 6: The HPETtimesource structure

at any time while the system is running, even
from a module. At that point, the timesource
management code will choose the best avail-
able timesource using the priority field. Al-
ternatively, asysfs interface allows users to
override the priority list and, while the system
is running, manually select a timesource to use.

1.4.3 NTP

The NTP subsystem provides a way for the
kernel to keep track of clock drift and calcu-
late how to adjust for it. Briefly, the core
interface from the timekeeping perspective is
ntp_advance() , which takes a time interval

and increments the NTP state machine by that
amount, and then returns the signed parts per
million adjustment value to be used to adjust
time consistently over the next interval.

1.4.4 Related Changes

Other areas affected by this proposal are
VDSO or vsyscallgettimeofday() imple-
mentations. These are chunks of kernel
code mapped into user-space that implement
gettimeofday() . These implementations
are somewhat hackish, as they require heavy
linker magic to map kernel variables into the
address space twice. In the current code, this
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dual mapping further entangles the global vari-
ables used for timekeeping. Luckily, our pro-
posed changes can adapt to handle these cases.

The timesource structure has been designed
to be a fairly translucent interface. Thus,
any timesource of type MMIOor CYCLES
can be easily used in a VDSO. By making
a call to an arch specific function whenever
the base time values change, the arch indepen-
dent and specific code are able to be cleanly
split. This avoids tangling thetimeofday
code with ugly linker magic, while still letting
these significant optimizations occur in what-
ever method is appropriate for each arch.

1.5 What Have We Gained?

With these new changes, we have simplified the
way time keeping is done in the kernel while
providing a clear interface to the required func-
tionality. We have provided higher resolution,
nanoseconds based, time keeping. We have
streamlined the code and allowed for meth-
ods which further increase gettimeofday per-
formance. And finally, we have organized and
cleaned up the code to fix a number of problem-
atic bugs in the current implementation.

With a foundation of clean code and clear in-
terfaces has been laid, we can look for deeper
cleanups. A clear target for improvement is
the soft-timer subsystem. Thetimeofday re-
work clearly redefines the split between system
time andjiffies . Changing the soft-timer
subsystem to human-time frees the kernel from
inaccurate, tick-based time (see §3.2).

2 Human-Time

2.1 Why Human-Time Units?

Throughout the kernel, time is expressed in
units of jiffies , which is only a timer inter-
rupt counter. Since the interrupt interval differs
between archs, the amount of time one jiffy rep-
resents is not absolute. In contrast, the amount
of time one nanosecond represents is an inde-
pendent concept.

When discussing human-time units, e.g. sec-
onds, nanoseconds, etc., and the kernel, there
are two main questions to be asked: “Why
should the kernel interfaces change to use
human-time units?” and “Why should the in-
ternal structures and algorithms change to use
human-time units?” If a good answer to the lat-
ter can be found, then the former simply fol-
lows from it; a good answer can and will be
provided, but we feel there are several reasons
to make the interface change regardless of any
changes to the infrastructure.

2.1.1 Interfaces in Human-Time

First of all, human-time units are the units of
our thought; simultaneously, the units of com-
puter design are in human-time (or their in-
verse for frequency measurements). The re-
lation between human-time units and jiffies is
vague, while it is clear how one human-time
unit relates to another. Additionally, human-
time units are effectively unbounded in terms of
expressivity. That is to say, as systems achieve
higher and higher granularity—currently ex-
pressed by moving to higher values ofHZ—we
simply multiply all of the existing constants by
an appropriate power of 10 and change the in-
ternal resolution.
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2.1.2 Infrastructure in Human-Time

The most straight-forward argument in favor
of human-time interfaces stems from our pro-
posed changes to the soft-timer subsystem. If
the underlying algorithm adds and expires soft-
timers in human-time units, then it follows that
the interfaces to the subsystem should use the
same units. But why change the infrastruc-
ture in the first place? All of the arguments
mentioned in §2.1.1 apply equally well here.
But our fundamental position—as alluded to in
§1.2—is that the tick-basedjiffies value is
a poor representation of time.

The current soft-timer subsystem relies on the
periodic timer tick, and its resolution is linked
at compile time to the timer interrupt frequency
value HZ. This approach to timer manage-
ment works well for timers with expiration val-
ues at least an order of magnitude longer than
that period. Higher resolution timers present
several problems for a tick-based soft-timer
system. The most obvious problem is that a
timer set for a period shorter than a single tick
cannot be handled efficiently. Even calls to
nanosleep() with delays equal to the period
of HZ will often experience latencies of three
ticks!

On i386, for example,HZ is 1000, which indi-
cates a timer interrupt should occur every mil-
lisecond. Because of limitations in hardware,
the closest we can come to that is about 999,876
nanoseconds, just a little too fast. This actual
frequency is represented by theACTHZcon-
stant. Sincejiffies is kept inHZ units in-
stead ofACTHZunits, when requests are made
for one millisecond, two ticks are required to
ensure one full millisecond elapses (instead of
999,876 nanoseconds). Then, since we do not
know where in the current tick we are, an ex-
tra jiffy must be added. So a one millisecond
nanosleep() turns into three jiffies.

2.1.3 A Concrete Example

To clarify our arguments, consider the example
code in Figure 7.

It is clear that the old code is attempting to sleep
for the shortest time possible (a single jiffy).
Internally, a soft-timer will be added with an
expires value of jiffies + 1. How long
does thisexpires value actually represent? It
is hard to say, as it depends on the value ofHZ,
which changed from 2.4 to 2.6. Perhaps it is 10
milliseconds (2.4), or perhaps it is one millisec-
ond (2.6). What about the new kernel hacker
who copies the code and uses it themselves—
what assumption will they make regarding the
timeout indicated? What happens whenHZhas
a dynamic value? Clearly, problems abound
with this small chunk of code.

Consider, in contrast, the code after an update
by the Kernel-Janitors2 project. Now, it is un-
clear how the soft-timer subsystem will trans-
late the milliseconds parameter tomsleep()
into an internalexpires value, but in all hon-
esty, that does not matter to the author. It is
clear, however, that the author intends for the
task to sleep for at least 10 milliseconds.HZ
can change to any value it likes and the request
is the same. In this case, it is up to the soft-timer
subsystem to handle converting from human-
time to jiffies and not other kernel devel-
opers (rejoice!).

These changes are in the best interest of the ker-
nel; they will help with the long-term maintain-
ability of much code, particularly in drivers.

3 The New soft-timer Subsystem

We have already argued that a human-time soft-
timer subsystem is in the best interest of the

2http://www.kerneljanitors.org/
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Old:

set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(1);

New:

msleep(10);

Figure 7: Two possible ways to sleep

kernel. Is such a change feasible? More impor-
tantly, what are the potential performance im-
pacts of such a change? How should the inter-
faces be modified to accomodate the new sys-
tem?

3.1 The Status Quo in Soft-Timers

A full exposition of the current soft-timer sub-
system is beyond the scope of this paper. In-
stead, we will give a rough overview of the
important terms necessary to understand the
changes we hope to make. Additionally, keep-
ing our comments in mind while examining this
complex code should make the details easier to
see and understand. Like much of the kernel,
the soft-timer subsystem is defined by its data
structures.

3.1.1 Buckets and Bucket Entries

There are five “buckets” in the soft-timer sub-
system. Bucket one is special and designated
the “root bucket.” Each bucket is actually
an array ofstruct timer_list s. The root
bucket contains 256 bucket entries, while the
remaining four buckets each contain 64.3 Each
entry represents an interval of jiffies; all soft-
timers in a given entry haveexpires values

3This was the only possibility beforeCONFIG_
SMALL_BASE was introduced. If CONFIG_
SMALL_BASE=y, then bucket one is 64 entries wide
and the other four buckets are each 16. Seekernel/
timer.c .

in that entry’s interval. Thus, when a timer
in a particular entry is expired, all timers in
that entry are expired, i.e. sorting is not nec-
essary. In bucket one, each entry represents
one jiffy. In bucket two, each entry represents
a range of 256 jiffies. In bucket three, each
entry represents a range of 64× 256= 16384
jiffies. Buckets four and five’s entries repre-
sent intervals of 64×64×256= 1048576 and
64× 64× 64× 256= 6467108864 jiffies, re-
spectively.

Imagine that we fix the first entry in bucket one
(which we will designatetv1 4) to be the ini-
tial value ofjiffies (which we can pretend
is zero). Then, treating the buckets like the ar-
rays they are,tv1[7] represents the timers
set to expire seven jiffies from now. Similarly,
tv3[4] represents the timers withexpires
values satisfying 82175≤ expires < 98559.
The perceptive reader may have noticed a very
nice relationship between buckettv[n] and
tv[n+1] : a single entry oftv[n+1] repre-
sents a span of jiffies exactly equal to the to-
tal span of all oftv[n] ’s entries. Thus, once
tv[n] is empty, we can refill it by pulling, or
“cascading,” an appropriate entry fromtv[n+
1] down.5

4The name given to the buckets in the code is “time
vector.”

5See kernel/timer.c::cascade() if you
have any doubts.
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3.1.2 Adding Timers

Imagine we keep a global value,timer_

jiffies , indicating thejiffies value the
last time timers were expired. Then take the
expires value stored in thetimer_list ,
which is in absolute jiffy units, and subtract
timer_jiffies , thus giving a relative jiffy
value.6 Then determine into which entry the
timer should be added by simple comparisons.

Keep in mind that for each bucket, we know
the exact value of the least significantX bits,
i.e. for all entries intv2 , the bottom eight bits
are zero. Therefore, we can throw away those
bits when indexing the bucket. Similarly, we
also know the maximum value of any timer’s
expires field in a given bucket. Thus, we
can ignore the top 18 bits intv2 . We are now
at a six-bit value, which exactly indexes our 64-
entry wide bucket! Similar logic holds true for
the remaining buckets. All the gory details are
available inkernel/timer.c::internal_

add_timer() .

3.1.3 Expiring Timers

Expiration follows the addition algorithm
pretty closely. Comparetimer_jiffies to
jiffies : if jiffies is greater, then we
know that time has elapsed since we last ex-
pired timers and there might be timers to ex-
pire. We then search throughtv1 , beginning at
the index corresponding to the lower eight bits
of timer_jiffies , which would be timers
added immediately after the last time we added
expired timers. We expire all those timers and
then incrementtimer_jiffies . This pro-
cess repeats until eithertimer_jiffies =
jiffies or we have reached the end oftv1 .
In the former case, we are done expiring timers
and we can exit the expiration routine. In the

6Relative totimer_jiffies , not jiffies .

latter case, we need to cascade an appropri-
ate entry from a higher bucket down into tv1.7

The strategy is to figure out which interval we
are currently in relative to our system-wide ini-
tial value and re-add the corresponding timers
to the system. This forces those timers which
should be expired now intotv1 . Thus, we
only ever need to considertv1 when expir-
ing timers. Timer expiration is accomplished
by invoking the timer’s callback function and
removing the timer from the bucket.

3.2 What To Keep?

Our proposal is simple: keep the data struc-
tures and the algorithms for addition and ex-
piration. Rather than fix the entry width to
be one jiffy in tv1 , we define a new unit:
the timerinterval . This unit represents the
best resolution of soft-timer addition and expi-
ration. To convert from human-time units, we
use a newnsecs_to_timerintervals()

function. This allows us to preserve the
algorithmic design of the soft-timer subsys-
tem, which expects the timer’sexpires
field to be anunsigned long . Correspond-
ingly, we do not base our last expiration time
(now stored inlast_timer_time instead of
timer_jiffies ) and current expiration time
on jiffies , but on the newtimeofday
subsystem’sdo_monotonic_clock() . Fi-
nally, we store the last expiration time in a
more sensibly named variabled,last_timer_

time , rather thantimer_jiffies .

We actually require two conversion functions.
On addition of soft-timers, we usensecs_to_

timerintervals_ceiling() , and on ex-
piration of soft-timers, we usensecs_to_

timerintervals_floor() . This insures

7I hope all of you were highly suspi-
cious of my claims and took a look at
kernel/timer.c::cascade() .
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that timers are not expired early. In the sim-
plest case, where we wish to approximate the
current millisecond granularity ofHZ= 1000,
the pseudocode shown in Figure 8 achieves the
conversion.

In short,timerintervals , not jiffies are
now the units of the soft-timer subsystem. The
new system is extremely flexible. By chang-
ing the previous example’s value ofTIMER_

INTERVAL_BITS , we are able to change the
overall resolution of the soft-timer subsystem.
We have made the soft-timer subsystem inde-
pendent of the periodic timer tick.

3.3 New Interfaces

As was already mentioned, the new human-
time infrastructure enables several new human-
time interfaces. The reader should be aware
that existing interfaces will continue to be sup-
ported, although they will be less precise as
jiffies and human-time do not directly corre-
spond to one another.

3.3.1 add_timer , mod_timer

After a careful review of the code, we be-
lieve theadd_timer() interface should be
deprecated. It duplicates the code inmod_
timer() , using timer->expires as the
expires value. Since we are moving away
from the current use ofmod_timer() , where
the parameter is in jiffies, to a system using
nanoseconds (a 64-bit value), we would like
to avoid reworking thetimer_list struc-
ture. mod_timer() is also deprecated with
the new system, as we provide one clear in-
terface to both add and modify timers,set_

timer_nsecs (see §3.3.2).

3.3.2 set_timer_nsecs

This function accepts, as parameters, a
timer_list to modify and an absolute num-
ber of nanoseconds, modifying thetimer_
list ’s expires field accordingly. This is,
in our new code, the preferred way to add and
modify timers.

3.3.3 schedule_timeout_nsecs

schedule_timeout_nsecs() allows for
relative timeouts, e.g. 10,000,000 nanoseconds
(10 milliseconds) or 100 nanoseconds. The
soft-timer subsystem will convert the relative
human-time value to an appropriate absolute
timerinterval value.

3.4 Future Direction and Enhancements

One area which has not received sufficient
attention is the setting of timers using a
relative expires parameter. That is, we
should be able to specifyset_timer_rel_

nsecs(timer, 10) andtimer ’s expires
value should be modified to 10 nanosec-
onds from now. Due to the higher preci-
sion of do_monotonic_clock() in contrast
to jiffies , we must be careful to pick an ap-
propriate and consistent function to determine
when “now” is.

4 Dynamic Interrupt Source Man-
agement

4.1 Interrupt Source Management

With the changes to the soft-timer subsystem
(see §3.2), we can address issues related to the
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#define TIMER_INTERVAL_BITS 20
nsecs_to_timerintervals_ceiling(nsecs):

return (((nsecs-1) >> TIMER_INTERVAL_BITS) & ULONG_MAX)+1

nsecs_to_timerintervals_floor(nsecs):
return (nsecs >> TIMER_INTERVAL_BITS) & ULONG_MAX

Figure 8: ApproximatingHZ= 1000 with the new soft-timer subsystem

reliance on a periodic tick. With power con-
strained devices, we want to avoid unneccesary
interrupts, keeping the processor in a low power
mode as long as possible. In a virtual envi-
ronent, it is useful to know how long between
events a guest OS can be off the CPUs.

Many people have attacked these various prob-
lems individually and have been met with some
success and some resistance. The new time
system discussed in §1.5 enables the time sys-
tem to do without the periodic tick and, there-
fore, frees the soft-timer system to follow suit.
Currently, when the system timer interrupt is
raised, its interrupt handler is run and all the
expired timers are executed—which could be
a lot, a few, or none at all. This polled ap-
proach to timer management is not very effi-
cient and hinders improvements for virtualiza-
tion and power constrained devices.

4.2 A New Approach

By changing the soft-timer implementation to
schedule interrupts as needed, we can have a
more efficient event based (rather than polled)
soft-timer system. Our proposed changes lever-
age the existingNO_IDLE_HZ code to calcu-
late when the next timer is due to expire and
schedule an interrupt accordingly. This frees
soft-timers from the periodic system tick and
the associated overhead it imposes. Unfortu-
nately, some decisions still have to be made as
to how often we are willing to stop what we
are doing and expire the timers. This period
of time, thetimerinterval , is configurable

(see §3.2). The length of atimerinterval

unit places the lower bound on the soft-timer
resolution, while the hard-timer defines the
upper bound of how long we can wait be-
tween expiring timers. The default of our
proposed changes places the lower bound at
about one millisecond, and the upper bound
of the PIT, for example, would be 55 mil-
liseconds. Hardware permitting, higher reso-
lution timers are acheived by simply reducing
thetimerinterval unit length and we get the
functionality ofNO_IDLE_HZfor free!

4.3 Implementation

At the time of this writing, the implementa-
tion is undergoing development. This section
outlines our proposed changes with some extra
detail given to portions that are already imple-
mented.

The new interrupt source management system
consists of a slightly modified version of the
NO_IDLE_HZcode, arch specificset_next_

timer_interrupt() and a new next_

timer_interrupt() routines, and calls to
these routines in__run_timers() and
set_timer_nsecs() (see §3.3.2).

The formernext_timer_interrupt() rou-
tine has been renamed tonext_timer_

expires() to avoid confusion between the
next timer’sexpires and when the the next
interrupt is due to fire. The routine was updated
to use the slightly modified soft-timer struc-
tures discussed in §3.2.
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The arch-specific next_timer_

interrupt() routine returns the time in
absolute nanoseconds of when the next
hard-timer interrupt will fire.

The arch-specific set_next_timer_

interrupt() routine accepts an abso-
lute nanosecond parameter specifying when
the user would like the next interrupt to fire.
Depending on the hard-timer being used, the
routine calculates the optimal time to fire
the next interrupt and returns that value to
the caller. Because interrupt sources vary
greatly in their implementation (counters vs.
decrementers, memory mapped vs. port I/O
vs. registers, etc.), each source must be treated
individually. For example, older hardware that
is dependant on the PIT as an interrupt source
will not get higher resolution soft-timers or
very long intervals between interrupts simply
because the PIT is painfully slow to program
(about 5.5 microseconds in our tests), and
only 16 bits wide. At about 1.2 MHz the
PIT’s maximum delay is only 55 milliseconds.
Fortunately, systems that must use the PIT can
do so without incurring a penalty since the
PIT interrupt scheduling function is free to
reprogram the hardware only when it makes
sense to do so. We have discussed the specifics
of the PIT, but other interrupt sources such
as local APICs, HPETs, decrementers, etc.
provide more suitable interrupt sources. Since
set_next_timer_interrupt() is arch
specific, it can be#defined to do nothing
for those archs that would prefer to rely on a
periodic interrupt.

Projects such as Dynamic Ticks, Variable Sys-
tem Tick, High Res Timers,NO_IDLE_HZ,
etc. attempt to solve the limitations of the cur-
rent soft-timer system. They approach each
problem individually by adding code on top
of the existing tick based system. In con-
trast, by integrating dynamically scheduled in-
terrupts with the new time and soft-timer sys-

tems discussed earlier, we create a clean, sim-
ple solution that avoids the overhead of periodic
ticks and provides similar functionality.

Conclusion

We have reimplemented thetimeofday sub-
system to be independent ofjiffies , thus re-
solving a number of outstanding bugs and lim-
itations. We have also demonstrated how these
changes facilitate cleanups and new features in
the soft-timer subsystem. We have reoriented
the time and timer subsystems to be human-
time based, thus improving flexibility, readabil-
ity, and maintainability.
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Abstract

In this presentation, we introduce the con-
cept of a BoardFarm, a tool to aid in the de-
velopment and support of embedded systems.
TimeSys had an opportunity to save time and
energy that was being spent juggling a lim-
ited number of embedded boards among our
support staff and developers who are spread
throughout the world. We decided to build a
system to provide remote access to the boards
and to automate many of the tedious tasks such
as running tests, booting the boards and in-
stalling software including the operating sys-
tems, board support packages and toolchains.
This allows the developers and support gurus
at TimeSys to concentrate on specific problems
instead of how each board boots or how a spe-
cific board needs to be set up.

We talk about why the BoardFarm was built,
how to use it, how it works, and what it’s being
used for. We also talk about ideas that we have
for future improvements. Pigs were harmed in
the making of this BoardFarm and were deli-
cious.

1 Intro

Let’s talk about embedded system boards. In
the fast paced hi-tech world of embedded de-
velopment, we just call them “boards.” These
little gizmos are developer prototypes, used to
design software that goes in your MP3 player,
routers, your new car, and Mars rovers.

These boards usually look like motherboards
with the normal ports and such, but not always.
Some are huge and others are itsy-bitsy. They
all have one thing in common, though. They are
expensive. These boards are usually bleeding
edge technology and are only made available
so that developers can get software out the door
before the boards become obsolete. This means
that usually a company can only afford one (or
maybe two) of a board that they are working
on.

The BoardFarm is an online tool that gives
users remote access to all the boards. It is an
interface to the boards and includes automation
and testing. The goal is make the boards avail-
able to all users, everywhere, all the time.

• 233 •
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2 Problems

Fred and Sue have problems.

The first problem is finding a board. “Fred had
that last week,” but Fred says that Sue has it
now, but she’s out of the office. Whereis that
board? This is asset management, but it is com-
plicated by having the boards move between
developers and with no central repository. It
is even more complicated if your coworkers are
not in the building or worse, in a different town
or state! “Oh, yeah, Sue took that with her to
California, did you need that?”

What if Fred and Sue need the same board at
the same time? “Board snatching” is the com-
mon name for a form of stealing (not usually in-
vestigated by Scotland Yard) and is quite com-
mon when two people have deadlines involving
the same board. If they’re lucky, they can co-
operate and maybe work at different hours to
share the board.

Finally, and possibly the most frustrating, is
having to rediscover how to boot and config-
ure a board. “Didn’t Fred work on that board a
year ago?” A lot of the boards are unlabeled,
only configurable through arcane methods or
require sacrifices (under a full moon) to enter
the boot loader. Sure, the developer should
write it down. Fred usually does. But writ-
ing down a process is never as good as having
functioning code that does the process. And the
code is well exercised which means you know
it works.

3 The BoardFarm: Grab a hoe and
get to it

So what do we do? Panic? Sure! Run around
in circles? Why not? Write code? Nah. . . No,
wait, that was right answer.

So now, instead of investing in sharp cutlery,
Fred and Sue can use our BoardFarm. The
boards are safely locked away where they will
no longer be stolen or used as blunt weapons,
yet are easily accessible and even more useful
than before.

What was our secret? We used the awesome
power of python and bacon to create the Board-
Farm. The BoardFarm acts as resource man-
ager, automating some tasks and scheduling
when Fred and Sue can use boards. It knows
how to configure the board, install a board sup-
port package (BSP), boot the board using the
BSP, and even how to run tests. This means that
Fred and Sue can worry about their own prob-
lems, not who has the board or how the thing
boots.

3.1 A day in the life of Fred and Sue

Sue has been working on a really tough spu-
rious interrupt problem in some kernel driver.
Fred has been running various tests in the
PPC7xx compiler, using the same board as Sue
because someone discovered a bug.

So Sue sits down at her desk to start a Board-
Farm session. She uses ssh to connect to one
of the BoardFarm testroot servers. Once there,
she reserves a testroot and specifies the BSP
that she is going to use. The BoardFarm creates
a clean testroot, a virtual machine, and installs
the selected BSP. This virtual machine is called
the testroot. She logs into the testroot and starts
her work.

Since the BSP is already installed and the BSP
has the kernel sources and proper cross compil-
ers, she is ready to start working on her prob-
lem. As she progresses, she compiles the kernel
then tells the BoardFarm to run a portion of a
testsuite which has been really good at trigger-
ing the system-crippling bug. The BoardFarm



2005 Linux Symposium • 235

grabs an available board, boots the board using
her newkernel, compiles the tests in the test-
root and then runs the tests on the board. She
checks the results and keeps on working on her
bug. She can repeat these steps as often as she
wants.

Fred is working his way through the test-results
that show his bug. He got the test results from
an automated test that ran last night. The au-
tomated tests run every time a change happens
to a major component of the BSP. Last night,
it detected problems with the toolchain. Since
Fred broke it, he gets to fix it.

Fred sits at his desk. Instead of requesting a
testroot to work in, Fred uses his own worksta-
tion, preferring to submit test requests via the
web interface. Using the test results, he figures
out where the problem probably is and starts
working on his bug. After an hour or two, he
has what he thinks is a good rough fix. He com-
piles the toolchain and submits it to the Board-
Farm web page to automatically test. He tells
the BoardFarm to use specific testsuites that are
good for testing compilers. The BoardFarm re-
serves the appropriate board when it’s avail-
able, sets up a testroot, installs a BSP and his
new toolchain, boots the board, compiles the
tests and then runs them. When the tests fin-
ish, the BoardFarm saves the results, destroys
the testroot and unreserves the board. Fred uses
the results from the tests to analyze his work.

This works even if Fred and Sue are using the
same board. If Fred and Sue submit requests
that need the board at the same time, then the
BoardFarm schedules them and runs them one
after another. Either Fred or Sue’s results might
take a little longer, but neither has to hover
around the desk of the other, waiting to snatch
the board. Instead, if their jobs conflict, they
can just go grab a bacon sandwich from the
company vending machine while the Board-
Farm does the needful.

By the end of the day, Fred feels confident that
he has throughly squished the PowerPC bug.
To be sure, he should really check his new and
improved toolchain out on more than just the
one board. So he kicks off full test suite runs,
using his new toolchain, on all the PPC7xx
boards and then goes home. While each test
suite can take 8 hours or more, they can all run
in parallel, automatically, while Fred relaxes in
a lawn chair with his Bermuda shorts and a
good Belgian beer, out front of his south-side
Pittsburgh town home.

We’d like to take this opportunity to point out
some interesting facts. Neither Fred nor Sue
had to worry about booting the boards or in-
stalling the BSPs. The BoardFarm knew how
to boot the boards, install the BSPs and did it
without human primate intervention. This is a
real time-saver as well as a great way to prevent
Sue and especially Fred from getting distracted.

4 Architecture: The design, layout,
blueprint, and plan

How is the BoardFarm put together? The
BoardFarm is made up of four parts: a web
server, a database, testroot systems, and the
boards themselves. There is also some other
support hardware: an SMNP-controlled power
strip, a network switch, and a serial terminal
server.

The web server is running Apache2 [2]. The
web pages are powered by PSE [7] which uses
mod_python [1] to get the job done. We
chose this combination to allow fast develop-
ment and to harness the power of Python’s [6]
extensive library.

The database system is powered by Post-
greSQL [5]. It’s otherwise just a normal hum-
ble box. The database itself isn’t that radical.
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It’s mainly used to track who is using a board
and what architecture and model a board is. We
need this information to match a given BSP to
one or more boards.

The testroot systems are normal boxes run-
ning Python and have a standardized OS im-
age that is used to build a testroot. The OS im-
age must have the components needed to com-
pile, remotely test and debug problems on the
boards. The testroot is an isolated environment
that could be implemented as a chroot or UML
[8] environment.

The boards themselves are all different. This is
one of the hard parts of dealing with embedded
developer boards. Some of them even require
special hardware tricks just to power on.

All boards are powered via a network-
controlled power strip. This allows us to re-
boot a system remotely. Usually. Some boards
require a button to be pressed which requires
interesting solutions ranging from relays to
LEGO[3] Mindstorms[4].

A serial terminal server is needed to connect all
the serial ports on the boards to the test servers.
Since the serial terminal servers are networked,
we can share one board among many testroot
servers.

5 Show me the BoardFarm

Let’s talk about the user interface. The Board-
Farm has two user interfaces: a web page and a
remote shell.

The web page is the easiest to use. Fred likes
it because it’s simple, direct, and has pretty
colors. To run a test, Fred chooses the BSP,
picks some tests and then clicks the “Test” but-
ton. After the BoardFarm is done, Fred gets an

email with a link to the web page with all the
test results.

Sue preferred the more powerful interface: the
testroot command line shell. The shell is con-
nected to via ssh and looks remarkably like a
bash shell prompt, mainly because it is. Within
the testroot, Sue has a series of BoardFarm shell
commands.

These shell commands are very powerful. They
provide control of the testroot, the BSPs, ker-
nel, and the board itself. Using these com-
mands, Sue can clean out the testroot, rein-
stall the BSP, choose a custom kernel, reserve
a board, boot the board, power-cycle the board,
run tests on the board, connect to the board’s
serial console, unreserve the board and save
the test results. Furthermore, since these are
normal shell commands, Sue can write custom
batch scripts.

6 Successes so far

This system is actually afully operational death
star. . . It has been running now for over 6
months inside TimeSys. The BoardFarm is
used on a daily basis. TimeSys and the Board-
Farm are located in Pittsburgh, Pennsylvania,
and we have remote users in California and
even India.

We have used the BoardFarm to successfully
troubleshoot problems, help develop new BSPs
and to test old BSPs. The support team uses
the BoardFarm to reproduce and troubleshoot
customer problems. The documentation team
uses the BoardFarm to confirm their manuals
and to gather screen shots.

In addition to manual tasks, the automated test-
ing is used with various TimeSys test suites to
test BSPs on demand (just one click!TM). In
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addition, new BSPs are automatically tested as
soon as they are successfully built in our build
system.

It is only fair to point out that the BoardFarm is
actually a part of TimeSys’s in-house build en-
vironment. This integration makes manual us-
age easy and provides the starting point for the
automated testing. As the build system success-
fully finishes a build, the BoardFarm queues the
build to run tests when the appropriate boards
are available. This makes the “change, com-
pile, test” cycle much shorter.

7 Known Limitations

We knew from the beginning that we couldn’t
have everything (at least not right away).
The original plan for the BoardFarm was to
only provide an automated testing environment.
Since then we have added the ability to do ac-
tual development using the BoardFarm. Since
these goals have evolved, we have run into
some limitations with our original design.

In general though, these limitations boil down
to one real problem. These are developer
boards, not meant to be production level de-
vices, that at times require someone to actually
go and visit the board. For example, a board
might need a button pressed to power on. Or
certain error situations can only be diagnosed
by looking at a pattern of LEDs.

Another aspect of the “no access” problem is
developing peripheral device support. To trou-
bleshoot USB, you need to be able to plug-in
and remove devices. To check that PCMCIA
is working, you have to try various classes of
devices. And so on.

The only other limitation isn’t a technical
problem, it’s a social one. Developers are

the ultimate power users. Most developers
hate having something between them and what
they’re working on. Some developers appre-
ciate the advantages of having the BoardFarm
help them. Others try to work around the
BoardFarm however they can. And a few of
the extremists just demand that the board be
handed over to them.

8 The future’s so bright, we gotta
wear shades

Like most projects we have grandiose plans for
the future. We have plans to make the Board-
Farm do test analysis, boot boards that require
a button press, and integrate with our project
management tools.

The BoardFarm collects all test results but it
doesn’t understand them. Some tests are more
important than others and sometimes multiple
failures can be due to just one root problem.
The BoardFarm can’t make this distinction. We
would like the BoardFarm to help us under-
stand our trends in failures and help recognize
where we need to focus our efforts.

Some boards require a button to be pressed.
Despite experimentation with electrodes and
lawyers, we haven’t found a sufficiently reli-
able solution. Plus, the lawyers were expensive.
We have our crack electrical engineering team
working on a solution.

The BoardFarm is just a piece of a larger sys-
tem. Even though it works with the large sys-
tem, it isn’t feeding back information into all
the systems. Ideally, we’d like it to file bugs
and test things that have we have bugs open for.
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9 Conclusion

In conclusion, we only have this to say: “Bacon
Rocks.”

Good Night!
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Abstract

The Bluetooth wireless technology is getting
more and more attention. There are a lot of
devices available and most of them are work-
ing perfect with Linux, because Linux has the
BlueZ. This is the codename of the official
Bluetooth protocol stack for Linux. It is pos-
sible to use Bluetooth for simple cable free se-
rial connections, dialup networks, TCP/IP net-
works, ISDN networks, human interface de-
vices, printing, imaging, file transfers, contact
and calendar synchronization etc. All these ser-
vices are designed to integrate seamlessly into
existing and established parts of Linux, like the
kernel TTY layer, the network subsystem, the
CUPS printing architecture, the OpenOBEX li-
brary and so on.

1 Introduction

The Bluetooth technology was announced in
May 1998 with the goal to create an easy us-
able cable replacement. Therefor it uses ra-
dio transmission within the 2.4 GHz ISM band
to connect mobile devices like mobile phones,
handhelds, notebooks, printer etc. from dif-
ferent manufactures without any cables. But
Bluetooth is more than a simple cable replace-
ment technology and with more and more de-
vices using Bluetooth we see scenarios that are
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Figure 1: Bluetooth topology

now making perfect sense. Examples for this
are the communication of mobile phones with
handhelds for exchanging contact and calendar
information. Also the wireless printing of pic-
tures without the interaction of a desktop com-
puter.

Many of these applications are also pos-
sible with other technologies like IrDA or
IEEE 802.11 (WiFi), but Bluetooth make the
use a lot easier and defines clear application
profiles.

The first steps into supporting Bluetooth with
Linux are done by Axis Communications and
they released their OpenBT Bluetooth Stack in
April 1999. Also IBM released its BlueDrekar
which was only available as binary modules.
The problem of both stacks was that they are
character device driven, but the Bluetooth tech-
nology is for connecting devices. So it is bet-
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ter to intergrate it into the Linux network layer
and to use the socket interface as primary API.
On May 3, 2001, the Bluetooth protocol stack
called BlueZ which was written by Qualcomm
was released under GPL. This new stack fol-
lowed the socket based approach. One month
later it was picked up by Linus Torvalds and in-
tegrated into the Linux 2.4.6-pre2 kernel. An-
other Bluetooth stack for Linux was released
by Nokia Research Center in Helsinki and it is
called Affix. The open source community al-
ready decided to support BlueZ as official Blue-
tooth protocol stack Linux and it became one of
the best implementations of the Bluetooth spec-
ification.

2 Bluetooth architecture

The Bluetooth architecture separates between
three different core layers; hardware, host stack
and applications. The hardware consists of ra-
dio, baseband and the link manager and this
will be found in Bluetooth chips, dongles and
notebooks. The control of the hardware is
done via the host controller interface (HCI) and
for the communication between the host stack
and the Bluetooth hardware a hardware specific
host transport driver is used. For the USB and
UART transports it is possible to use general
drivers, because these host transport are part of
the Bluetooth specification. For PCMCIA or
SDIO vendor specific driver are needed.

BlueZ implements the host stack and also the
applications. The lowest layer is the logical
link control and adaptation protocol (L2CAP).
This protocol uses segmentation and reassem-
bly (SAR) and protocol and service multi-
plexing (PSM) to abstract from the Bluetooth
packet types and low-level connection links.
Starting with Bluetooth 1.2 this protocol lay-
ers was extended with retransmission and flow
control (RFC).

Radio

Baseband

Link Manager

Host Controller Interface

Logical Link Control and Adaptation Protocol Control Audio

RFCOMM TCS BIN SDPBNEP CMTPHIDP

PPP AT-Modem

OBEX

IP

UDP

CAPI

Netzwerke PIM Telefonie VerwaltungHID

TCP

Figure 2: Bluetooth architecture

All protocol layers above L2CAP are present-
ing the interaction with the applications. In
general it is possible to use L2CAP directly
(at least with Linux), but this is not specified
within the Bluetooth specification. The real
Bluetooth parts of the host stack are only the
L2CAP layer and the adaption layer which in-
tegrates it into other subsystems or protocol
suites, like TCP/IP and OBEX.

3 Design of BlueZ

The main components of BlueZ are integrated
into the Linux kernel as part of the network
subsystem. It provides its own protocol family
and uses the socket interface. This basic design
makes it easy for application to adapt the Blue-
tooth technology and the integration is simple
and straight forward. The use of different Blue-
tooth hardware is handled by the hardware ab-
straction inside the kernel. The BlueZ core sup-
ports the usage of 16 Bluetooth adapters at the
same time. The list of supported devices is
growing every day and currently over 300 dif-
ferent working adapters are known.

Besides the BlueZ core and the hardware ab-
straction also the L2CAP layer is running in-
side the kernel. It provides a socket interface
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Figure 3: BlueZ core

with sequential packet characteristics and in fu-
ture the RFC feature will add the stream inter-
face.

With RFCOMM it is possible to emulate termi-
nal devices. It is called cable replacement for
legacy applications. With BlueZ it is possible
to access this protocol layer from two levels.
One is again a socket interface and this time
with stream characteristics and the second is
through the Linux TTY layer. RFCOMM em-
ulates a full serial port and it is possible to use
the point-to-point protocol (PPP) over it to cre-
ate dialup or network connections.

The Bluetooth network encapsulation protocol
(BNEP), the CAPI message transport protocol
(CMTP) and the human interface device proto-
col (HIDP) are transport protocols for the net-
work layer, the CAPI subsystem and the HID
driver. Their main job is to shrink the protocol
overhead and keep the latency low.

All of these protocols are implemented inside
the kernel. Other Bluetooth protocols are im-
plemented as libraries, like the service discov-

HIDPCMTP
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HID Driver
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Figure 4: BlueZ protocols

ery protocol (SDP) or the object exchange pro-
tocol (OBEX). Some of them are also directly
integrated into applications. For example the
hardcopy cable replacement protocol (HCRP)
and the audio video distribution transport pro-
tocol (AVDTP).

Almost every Linux distribution contains a
Bluetooth enabled kernel and a decent version
of the BlueZ library and the BlueZ utilities.

4 Bluetooth configuration

After plugging in a Bluetooth USB dongle or
inserting a Bluetooth PCMCIA card a call to
hciconfig will show the new device.

This device is still unconfigured and like a net-
work card it needs to be activated first. This can
be done viahciconfig hci0 up or in the
background byhcid .

The detailed output shows the Bluetooth device
address (BD_ADDR) and additional informa-
tion like name, class of device and manufac-
turer specific details. Withhciconfig all of
these settings can be changed.

Now it is possible to scan for other Bluetooth
devices in range. For this and some other ac-
tionshcitool is used.

# hciconfig -a
hci0: Type: USB

BD Address: 00:02:5B:01:66:F5 ACL MTU: 384:8 SCO MTU: 64:8
UP RUNNING PSCAN ISCAN
RX bytes:3217853 acl:79756 sco:0 events:199989 errors:0
TX bytes:77188889 acl:294284 sco:0 commands:206 errors:0
Features: 0xff 0xff 0x8f 0xfe 0x9b 0xf9 0x00 0x80
Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3
Link policy: RSWITCH HOLD SNIFF PARK
Link mode: SLAVE ACCEPT
Name: ’Casira BlueCore4 module’
Class: 0x3e0100
Service Classes: Networking, Rendering, Capturing
Device Class: Computer, Laptop
HCI Ver: 2.0 (0x3) HCI Rev: 0x77b LMP Ver: 2.0 (0x3)

LMP Subver: 0x77b
Manufacturer: Cambridge Silicon Radio (10)

Figure 5: Local Bluetooth adapter
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# hcitool scan
Scanning ...

00:80:37:25:55:96 Pico Plug
00:E0:03:04:6D:36 Nokia 6210
00:90:02:63:E0:83 Bluetooth Printer
00:06:C6:C4:08:27 Anycom LAP 00:06:C6:C4:08:27
00:04:0E:21:06:FD Bluetooth ISDN Access Point
00:0A:95:98:37:18 Apple Wireless Keyboard
00:A0:57:AD:22:0F ELSA Vianect Blue ISDN
00:80:37:06:78:92 Ericsson T39m
00:01:EC:3A:45:86 HBH-10

Figure 6: Scanning for Bluetooth devices

After the scan the programsdptool can be
used to retrieve the available services of a re-
mote Bluetooth device. The service list iden-
tifies the supported Bluetooth profiles and re-
veals protocol specific information that are
used by other tools. The example shows a
dialup networking service and a fax service
which both are using the RFCOMM channel 1.

Some tools have integrated SDP browsing sup-
port and will determine the needed service in-
formation by themself. Others don’t have this
capability, because it is not always useful. Ev-
ery SDP request involves the creation of a pi-
conet and this can fail or timeout. So for all
Bluetooth tools running at boot time this is not
a desired behavior.

With the Bluetooth device address and the
channel number it is possible to setup a RF-
COMM TTY terminal connection for using
AT commands or PPP for Internet access.
The commandrfcomm bind 0 00:E0:
03:04:6D:36 1 creates the device/dev/
rfcomm0 which is connected to the RF-
COMM channel 1 on the mobile phone with
the Bluetooth address00:E0:03:04:6D:
36 . The connection itself is not created by this
command. It will first established when an ap-
plication, like pppd , opens this device node
and terminated when the last user closes it.

# sdptool browse 00:E0:03:04:6D:36
Browsing 00:E0:03:04:6D:36 ...
Service Name: Dial-up networking
Service RecHandle: 0x10000
Service Class ID List:

"Dialup Networking" (0x1103)
"Generic Networking" (0x1201)

Protocol Descriptor List:
"L2CAP" (0x0100)
"RFCOMM" (0x0003)

Channel: 1
Profile Descriptor List:

"Dialup Networking" (0x1103)
Version: 0x0100

Service Name: Fax
Service RecHandle: 0x10001
Service Class ID List:

"Fax" (0x1111)
"Generic Telephony" (0x1204)

Protocol Descriptor List:
"L2CAP" (0x0100)
"RFCOMM" (0x0003)

Channel: 1
Profile Descriptor List:

"Fax" (0x1111)
Version: 0x0100

Figure 7: Requesting service information

5 Bluetooth networks

For creating network connection over Blue-
tooth the preferable method is using a per-
sonal area network (PAN) with BNEP. The old
method was called LAN access using PPP and
it used PPP over RFCOMM. This was a bad de-
cision for the performance and now this profile
is deprecated. A PAN connection can be cre-
ated with the commandpand --connect
00:06:C6:C4:08:27 and after a successful
connectifconfig will show abnep0 device
with the same MAC address as the BD_ADDR
of the remote device.

This network device is a virtual network card,

# ifconfig -a
bnep0 Link encap:Ethernet HWaddr 00:06:C6:C4:08:27

BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:4 (4.0 b) TX bytes:0 (0.0 b)

Figure 8: Bluetooth network device
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but not limited in its functionality. It is possible
to use all Ethernet related commands on it and
besides IPv4 and IPv6 it can also used inside
an IPX network. Even methods like bridging or
network address translation (NAT) are working
without any problems.

Another possibility to create network connec-
tions is using ISDN and the CAPI subsystem.
The Bluetooth part is called common ISDN
profile (CIP) and it uses CMTP. Once a connec-
tion to an ISDN access point withciptool
connect 00:04:0E:21:06:FD has been
created, a virtual ISDN card will be presented
by the CAPI subsystem and the standard tools
can be used.

6 Printing over Bluetooth

For accessing printers over Bluetooth it is
possible to do this via RFCOMM or HCRP.
The Bluetooth CUPS backend supports both
methods and is able to choose the best
one by itself. The setup of a Bluetooth
printer is very easy. The only thing that
it is needed is an URI and this is cre-
ated from its BD_ADDR by removing the
colons. For accessing a printer with the Blue-
tooth device address00:90:02:63:E0:83
the URI bluetooth://00900263E083/
should be given to CUPS.

7 Bluetooth input devices

With the human interface device specification
for Bluetooth it is also possible to use wire-
less mice and keyboards. Since HID devices
can disconnect and reconnect at any time it is
necessary to runhidd --server to handle
such events. To bind a mouse or keyboard to

L2CAP Layer

HIDP Module

HID Protocol

Boot Report

Parser

Input Subsystem

Figure 9: HID architecture

your system it is only needed to contact it once.
This initial connection can be done with the
commandhidd --connect 00:0A:95:
98:37:18 . All further connects are initiated
by the device.

8 Bluetooth audio

The Bluetooth technology can be used for data
communication, but it also support audio con-
nections. For example headsets for voice con-
nection and headphones for high-quality stereo
transmission. For both device types an integra-
tion into the ALSA sound system is planned.
Like all other subsystem or library integrations
done by BlueZ so far, this will be almost invis-
ible for the end user. First beta versions of the
ALSA plugins exists by now and a final version
is expected very soon.
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9 Other applications

Many more applications started to integrate na-
tive Bluetooth support. The popular exam-
ples are the contact and calendar synchroniza-
tion program MultiSync and the Gnokii tool
for accessing Nokia mobile phones. Both pro-
grams can also use IrDA or cable connections
as transport and Bluetooth is only another ac-
cess method. In most programs the lines of
Bluetooth specific code are very small, but the
mobility increases a lot.

10 Conclusion

Since 2001 a lot of things have been improved
and the current Bluetooth subsystem is ready
for every day usage. But the development is not
finished and the end user experience can be still
be improved. The GNOME Bluetooth subsys-
tem and the KDE Bluetooth framework are two
projects to integrate Bluetooth into the desktop.

With Bluetooth the need of cables is decreasing
and BlueZ tries to paint the Linux world blue.
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Abstract

This paper presents data on current applica-
tion start-up pessimizations (on-demand load-
ing), relevant numbers on real-life harddisk
seek times in a running system (measured from
within the kernel), and shows and demonstrates
possible improvements, both from userspace
and in the kernel. On a side note, changes
to the GNU linker are discussed which might
help. Very preliminary experiments have al-
ready shown a four-fold speedup in starting
Firefox from a cold cache.

1 1980s and 1990s mindset

The cycle of implementations means that things
that were slow in the past are fast now, but that
things that haven’t gotten any faster are per-
ceived as slow, and relatively speaking, are.

CPUs used to be slow and RAM was gener-
ally fast. These days, a lot of CPU engineering
goes into making sure we do not mostly wait on
memory.

Something like this has happened with hard
disks. In the late 1980s, early 90s, there was
a lot of attention for seek times, which was un-
derstandable as these were in the order of 70ms.

These have been reduced, but not as much
as disk throughput has increased. Typical
measured seek times on laptop hard disks
are still in the 15-20ms region, while 20
megabytes/second disk speeds would allow the
disks of old to be read in their entirety in under
10 seconds.

2 Some theory

To retrieve data from disk, four things must
happen:

1. The instruction must be passed to the drive

2. The drive positions its reading head to the
proper position

3. We wait until the proper data passes under
the disk

4. The drive passes the data back to the com-
puter

It is natural to assume that seeking to loca-
tions close to the current location of the head is
faster, which in fact is true. For example, cur-
rent Fujitsu MASxxxx technology drives spec-
ify the ‘full stroke’ seek as 8ms and track-to-
track latency as 0.3ms.
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However, for many systems the actual seeking
is dwarfed by the rotational latency. On aver-
age, the head will have to wait half a rotation
for the desired data to pass by. A quick calcu-
lation shows that for a 5400RPM disk, as com-
monly found in laptops, this wait will on aver-
age be 5.6ms.

This means that even seeking a small amount
will at least take 5.6ms.

The news gets worse—the laptop this article is
authored on has a Toshiba MK8025GAS disk,
which at 4200RPM claims to have an average
seek time of 12ms. Real life measurements
show this to be in excess of 20ms.

3 What this means, what Linux
does

That one should avoid seeking by all means.
Given a 20ms latency penalty, it is cheaper to
read up to 5 megabytes speculatively to get to
the desired location.

In Linux, on application startup, the relevant
parts of binaries and libraries get mmapped into
memory, and the CPU starts executing the pro-
gram. As the instructions are not loaded into
memory as such, the kernel encounters page
faults when data is missing, leading to disk
reads to fill the memory with the executable
code.

While highly elegant, this leads to unpre-
dictable seek behaviour, with occasional hits
going backwardon disk. The author has dis-
covered that if there is one thing that disks don’t
do well, it is reading backwards.

Short of providing a ‘reverse’ setting to the
disk’s engine, the onus is on the computer to
optimize this away.

4 How to measure, how to convert

As binary loading is “automatic,” userspace has
a hard time seeing page faults. However, the
recently implemented ‘laptop mode’ not only
saves batteries, it also allows for logging of ac-
tual disk accesses.

At the level of logging involved, only PID, de-
vice id, and sector are known, which is under-
standable as the logging infrastructure of lap-
top mode is mostly geared towards figuring out
which process is keeping the disk from spin-
ning down.

Typical output is:

bash(261): READ block 11916
on hda1

bash(261): READ block 11536
on hda1

bash(261): dirtied inode 737
(joe) on hda1

bash(261): dirtied inode 915
(ld-linux.so.2) on hda1

Short of dragging around a lot more infrastruc-
ture than is desireable, the kernel is in no posi-
tion to help us figure out which files correspond
to these blocks.

Furthermore, there is no reverse map in any
sane fs to tell us which block belongs to which
file.

Luckily, another recent development comes to
our rescue: syscall auditing. This can be
thought of as a global strace, allowing desig-
nated system calls to be logged, whatever their
origin. This generates a list of files which might
have caused the accesses.

This combined with the forward logical map-
ping facility used by lilo to determine the sector
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locations of files allows us to construct a partial
reverse map that should include all block ac-
cesses logged by the kernel.

From this we gather information which parts of
which positions in whic files will be accessed
or system or application startup.

5 Naïvely using the gathered infor-
mation

Using the process above, a program was written
which gathers the data above for a typical De-
bian Sid startup, up to and including the launch
of Firefox. On next startup, a huge shell script
used ‘dd’ to read in all relevant blocks, sequen-
tially. Even without merging nearby reads, or
or utilizing knowledge of actual disk layout,
this sped up system boot measureably. Most
noticeable was the factor of four improvement
in startup times of Firefox.

In this process a few things have become clear:

• There are a lot of reads which cannot be
connected to a file

• The ‘dd’ read script is very inefficient

• The kernel has its own ideas on cache
maintenance and throws out part of the
data

• Reads are spread over a large number of
files

The reads which cannot be explained are in all
likelihood part of either directory information
or filesystem internals. These are of such quan-
tity that directory traversal appears to be a ma-
jor part of startup disk accesses.

It is interesting to note that only in the order
of 40 megabytes of disk is touched on boot-
ing, leading to the tentative conclusion that all
disk access could conceivably be completed in
2 seconds or less.

However, it is also clear that reads are spread
over a large number of files, making naïve ap-
plications ofreadahead(2) less effective.

6 More sophisticated ways of ben-
efiting from known disk access
patterns

Compiler, assmbler and linker work together in
laying out the code of a program. Andi Kleen
has suggested storing in an ELF header which
blocks are typically read during startup, allow-
ing the dynamic linker to touch these blocks
sequentially. Howver, this idea is not entirely
relevant anymore as most time is spent touch-
ing libraries, which will have differing access
patterns for each file program using them.

Linus Torvalds has suggested that the only way
of being really sure is to stuff the page cache
with a copy of the data we know that is needed,
and that we store that data in a sequential slab
on disk so as to absolutely prevent having to
seek.

The really dangerous bit is that we need to be
very sure our sequential slab is still up to date.
It also does not address the dentry cache, which
appears to be a dominant factor in bootup.

Another less intrusive solution is to use a
syscall auditing daemon to discover which ap-
plication is being started and touch the pages
that were read last time this binary was being
started. During bootup this daemon might get
especially smart and actually touch pages that
it knows will be read a few seconds from now.
The hard time is keeping this in sync.
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7 Conclusions

Currently a lot of time is wasted during applica-
tion and system startup. Actual numbers appear
to indicate that the true amount of data read dur-
ing startup is minimal, but spread over a huge
number of files.

The kernel provides some infrastructure which,
through convoluted ways, can help determine
seek patterns that userspace might employ to
optimize itself.

A proper solution will address both directory
entry reads as well as bulk data reads.
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Abstract

This paper describes best practices in Conary
packaging: writing recipes that take advan-
tage of Conary features; avoiding redundancy
with recipe inheritance and design; implement-
ing release management using branches, shad-
ows, labels, redirects, and flavors; and design-
ing and writing dynamic tag handlers. It de-
scribes how Conary policy prevents common
packaging errors. It provides examples from
our rpath Linux distribution, illustrating the de-
sign principles of the Conary build process. It
then describes the steps needed to create a new
distribution based on the rpath Linux distribu-
tion, using the distributed branch and shadow
features of Conary.

Conary is a distributed software management
system for Linux distributions. Based on exten-
sive experience developing Linux distributions
and package management tools, it replaces tra-
ditional package management solutions (such
as RPM and dpkg) with one designed to enable
loose collaboration across the Internet. It en-
ables sets of distributed and loosely connected
repositories to define the components which are
installed on a Linux system. Rather than having
a full distribution come from a single vendor, it
allows administrators and developers to branch
a distribution, keeping the pieces which fit their
environment while grabbing components from
other repositories across the Internet.

If you do not have a basic working knowledge

of Conary terminology and design, you may
want to read the paperRepository-Based Sys-
tem Management Using Conary,in Proceed-
ings of the Linux Symposium, Volume Two,
2004, kept updated athttp://www.rpath.

com/technology/techoverview/ , which
introduces Conary’s design and vocabulary in
greater detail. Terms called out inboldface in
this paper without an explicit definition are de-
fined in that overview.

1 Conary Source Management

Unlike legacy package management tools,
Conary has integral management for source
code and binaries, and the binaries are directly
associated with the source code from which
they have been built.

Conary stores source files insource compo-
nents, and then uses arecipe (described later)
to build binary components that it can in-
stall on a system. While most of the code
that handles the two kinds of components is
actually the same, the interface is different.
The source components are managed using a
Software Configuration Management (SCM)
model, and the binary components are managed
using a system management model.

The SCM model for managing source com-
ponents is sufficiently familiar to experienced
Concurrent Versioning System (cvs) or Subver-
sion (svn) users; you can create a new source
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component, check out an existing source com-
ponent, add files to a source component, re-
move files from a source component (this is a
single action in Conary, unlike cvs’s two-step
operation), rename files in a source component
(like svn, but unlike cvs), and commit the cur-
rent set of changes since the last commit (like
svn, and like cvs except that the commit is
atomic).

Conary has not been optimized as a complete
SCM system. For example, we do not use it
to manage subdirectories within a source com-
ponent, and instead of importing source code
into vendor branches, we import archives and
apply patches to them. Conary may some-
day support a richer SCM model, since there
are no significant structural or design barriers
within Conary. It was a choice made for the
sake of simplicity and convenience, and to fo-
cus attention on Conary as a system manage-
ment tool rather than as an SCM tool—to en-
courage using Conary to track upstream devel-
opment, rather than encourage using it to create
forks.

In addition, Conary stores in the repository
(without cluttering the directory in which the
other files are stored) all files that are refer-
enced by URL. When they are needed, they are
downloaded (from the repository if they have
been added to the repository; otherwise, via the
URL) and stored in a separate directory. Then,
when committing, Conary stores those auto-
matically added source files (auto-source files)
in the repository so that the exact same source
is always available, enabling repeatable builds.

Like cvs, Conary can create branches to sup-
port divergent development (forks); unlike cvs,
those branches can span repositories, and the
repository being branched from is not modified,
so the user only needs write privileges in the
repository in which the branch is created. Un-
like cvs (and any other SCM we are aware of),

Conary also has two features that support con-
verging source code bases:shadowsthat act
like branches but support convergent instead of
divergent development by providing intentional
tracking semantics, andredirects that allow
redirecting from the current head of the branch
(or shadow) to any other branch (or shadow),
including but not limited to that branch’s par-
ent. The redirect is not necessarily permanent;
the branch can be revived. A redirect can even
point to a different name package entirely, and
so is useful when upstream names change, or
when obsoleting one package in favor of an-
other.

1.1 Cooking with Conary

Using a recipe to turn source into binary is
calledcooking.

The exact output produced by building source
code into a binary is defined by several factors,
among them the instruction set (or sets) that the
compiler emits, and the set of features selected
to be built. Conary encodes each combination
of configuration and instruction set as aflavor.
The configuration items can be system-wide or
package-local. When cooking, Conary builds
a changesetfile that represents the entire con-
tents of the cooked package.

There are three ways to cook:

• A local cook builds a changeset on the
special local@local:COOK branch. It
loads the recipe from the local filesystem,
and can cook with recipes and sources that
are not checked into the repository. It will
download any automatic sources required
to build.

• A repository cook builds a transient
changeset on the same branch as the
source component, and then commits it to
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the repository. It loads the source compo-
nent (including the recipe and all sources)
from the repository, not the local filesys-
tem. It finds all automatic sources in the
repository. The same version can be built
into the repository multiple times with dif-
ferent flavors, allowing users to receive the
build that best matches their system flavor
when they request a trove.

• An emerge builds a transient change-
set on the speciallocal@local:EMERGE

branch, and then commits it to (that is,
installs it on) the local system. Like a
repository cook, it takes the recipe and
all sources from the repository, not the
filesystem. (This is the only kind of cook
that Conary allows to be done as the root
user.)

2 The Conary Recipe

All software built in Conary is controlled
through arecipe, which is essentially a Python
module with several characteristics. Here is an
example recipe, which has a typical complexity
level:1

class MyProgram(PackageRecipe):
name = ’myprogram’
version = ’1.0’
def setup(r):

r.addArchive(
’http://example.com/%(name)s-%(version)s.tar.gz’)

r.Configure()
r.Make()
r.MakeInstall()

The goal of Conary’s recipe structure is not to
make all packaging trivial, but to make it possi-
ble to write readable and maintainable complex
recipes where necessary, while still keeping the
great majority of recipes extremely simple—
and above all, avoiding boilerplate that needs to

1No, I do not like two-column formatting for techni-
cal papers, either.

be copied from recipe to recipe. This example
is truly representative of the the most common
class of recipes; the great majority of packag-
ing tasks do not require any further knowledge
of how recipes work. In other words, this exam-
ple is representative, not simplistic. New pack-
agers tend to find it easy to learn to write new
Conary packages.

However, some programs are not designed for
such easy packaging, and many packagers have
become used to the extreme complexity re-
quired by some common packaging systems.
This experience can lead to writing needlessly
complex and thereby hard-to-maintain recipes.
This, in turn, means that while reading the
RPM spec file or Debian rules for building a
package can be an easy way to find a resolution
to a general packaging problem when you are
writing a Conary recipe, trying to translate ei-
ther of them word-by-word is likely to lead to a
poor Conary package.

The internal structure of objects that underlie
Conary recipes makes them scale gracefully
from simple recipes (as in the example) to com-
plex ones (the kernel recipe includes several
independent Python classes that make it eas-
ier to manage the kernel configuration process).
Some of the more complex recipe possibilities
require a deeper structural understanding.

• The recipe module contains a class
that is instantiated as therecipe object
(MyProgram in the example above). This
class declares, as class data, aname string
that matches the name of the module, a
version string, and asetup() method.
This class must be a subclass of one of a
small family of abstract superclasses (such
asPackageRecipe ).

• Conary calls the recipe object’ssetup()

method, which populates lists of things
to do; each to-do item is represented by
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an object. There aresource objects,
which represent adding an archive, patch,
or source file; andbuild objects, which
represent actions to take while building
and installing the software. Additionally,
there are pre-existing lists ofpolicy ob-
jects to which you can pass extra informa-
tion telling them how to change from their
default actions. Thesetup() function re-
turns after preparing the lists, before any
build actions take place.

• Conary then processes the lists of things
to do; first all the source objects, then all
the build objects, and finally all the policy
objects.

It is important to keep in mind that unlike RPM
spec files and portage ebuild scripts (processed
in read-eval-print loop style by a shell pro-
cess) or Debian rules (processed by make), a
Conary recipe is processed in two passes (three,
if you count Python compiling the source into
bytecode), because it both constrains the ac-
tions you can or should take and makes Conary
more powerful. For example, you should not
add sources inside a Python conditional (in-
stead, you unconditionally add them but can
choose not to apply them based on a condi-
tional), but this constraint allows Conary to al-
ways automatically store copies of all sources
that it has fetched by URL instead of being ex-
plicitly committed locally.

Another important data structure in a recipe is
the macros object, an enhanced dictionary ob-
ject that is an implicit part of every recipe. Al-
most every string used by any of the differ-
ent kinds of objects in the recipe—including
the strings stored in the macros object itself—
is automatically evaluated relative to the con-
tents of the macros object, meaning that stan-
dard Python string substitution is done. Thus,
you do not have to type%r.macros after every

string; the substitution is done within the func-
tions you call. It also means that macros can
reference each other. Be aware that changes to
the macros object all take place before any list
processing. This means that an assignment or
change to the macros object at the end of the
recipe will affect the use of the macros object at
the beginning of the recipe. This is an initially
non-obvious result of the multi-pass recipe pro-
cessing.

The string items contained in the macros ob-
ject are colloquially referred to by the Python
syntax for interpolating dictionary items into
a string. Thus,r.macros.foo is usually re-
ferred to as%(foo)s , because that is the way
you normally see it used in a recipe.

The macros object contains a lot of immedi-
ately useful information, including the build di-
rectory (%(builddir)s ), the destination di-
rectory (%(destdir)s ) that is the proxy for
the root directory (/ ) when the software is in-
stalled, many system paths (%(sysconfdir)

s for /etc and %(bindir)s for /usr/

bin ), program names (%(cc)s ), and argu-
ments (%(cflags)s ).

3 Recipe Inheritance and Refer-
ence

Conary recipes can reference each other, which
makes it easier to use them to create a coherent
system.

When many packages are similar, it is easy to
end up with boilerplate text that is copied be-
tween packages to make the result of cook-
ing them reflect that similarity. That boil-
erplate can be encoded inPackageRecipe

subclasses, stored in recipes that are normally
never cooked because they function as ab-
stract superclasses. The recipes containing
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those abstract superclasses are loaded with the
loadSuperClass() function, which loads
the latest version of the specified recipe from
the repository into the current module’s names-
pace. The main class in the recipe then de-
scends from that abstract superclass. (The in-
heritance is pure Python, so it is possible to
use multiple inheritance if that is useful.) This
mechanism serves two purposes: it reduces
transcription errors in what would otherwise be
boilerplate text, and it reduces the effort re-
quired to build similar packages. It also allows
bug fixes that are generic to be made in the su-
perclass and thus automatically apply to all the
subclasses.

Sometimes, you want to reference a recipe
without inheriting from it. In that case, you use
a similar function calledloadInstalled() ,
which loads a recipe while preferring the ver-
sion that is installed on your system, if any ver-
sion is installed on your system. (Otherwise,
it acts just likeloadSuperClass() .) For ex-
ample, you can load the perl recipe in order to
programmatically determine the version of perl
included in the distribution, without actually re-
quiring that perl even be installed on the sys-
tem.

4 Dynamic Tag Handlers

Conary takes a radically different approach to
install-time scripts than legacy package man-
agement tools do. Typical install-time scripts
are package-oriented instead of file-oriented,
primarily composed of boilerplate, and often
clash with rollback (for those package man-
agement tools that even try to provide rollback
functionality). Conary tags individual files, in-
stead; this file is a shared library, that file is an
init script, another file is an X font. Then, at
install time, once for each transaction (which
may be many troves all together), it callstag

handler scripts to do whatever is required with
the tagged files.

Bugs in tag handlers demonstrate some of the
good characteristics of this system. When a
bug in a tag handler is fixed, that bug is fixed
for all packages in one place, without any need
to copy code or data around. It is fixed even
for older versions of packages built before the
tag handler was fixed (as long as the package in
question is not the one that implements the tag
handler). Also, tag handlers can be called based
not only on changes to the tagged files, but also
changes to the tag handler itself, including bug
fixes.

While tag handlers are clearly an improvement
over legacy install-time scripts, it is still possi-
ble to make many of the same mistakes.

Overuse It is always slower to run a script than
to package the results of running a script.
Therefore, if you can perform the action at
packaging time instead, do so. For exam-
ple, put files in the/etc/cron.d/ direc-
tory instead of calling thecrontab pro-
gram or editing the/etc/crontab file.

Excessive dependenciesThe more programs
a script calls, the more complex the de-
pendency set needed to run it. Circular
dependencies are worse; they will break,
one way or another. Finally, calling more
programs increases the risk of accidental
circular dependencies.

Inappropriate changes Modifying file data or
metadata that is under package manage-
ment and storing backup copies of files are
generally inappropriate for any package
manager, not just Conary. With Conary,
though, a few more things are inappropri-
ate, including adding users and groups to
the system (it is too late; the files have al-
ready been created).
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Poor error handling Scripts that do not check
for error return codes can easily wreak
havoc by assuming that previous actions
succeeded. (We have discovered that if
you are having difficulty managing error
handling in a tag handler, you may be tak-
ing an approach that is needlessly com-
plex. Look for a simpler way to solve the
problem.)

It is also easy to misapply assumptions devel-
oped while writing legacy install-time scripts to
tag handler scripts. The most important thing to
remember is that everything in Conary, includ-
ing tag handlers, is driven by changes. There-
fore, if a package includes five files with the
foo tag, and none of those tagged files is af-
fected by an update, thefoo tag handler will
simply not be called. If only two of the five
files is modified in the update, thefoo tag han-
dler will be called, but asked to operate only on
the two modified files.

Write tag handlers with rollbacks in mind. This
means that if the user does the inverse operation
in Conary, the effect of the tag handler should
be inverted as well. Most post-installation tasks
merely involve updating caches, and often the
list of affected files is not even required in order
to update the cache. These cases are easy; just
run the program which regenerates the cache.

When inventing new tag names, keep the tag
mechanism in mind.mypackage-script is
a horrible name for a tag handler, because it
initiates or perpetuates the wrong idea about
what it is and how it works. The name of a
tag handler should describe the files so tagged.
The sentence “file is a(n) tag name” should
sound sensible, as in “/lib/libc-2.3.2.so

is a shlib ” or “ /usr/share/info/gawk.

info.gz is an info-file ”. Following this
rule carefully has helped produce clean, simple,
fast, relatively bug-free tag handlers.

5 Policy

After unpacking sources, building binaries, and
installing into the%(destdir)s , Conary in-
vokes an extensive set of policy objects to nor-
malize file names, contents, locations, and se-
mantics, and to enforce inter-package and intra-
package consistency.

Policy objects are invoked serially and have
access to the%(destdir)s as well as
the %(builddir)s . Early policy ob-
jects can modify the%(destdir)s . Af-
ter all %(destdir)s modification is finished,
Conary creates a set of objects that represents
the set of files in the destdir. Later policy then
has that information available and can modify
the packaging, including marking configuration
files, marking tagged files, setting up depen-
dencies, and setting file ownership and permis-
sions.

The policy.Policy abstract superclass im-
plements much of the mechanism that policies
need. Many policies can simply list some regu-
lar expressions that specify (positively and neg-
atively) the files to which they apply by default,
and then implement a single method which is
called for each matching file. The superclass
provides a rich generic exception mechanism
(also based on regular expressions) and a file
tree walker that honors all the regular expres-
sions. Policies are not required to use that su-
perstructure; they can implement their own ac-
tions wherever necessary.

Policies can take additional information, as
well as exceptions. For example, policy divides
the files in a package into components auto-
matically, but when the automatic assignment
makes a bad choice, you can pass additional
information to theComponentSpec policy to
change its behavior. Whenever you want to
create multiple packages from a single recipe,
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you have to give thePackageSpec policy in-
formation on which files belong to what pack-
age. When you use non-root users and groups,
you need to provide user information using the
User policy and group information using the
Group policy.

This object-oriented approach is fundamentally
different from RPM policy scripts. In contrast
to Conary policy, RPM policy scripts are shell
scripts (or are driven by shell scripts), and have
an all-or-nothing model. If they do not do ex-
actly what you want, you have to disable them
and do by hand every action that the scripts
would have done. This means that if you do
not keep up with changes in the RPM policy
scripts, your re-implementation may not keep
up with changes in RPM. Also, because this re-
striction is onerous, RPM policy scripts cannot
be very strict or very useful; they have to be
limited in power and scope to the least common
denominator. By contrast, the rich exception
mechanism in Conary policy allows the policy
to be quite strict by default, allowing for ex-
plicit exceptions where appropriate. This al-
lows Conary to enable a rich array of tests that
enable packaging quality assurance, with the
tests run before any cooked troves are commit-
ted to the repository or even placed in a change-
set.

Policies have access to the recipe object,
mainly for the macros and a cache of content
type identification that works like an object-
oriented version of thefile program’s magic
database and is therefore called themagic
cache. This makes it easy to predicate policy
action on ELF files, ar files, gzip files, bzip2
files, and so forth. The magic objects (one per
file) sometimes contain information extracted
from the files, such as ELF sonames and com-
pression levels in gzip and bzip2 files.

Some policy, such as packaging policy, is in-
tended to remain a part of the Conary program
per se. However, many policies will eventually

be defined (or expanded) outside of Conary, by
the distribution, viapluggable policy. This
will be a set of modules loaded from the filesys-
tem, probably with one policy object per mod-
ule, and a system to ensure that ordering con-
straints are honored.

5.0.1 Policy Examples

One of the best ways to describe what policy
can do is to describe some examples of what it
does do. As of this writing, there are 58 pol-
icy modules, so these few examples are by no
means exhaustive; they are merely illustrative.

The FilesInMandir policy is very simple,
and demonstrates how one line of code and
several lines of data can implement effec-
tive policy. It looks only in %(mandir)s ,
%(x11prefix)s/man , and %(krbprefix)

s/man , does not recurse through subdi-
rectories, and within those directories only
considers file entries, not subdirectory en-
tries. Any recipe that needs to actu-
ally store a file in one of those directories
can run r.FilesInMandir(exceptions=

’%(mandir)s/somefile’) to cause the pol-
icy to ignore that file. All of this action speci-
fied so far requires only three simple data ele-
ments to be initialized as class data in the pol-
icy. Then a single-line method reports an error
if the policy applies to any files, automatically
ignoring any exceptions that have been applied
from the recipe.

This simple policy effectively catches a com-
mon disagreement about what the--mandir

configure argument or theMANDIRmake vari-
able specifies; the autotools de-facto stan-
dard is/usr/share/man/ but some upstream
packages set it instead to be a subdirec-
tory thereof, such as/usr/share/man/man1 ,
which would cause all the man pages to go in
the wrong place by default. Having this policy
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to catch errors makes it feasible for Conary to
set--mandir andMANDIRby default, and fix
up the exceptional cases when they occur.

The RemoveNonPackageFiles policy mod-
ifies the %(destdir)s and is even simpler
in implementation thanFilesInMandir . It
lists as class data a set of regular expressions
defining files that (by default) should not be
included in the package, such as .cvsignore
files, .orig files, libtool .la files, and so forth.
It then has a single-line method that removes
whatever file it is applied to. Again like
FilesInMandir , a simple exception over-
rides the defaults; a recipe for a package that
actually requires the libtool .la files (there are a
few) can avoid having them removed by calling
RemoveNonPackageFiles(exceptions=

r’\.la$’) —note the leadingr , which tells
Python that this is a “raw” string and that it
should not interpret any\ characters in the
string.

Both RemoveNonPackageFiles and
FilesInMandir use the built-in direc-
tory walking capabilities of thePolicy

object. Most policy does, but it is not re-
quired. The NormalizeManPages policy
is different. It implements its own walking
over each man directory (the same ones
that the FilesInMandir policy looks at),
and removes any accidental references to
%(destdir)s in the man pages (a common
mistake), makes maximal use of symlinks,
makes sure that all man pages are compressed
with maximal compression, and then makes
sure that all symlinks point to the compressed
man pages. It uses almost none of the built-in
policy mechanism; it merely asks to be called
at the right time.

TheNormalizeCompression policy ignores
man pages and info pages, since they have
their compression normalized intrinsically via
other policy. It automatically includes all files
that end in.gz and .bz2 . Then, for each

file, it looks in the magic cache (which is self-
priming; if no entry exists, it will create one),
and if it really is a gzip or bzip2 file and is not
maximally compressed, it recompresses the file
with maximal compression.

Finally, the DanglingSymlinks policy uses
packaging information, looking at which com-
ponent each file is assigned to. It is not enough
to test whether all symlinks in a package re-
solve; it is also important to know whether
a symlink resolves to a different component,
since components can be installed separately.
There are also special symlinks that are allowed
to point outside the package, including console-
helper symlinks (which create an automatic re-
quirement for theusermode:runtime com-
ponent) and symlinks into the /proc filesystem.
TheDanglingSymlinks policy simply warns
about symlinks that point from one component
into another component built from the same
package (except for shared libraries, where:

devel components are expected to provide
symlinks that cross components); symlinks that
are not resolved within the package and are
not explicitly provided as exceptions cause the
cook to fail.

6 Recipe Writing Best Practices

Disclaimer: Not all recipes written by rpath
follow these best practices. We learned many
of these best practices by making mistakes,
and have not systematically cleaned up every
recipe. So the first rule is probably not to worry
about mistakes; Conary is pretty forgiving as a
packaging system, and we have tried to make it
fix mistakes and warn about mistakes. You ab-
solutely do not need to memorize this list to be
a Conary packager. It’s quite possible that the
majority of new Conary recipes are fewer than
ten lines of code. Relax, everything is going to
be all right!
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The best practices are somewhat arbitrarily di-
vided into general packaging policy sugges-
tions, conventions affecting building sources
into binaries, and conventions affecting the
%(destdir)s .

6.1 General Packaging Policy

Before worrying about packaging details, start
working on consistency at a higher level.
Names of packages, structure of recipes, and
versions are best kept consistent within a repos-
itory, and between repositories.

6.1.1 Simple Python Modules

Starting simple: recipes are Python modules.
Follow Python standards as a general rule. In
particular, do not use any tabs for indenta-
tion. Tabs work fine, but you will be running
thecvc diff command many times, and tabs
make diff output look a little odd because the
indentation levels are not all even, and when
you mix leading tabs and leading spaces, the
output looks even weirder.

Second, follow Conary standard practice.
Conary standard practice has one significant
difference from Python standard practice: the
self-referential object is calledr (for recipe) in-
stead ofself because it is used on practically
every line.

To get the most benefit from Conary, write your
recipes to make it easy to maintain a unified
patch that modifies them. That way, some-
one who wants to shadow your recipe to make
(and maintain) a few small changes will not be
stymied. The most basic way to do this is to
keep your recipe as simple as possible. Don’t
do anything unnecessary. Don’t do work that
you can count on policy to do for you, such

as recompressing gzip or bzip2 files with max-
imal compression turned on, or moving files
from /etc/rc.d/init.d to %(initdir)s ,
unless policy can’t do the job quite the right
way—and in that case, add a comment explain-
ing why, so that the person shadowing your
recipe does not walk into a trap.

Not doing lots of make-work has another im-
portant benefit. The less you do in the recipe,
the less likely you are to clash with future ad-
ditions to policy, and the more likely you are to
benefit from those additions. Policy will con-
tinue to grow to solve packaging problems as
we continue to find ways to reduce packaging
problems to general cases that have solutions
which we can reliably (partially or completely)
automate.

6.1.2 Follow Upstream

Whenever possible, follow upstream conven-
tions. Use the upstream name, favoring lower
case if upstream sometimes capitalizes and
sometimes does not, and converting “- ” to “ _”
because “- ” is reserved as a separator charac-
ter. Do not add version numbers to the name;
use version numbers in the name only if the
upstream project indisputably uses the version
number in the name of the project. Conary can
handle multiple versions simultaneously just
fine by using branches; no need to introduce
numbers into the name. The branches can be
created quite arbitrarily; they do not need to be
in strict version order. Just avoid clashing with
the label used for release stages by choosing a
very package-specific tag. Example tags rpath
has used so far aresqlite2 , gnome14, and
cyrus-sasl1 . The head ofconary.rpath.

com@rpl:devel for sqlite is sqlite ver-
sion 3, and the branchconary.rpath.com@

rpl:devel/2.8.15-1/sqlite2/ contains
sqlite version 2, as of this writing ver-
sion 2.8.16, giving a full version string
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of /conary.rpath.com@rpl:devel/2.8.

15-1/sqlite2/2.8.16-1

When possible and reasonable, one upstream
package should produce one Conary package.
Sometimes, usually to manage dependencies
(such as splitting a text-mode version of a pro-
gram from a graphical version so that the text-
mode version can be installed on a system with-
out graphical libraries installed) or installed
features (such as splitting client from server
programs), it is reasonable to have one up-
stream package produce more than one Conary
package. Rarely, it is appropriate for two up-
stream packages to be combined; this is gener-
ally true only when the build instructions for
a single package require multiple archives to
be combined to complete the build, and all
the archive files really are notionally the same
project; they aren’t just a set of dependencies.

If you have to convert “- ” to “ _” in the name,
the following convention may be helpful:

r.macros.ver = \
r.version.replace(’_’, ’-’)

r.mainDir(’%(name)s-%(ver)s’)

6.1.3 Redirects

Finally, if the upstream name changes, change
the name of the package as well. This means
creating a new package with the new name, and
then changing the old package into a redirect
that points to the new package. Users who up-
date the package using the old name will auto-
matically be updated to the new package.

Alternatively, if you change the package that
provides the same functionality, you can do
the exact same thing; from Conary’s point of
view there is no difference. For example, rpath
Linux used to use the old mailx program to
provide /usr/bin/mail , but switched to the

newer nail program for that task. The mailx
recipe was then changed to create a redirect to
the newer nail package. Anyone updating the
mailx package automatically got the nail pack-
age instead.

A redirect is not necessarily forever. The old
recipe for mailx could be restored and a new
version cooked; the nail recipe could even be
changed to a redirect back to mailx. If that
happened, an update from the older version of
mailx would completely ignore the temporary
appearance of the redirect to nail. (Not that this
is likely to happen—it just would not cause a
problem if it did.)

Redirects pointing from the old troves to the
new troves solve the “obsoletes wars” that show
up with RPM packages. In the RPM universe,
two packages can each say that they obsolete
each other. In the Conary world, because redi-
rects point to specific versions and never just
to a branch or shadow, this disagreement is not
possible; the path to a real update always termi-
nates, and terminates meaningfully with a real
update. There are no dead ends or loops.

6.2 Build Conventions

Compiling software using consistently similar
practices helps make developers more produc-
tive (because they do not have to waste time fig-
uring out unnecessarily different and unneces-
sarily complex code) and Conary more useful
(by enabling some of its more hidden capabili-
ties).

6.2.1 Use Built-in Capabilities

Use build functions other thanr.Run when-
ever possible, especially when modifying the
%(destdir)s .
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Build functions that do not have to start a
shell are faster thanr.Run . Using more spe-
cific functions enables more error checking; for
example,r.Replace not only is faster than
r.Run(’sed -i -e ...’) but also defaults
to raising an exception if it cannot find any
work to do. These functions can also remove
build requirements (for example, forsed:

runtime ), which can make bootstrapping sim-
pler and potentially faster.

Most build functions have enough con-
text to prepend %(destdir)s to ab-
solute paths (paths starting with the
/ character) but in r.Run you have
to explicitly provide %(destdir)s

whenever it is needed. For example,
r.Replace(’foo’, ’bar’, ’/baz’)

is essentially equivalent (except for error
checking) tor.Run("sed -i -e ’s/foo/

bar/g’ %(destdir)s/baz") in function,
but ther.Replace is easier to read at a glance.

Many build functions automatically make use
of Conary configuration, including macros.
r.Make automatically enables parallel make
(unless parallel make has been disabled for
that recipe withr.disableParallelMake ),
and automatically provides many standard vari-
ables.

A few build functions can actually check for
missing buildRequires items. For exam-
ple, if you install desktop files into the/usr/

share/applications/ directory using the
r.Desktopfile build command, it will en-
sure thatdesktop-file-utils:runtime is
in your buildRequires list, and cause the
build to fail if it is not there.

In particular,r.Configure , r.Make , andr.

MakeParallelSubdirs provide options and
environment variables that the autotools suite,
and before that, the default make environment,
have made into de-facto standards, including
names for directories, tools, and options to

pass to tools. Consistency isn’t just aesthetic
here; it also enhances functionality. It enables
:debuginfo components that include debug-
ging information, source code referenced by
debugging information, and build logs. It al-
lows consistently rebuilding the entire operat-
ing system with different compiler optimiza-
tions or even different compilers entirely. This
is useful for testing compilers as well as cus-
tomizing distributions.

6.2.2 Macros

Use macros extensively. In general, macros al-
low recipes to be used in different contexts, al-
low changes to be made in one place instead of
all through a recipe, and can make the recipe
easier to read.

Using macros for filenames means that a sin-
gle recipe can be evaluated differently in dif-
ferent contexts. If you refer to the direc-
tory where initscripts go as%(initdir)s ,
the same recipe will work on any distribution
built with Conary, whether it uses/etc/rc.

d/init.d/ or /etc/init.d/ .

Using macros such as%(cc)s for program
names (done implicitly with make variables
when calling the r.Make* build actions)
means that the recipe will adapt to using dif-
ferent tools, whether that is for building an ex-
perimental distribution with a new compiler, or
for using a cross-compiler to build for another
platform, or any other similar purpose.

Use the macros that define standard arguments
to pass to programs, such as%(cflags)s ,
and modify them intelligently. Instead
of overwriting them, just modify them,
like r.macros.cflags += ’ -fPIC’

or r.macros.cflags = r.macros.

cflags.replace(’-O2’, ’-Os’)
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or r.macros.dbgflags = r.macros.

dbgflags.replace(’-g’, ’-ggdb’)

Creating your own macros for text that you
would otherwise have to repeat throughout your
recipe makes the recipe more readable, less
susceptible to bugs from transcribing exist-
ing errors and making errors in transcription,
and easier to modify. You might, for exam-
ple, do things liker.macros.prgdir = ’%

(datadir)s/%(name)’

Creating your own macros can also help you
make your recipes fit in 80 columns, for easier
reading in the majority of terminal sessions.

r.macros.url = ’http://reallyLongURL/’
r.addArchive(’%(url)s/%(name)s-%(version)s.tar.bz2’)

6.2.3 Flavored Configuration

When configuring software (generally speak-
ing, before building it, but it is also possible
for configuration to control what gets installed
rather than what is built), make sure that the
configuration choices are represented in the fla-
vor. When a configuration item depends on the
standard set ofUse flagsfor your distribution,
use those. If there is no system-wide Use flag
that matches that configuration item, you can
create alocal flag instead.

A lot of configuration is encoded in the ar-
guments tor.Configure . We commonly
use the variableextraConfig to hold those.
There are two reasonable idioms:

extraConfig = ’’
if Use.foo:

extraConfig += ’ --foo’
r.Configure(extraConfig)

and

extraConfig = []
if Use.foo:

extraConfig.append(’--foo’)
r.Configure(

’ ’.join(extraConfig))

In either case, referencingUse.foo will cause
the system-wide Use flag named “foo” to be
part of the package’s flavor, with the value that
is set when the recipe is cooked.

If you need to create a local flag, you do it with
the package metadata (likename, version ,
andbuildRequires ):

class Asdf(PackageRecipe):
name = ’asdf’
version = ’1.0’
Flags.blah = True
Flags.bar = False
def setup(r):

if Flags.blah:
...

Now theasdf package will have a flavor that
referencesasdf.blah and asdf.bar . The
values provided as metadata are defaults that
are overridden (if desired) when cooking the
recipe.

6.3 Destdir Conventions

Choosing how to install files into%(destdir)

s can determine how resilient your recipe is to
changes in Conary and in upstream packaging,
and how useful the finished package is.

6.3.1 Makefile Installation

Using r.Make(’install’) would not work
very well, because it would normally cause the
Makefile to try to install the software directly
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onto the system, and you would soon see the
install fail because of permission errors. In-
stead, user.MakeInstall() . It works if the
Makefile defines one variable which gives a
“root” into which to install, which by default
is called DESTDIR (thus the %(destdir)s

name). If that does not work, read the Makefile
to see if it uses another make variable (common
names areBUILDROOTandRPM_BUILD_DIR),
and pass that in with therootVar keyword:
r.MakeInstall(rootVar=’BUILDROOT’)

Sometimes there is no single variable name
you can use. In these cases, there is
a pretty powerful “shotgun” available:r.
MakePathsInstall . It re-defines all the
common autotools-derived path names to
have the %(destdir)s prepended. This
works for most of the cases without an in-
stall root variable. Sometimes you will
find (generally from a permission error, less
commonly from reviewing the changeset)
that you need to pass an additional op-
tion: r.MakePathsInstall(’WEIRDDIR=

%(destdir)s/path/to/weird/dir’)

For a few packages, there is no Makefile,
just a few files that you are expected to copy
into place manually. User.Install , which
knows when to prepend%(destdir)s to a
path, and knows that source files with any ex-
ecutable bit set should default to mode 0755
when packaged, and source files without any
executable bit set should default to 0644; spec-
ify other modes likemode=0600—do not for-
get the leading 0 that makes the number oc-
tal. (Conary does look for mode values that
are nonsensical modes and look like you left
the 0 off, and warns you about them, but try
not to depend on it; the testing is heuristic
and not exhaustive.) Like other build actions,
r.Install will create any necessary directo-
ries automatically. If you want to install a file
into a directory, make sure to include a trailing
/ character on the directory name so that Install

knows that it is intended to be a directory, not
a file. (It is this requirement that allows it to
make directories automatically.)

6.3.2 Multi-lib Friendliness

Conary does its best to make all packages
multi-lib aware. Practically all 32-bit x86 li-
braries are available to work on the 64-bit
x86_64 platform as well, making Conary-based
distributions for x86_64 capable of running
practically any 32-bit x86 application, not just
a restricted set that uses some of the most
commonly-used libraries.

The first thing to do is to always use
%(libdir)s and %(essentiallibdir)s

instead of/usr/lib and /lib , respectively.
Furthermore, for any path that is not in one of
those locations, but still has a directory named
“lib” in it, you should use%(lib)s instead
of lib . Conveniently, for programs that use
the autotools suite, Conary does this for you,
but when you are reduced to choosing direc-
tory names or installing files by hand, follow
this rule.

On 64-bit platforms on which%(lib)s re-
solves tolib64 , Conary tries to notice library
files that are in the wrong place, and will even
move 64-bit libraries where they belong, while
warning that this should be done in the pack-
aging rather than as a fixup, because there is
probably other work that also needs to be done.
Conary warns about errors that it cannot fix up,
and causes the cook to fail.

Conary specifically ensures that:python and
:perl components are multi-lib friendly, since
there are special semantics here; some:

python or :perl packages have only inter-
preted files and so should be found in the 32-
bit library directory even on 64-bit platforms;
others have libraries as well, and should be in
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the 64-bit library on 64-bit platforms. Putting
the 64-bit object files in one hierarchy and in-
terpreted files in another hierarchy would cre-
ate path collisions between 32-bit and 64-bit
:python or :perl components.

6.3.3 Direct to Destdir

Occasionally, an upstream project will include
a package of data files that is intended to
be unpacked directly into the filesystem.
Instead of unpacking it into the build directory
with r.addSource and then copying it to
%(destdir)s with r.Copy or r.Install ,
use the dir argument to r.addArchive .
Normally, dir is specified with a relative path
and thus is relative to the build directory, but
an absolute path is relative to%(destdir)s .
So something liker.addArchive(’http:

//example.com/foo.tar.bz2’, dir=

’%(datadir)s/%(name)s/’) will do what
you want in just one line. Not only does it
make for a shorter recipe with less potentially
changing text to cause shadow merges to
require manual conflict resolution, it is also
faster to do.

6.3.4 Absolute Symlinks

Most packaging rules tell you to use relative
symlinks (../ ...) instead of absolute (/ ...)
symlinks, because it allows the filesystem to
continue to be consistent even when the root
of the filesystem is mounted as a subdirectory
rather than as the system root directory; for ex-
ample, in some “rescue disk” situations.

This rationale is great, but Conary does some-
thing even better. It automatically converts
all absolute symlinks not just to relative
symlinks, but tominimal relative symlinks.
That is, if you create the absolute symlink

/usr/bin/foo -> /usr/bin/bar , Conary
will change that to/usr/bin/foo -> bar ,
and /usr/bin/foo -> /usr/lib/foo/

bin/foo to /usr/bin/foo -> ../lib/

foo/bin/foo . Therefore, for Conary, it
is best to use absolute symlinks in your
%(destdir)s and let Conary change them to
minimal relative symlinks for you.

6.4 Requirements

Conary has a very strong dependency system,
but it is a bit different from legacy dependency
systems. The biggest difference is that depend-
ing on versions is very different from any other
packaging system. Because Conary (by de-
sign) does not have a function that tries to guess
which upstream versions might be newer than
another upstream version, you cannot have a
dependency that looks like “upstream version
1.2.3 or greater.”

Because Conary has the capability for a rich
branching structure, trying to do version com-
parisons even on Conary versions for the pur-
poses of satisfying dependencies fails utility
tests. If you say that a shadow does not sat-
isfy a dependency that its parent satisfies, then
shadows are almost useless for creating deriva-
tive distributions. However, if you say that a
shadow does satisfy a dependency that its par-
ent satisfies, then a shadow that intentionally
removes some particular capability relative to
its parent will falsely satisfy versioned depen-
dencies. Trying to do strict linear comparisons
in the Conary version tree universe just does not
work.

Conary separates dependencies into different
spaces that are provided with individual se-
mantics. Each ELF shared library provides
a sonamedependency that includes the ABI
(for example,SysV), class (ELFCLASS32 or
ELFCLASS64encoded asELF32 or ELF64, re-
spectively), and instruction set (x86 , x86_64 ,
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ppc , and so forth) as well as any symbol ver-
sions (GLIBC_2.0 , GLIBC_2.1 , ACL_1.0 and
so forth). The elements are stored as sepa-
rateflags. Programs that link to the shared li-
braries have a dependency with the same for-
mat. These dependencies (requirements or pro-
visions) are coded explicitly as asoname de-
pendency class. The order in which the flags
are mentioned is irrelevant.

Trove dependencies are limited to components,
since they are the only normal troves that di-
rectly reference the files needed to satisfy the
dependencies. (Filesets also contain files, but
they are always files pulled from troves, so they
are not the primary sources of the files, and
they are not intended for this use.) By de-
fault, a trove dependency is just the name of the
trove, but it can also includecapability flags,
whose names are arbitrary and not interpreted
by Conary except checking for equality (just
like upstream versions).

This provides the solution to the version com-
parison problem. Trove A’s recipe does not re-
ally require upstream version 1.2.3 or greater
of trove B:devel in order to build. Instead,
it requires some certain functionality in trove
B:devel. The solution, therefore, is for pack-
age B to provide a relevant capability flag de-
scribing the necessary interface, and for trove
A’s recipe to require trove B:devel with that
capability flag. The capability flag could be
as simple as1.2.3 , meaning that it supports
all the interfaces supported by upstream ver-
sion 1.2.3 (the meaning of any package’s
capability flag is relative to only that pack-
age). So package B’s recipe would have to
call r.ComponentProvides(’1.2.3’) and
trove A’s recipe would have to require’B:

devel(1.2.3)’ .

This solution does require cooperation between
the packagers of A and B, but only in respect
to a single context. This means that you may
choose to shadow trove B in order to add this

capability flag in the context of your derived
distribution, if your upstream distribution does
not provide the capability your package re-
quires.

Do not add trove capability flags without good
reason, especially for build requirements. They
add complexity that is not always useful. Usu-
ally, the development branch for a distribu-
tion just needs to be internally consistent, and
adding lots of capability flags will just make it
harder for someone else to make a derivative
work from your distribution, particularly if they
are deriving from multiple distributions at once
(a reasonable thing to do in the Conary con-
text).

6.4.1 Build Requirements

Conary’s build requirements are intentionally
limited to trove requirements.

In general, there are two main kinds of build re-
quirements::runtime components (and their
dependencies) for programs that need to run at
build time, and:devel components (and their
dependencies) for libraries to which you need
to link.

Build requirements need to be added to a
list that is part of recipe metadata. Along
with name andversion , there is a list called
buildRequires , which is simply a list of
trove names (including, if necessary, flavors,
branch names, and capability flags, but not ver-
sions). It can be extended conditionally based
on flavors.

buildRequires = [
’a:devel(A_CAPABILITY)’,
’gawk:runtime’,
’pam:devel[!bootstrap]’,
’sqlite:devel=:sqlite2’,

]
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if Use.gtk:
buildRequires.append(

’gtk:devel’)

The buildRequires list does not have to
be exhaustive; you can depend on transitive
install-time dependency closure for the troves
you list. That is to say, in the example
above, you do not have to explicitly listglib:

devel , becausegtk:devel has an install-
time requirement forglib:devel . (The
buildRequires lists do not themselves have
transitive closure, as that would be meaning-
less; you never require a:source component
in a buildRequires list, and the dependen-
cies that the other components carry are install-
time dependencies.)

Build requirements for:runtime components
can be a little bit hard to find if you already
have a complete build environment, because
some of them are deeply embedded in scripts.
It is possible to populate a changeroot envi-
ronment with only those packages listed in the
buildRequires list and their dependencies,
then chroot to that environment and build in it
and look for failures, but it is not likely to be a
very useful exercise. The best approach here is
to add items to address known failure cases.

Build requirements for :devel com-
ponents are much simpler. Cook the
recipe to a local changeset, and then use
conary showcs --deps foo-1.0.ccs to
show the dependencies. (Better yet, use--all

instead of--deps and review the sanity of
the entire changeset.) Then, for each soname
requirement listed under eachRequires

section, add the associated component to the
list. (Right now, this takes too many steps;
you need to look for the library, then use
conary q --path /path/to/library

to find the name of the component. In the
future, there will be a simple command for
looking these up, and we are considering

automating the whole process of resolving
soname requirements tobuildRequires list
entries.)

6.4.2 Runtime Requirements

The best news about runtime requirements is
that you can almost ignore the whole problem.
The automatic soname dependencies handle al-
most everything for you without manual inter-
vention.

There are also some automatic file dependen-
cies, which present a little bit of an asymme-
try. Script files automatically require their in-
terpreters. That is, if a file starts with#!

/bin/bash that file (and thereby its com-
ponent) automatically has a requirement for
file: /bin/bash added to it. However,
there is no automatic provision of file paths.
This is because files are not primarily ac-
cessed by their paths, but rather by a long
numeric identifier (rather like an inode num-
ber in a filesystem, but much longer, and ran-
dom rather than sequential in nature). Files
can be tagged as providing their path, but this
must be done manually. In practice, this is not
a big problem; most programs that normally
act as script interpreters are already tagged as
providing their paths, and so the exceptions
tend to exist within a single trove. Those
cases are easy to fix; Conary refuses to in-
stall a trove saying that it cannot resolve a
file: /usr/bin/foo dependency, but the
trove itself contains the /usr/bin/foo file. Just
addr.Provides(’file’, ’%(bindir)s/

foo’) to the recipe.

The hard job with any dependency system is
working out the dependencies for shell scripts.
It is not practical to make shell dependencies
automatic for a variety of reasons (including
the fact that shell scripts could generate addi-
tional dependencies from the text of their in-
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put), and so it remains a manual process. If
you are lucky, the package maintainer has listed
the requirements explicitly in an INSTALL or
README file. If not, you need to glance
through shell scripts looking for programs that
they call. Since this is not a new problem, you
can in practice (for some packages, at least),
find the results of other people’s efforts in this
direction by reading RPM spec files and dpkg
debian/rules . This also tends to be an area
where dependencies accrete as a result of bug
reports.

There is one place where you need to be much
more careful about listing the requirements of
shell scripts: you must explicitly list all the re-
quirements of the tag handlers you write. This
should not be a great burden; most tag handlers
are short and call only a few programs. But if
you do not list them, Conary cannot ensure that
the tag handlers can always be run, which can
jeopardize not only successful installation but
also rollback reliability.

7 Release Management

Building software into a repository is already
an improvement over legacy package manage-
ment, but release and deployment need more
management and process than just building
software into a versioned repository. Several of
Conary’s features are useful for managing re-
lease and deployment; groups, branches, shad-
ows, redirects, and labels can all help.

Different release goals or deployment needs
will result in different policies and processes.
This paper uses some concrete examples to
demonstrate how Conary features can support
a release management process, but the mecha-
nisms are flexible and can support diverse pro-
cesses. A release can go through one QA step
or ten separate QA steps without changing the

fundamental processes. Release management
and deployment have many of the same needs,
so this paper will refer generally to release
management except when it is useful to distin-
guish between the two.

The capabilities needed for release manage-
ment include:

Staging Collecting troves (including locally
modified versions) to create a coherent set
for promotion to the next step in the pro-
cess.

Access Control Mandatory or advisory con-
trols on who can or should access a set of
troves.

Maintenance Controlled updates for sets of
troves.

In addition, the jargon for talking about Linux
distributions is somewhat vague and used in
conflicting ways. The following definitions ap-
ply to this discussion.

Distribution A notionally-connected set of
products consisting of an operating system
and related components. A distribution
might last for years, going through many
major release cycles. Examples include
rpath Linux, Foresight Linux, Red Hat
Linux, Fedora Core, Debian, Mandrake
(now Mandriva) Linux, CentOS, cAos,
and Gentoo.

Version One instance of a distribution prod-
uct, encompassing the entire “release cy-
cle,” which might include steps like alpha,
beta, release candidate, and general avail-
ability. Examples include rpath Linux 1,
Red Hat Linux 7.3, Fedora Core 2, etc.

Stage A working space dedicated to a task.
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ReleaseAn instance of any step in the distribu-
tion release management process. (This is
a slightly unusual meaning for “release;”
“version” and “release” are often used al-
most interchangeably, but for the purposes
of this discussion, we need to differentiate
these two meanings.) This might be alpha
1 release candidate 1, alpha 1 release can-
didate 2, alpha 1, beta 1, beta 2, release
candidate 1, general availability, and each
individual maintenance update.

A release of a version of a distribution is de-
fined (in Conary terms) by a unique version of
an inclusive group that defines the contents of
the distribution. In rpath Linux, that group is
calledgroup-os .

7.1 Example Release Management Process

The policy and much of the process in this ex-
ample is synthetic, but the version tree structure
it demonstrates (including the names for labels
in the example) is essentially the one that we
have defined for rpath Linux.

The development branch called/conary.

rpath.com@rpl:devel (hence,:devel ) is
where the latest upstream versions are com-
mitted. At some point, a group defin-
ing a distribution is shadowed to create
a base stage, /conary.rpath.com@rpl:

devel//rel-base (hence,//rel-base ) al-
lowing unfettered development to continue on
the :devel development branch, while con-
trolled development (a state sometimes called
“slush,” by analogy from “freeze”) is now pos-
sible on//rel-base .

Given a very simple, informal release manage-
ment process—say, one where only one person
is doing all the work, following all the process
from the time that the initial release stage is cre-
ated, and in which maintenance does not need

to be staged—this single shadow creating a sin-
gle stage might be sufficient. However, in order
to allow any controlled development to happen
in parallel with the full release engineering pro-
cess, and in order to allow maintenance work to
be staged, a two-level stage structure is neces-
sary.

Therefore, when the controlled development
has reached the point where an alpha release
is appropriate, another shadow is created on
which to freeze that release. This allows con-
trolled development to continue on the release
base stage: /conary.rpath.com@rpl:

devel//rel-base//rel-alpha (hence,
//rel-alpha ). Build the shadowed
group-os (or whatever you have called
your inclusive group), and the version you
have just created is a candidate alpha release.
Cycle through your test, fix, rebuild process
until you have a version ofgroup-os that
meets your criteria for release as an alpha. At
this point, that specific version ofgroup-os ,
say group-os=/conary.rpath.com@rpl:

devel//rel-base//rel-alpha/1.0.

1-2.3.1-35 , is your alpha 1 release.

Note that during the test, fix, rebuild process
for alpha 1, development work aimed at al-
pha 2 can already be progressing on the base
stage. Fixes that need to be put on the alpha
stage for alpha 1 can either be committed to the
base stage and thence shadowed to the alpha
stage, or if further development has happened
on the base stage that could destabilize the al-
pha stage, or the immediate fix is a workaround
or hack and the right fix has not yet been com-
mitted to the base stage, the fix, workaround,
or hack can be committed directly to the alpha
stage.

Then for the alpha 2 cycle, you re-shadow ev-
erything from the base stage to the alpha stage,
and start the test, fix, rebuild process over
again. When you get to betas, you just cre-
ate a beta stage:/conary.rpath.com@rpl:
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devel//rel-base//rel-beta (hence, //

rel-beta ) and work with it exactly as
you worked with the alpha stage. Fi-
nally, when you are ready to prepare re-
lease candidates, build them onto the fi-
nal release stage/conary.rpath.com@rpl:

devel//rel-base//rel (hence,//rel ) in
the same way.

Note that it is possible to do all your release
staging from first alpha to ongoing maintenance
onto the release stage//rel . However, using
separate named stages for alpha, beta, and gen-
eral availability can be a useful tool for commu-
nicating expectations to users. It is your choice
from a communications standpoint; it is not a
technical decision.

During maintenance, do all of your mainte-
nance candidates on the base stage, and pro-
mote the candidate inclusive group to the re-
lease stage by shadowing it when all the com-
ponents have passed all necessary tests.

All the stages are reallylabels, as well
as shadows. You can shadow any
branch you need to onto the base stage,
and you will probably want to shadow
troves from several branches. Not just
/conary.rpath.com@rpl:devel but also
branches like /conary.rpath.com@rpl:

devel/1.5.28-1-0/cyrus-sasl1/

(hence,:cyrus-sasl1 ) for different versions
where both versions should be installed at
once. With that :cyrus-sasl1 branch
and cyrus-sasl 2 from the:devel branch
both shadowed onto the base stage and
thence to the release stages, the command
conary update cyrus-sasl will put both
versions on your system.

When the release stage is no longer maintained,
you might choose to cook redirects (perhaps
only for your inclusive group, perhaps for all
the packages) to another, still-maintained re-
lease. This is purely a matter of distribution

policy.

8 Derived Distributions

The possibilities for creating derived distribu-
tions are immense, but a few simple examples
can show some of the power of creating derived
distributions.

The simplest example of a derived distri-
bution is the 100% derived distribution. If
you merely want control over deployment of
an existing distribution, just treat the parent
distribution’s release stage (//rel ) as your
base stage, and create a shadow of it in
your own repository. You will end up with
something like:/conary.rpath.com@rpl:

devel//rel-base//rel//conary.

example.com@rpl:myrel (hence,
//myrel ). Then, whenever a group on
//rel passes your acceptance tests, you
shadow it onto//myrel .

If you are doing anything more complicated,
you may want to set up two stages; your own
base stage and your own release stage. If you
are doing this, you probably do not want to
shadow a release stage as your base stage; you
will end up with very long version numbers like
1.2.0-2.0.4.0-1.0.1.0; each shadow adds a “. ”
character with a trailing number. You proba-
bly want either to shadow the parent distribu-
tion’s base stage, or even create your own base
stage. To create your own base stage, create
your own shadow of the parent distribution’s
inclusive group and make your own changes to
it. Those changes might be adding references
to some unique troves from your own repos-
itory, or to shadows in your repository from
other repositories.

You could create a private corporate distribu-
tion, with your repository inaccessible from
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outside, that contains your internally developed
software, or third-party proprietary software to
which you have sufficient license. (A source
trove doesn’t necessarily have to contain source
files; it could contain an archive of binary files
which are installed into the%(destdir)s .)
You could create a distribution in which every-
thing is identical to the parent, except that you
have your own kernel with special patches that
support hardware you use locally that is not yet
integrated into the standard kernel, and it has
two extra packages which provide user-space
control for that hardware.

It is also possible to make significant changes.
For example, Foresight Linux2 is built from
the same development branch as rpath Linux,
but about 20% of its troves are either spe-
cific to Foresight Linux or are shadows that
are changed in some way in order to meet
Foresight’s different goals as a distribution;
rpath Linux is meant to be very “vanilla,” with
few patches relative to upstream packages and
therefore easy to branch from, while Foresight
Linux is intended to provide the latest innova-
tions in GNOME desktop technology and opti-
mize the rest of the distribution to support this
role.

Conclusion

Conary combines system management and
software configuration management, sharing
features between the two models and imple-
menting them both using a distributed reposi-
tory that combines source code and the binaries
built from that source code. It brings a unique
set of features that simplify and unify sys-
tem management, software configuration man-
agement, and release management. This new

2http://www.foresightlinux.com/

model drastically reduces the cost and com-
plexity of creating customized Linux distribu-
tions. The best practices discussed in this paper
help you take advantage of this new paradigm
most effectively.



Profiling Java on Linux

John Kacur
IBM

jekacur@ca.ibm.com

Abstract

In this paper, I will examine two profilers.
IBM’s Open Source Performance Inspector and
OProfile which contains code that has been of-
ficially accepted into the Linux Kernel. Cur-
rently OProfile doesn’t work with programs
that dynamically generate code, such as Python
and Java JITs. Various people have proposed
patches that record events in anonymously
mapped memory regions as raw virtual ad-
dresses, instead of the usual tuple of binary im-
age and offset. This information can be post-
processed by matching it with the output gen-
erated by running a Java program with Perfor-
mance Inspector’s JPROF which uses JVMPI
to record addresses of JITted methods. In this
paper, I will discuss the details of profiling
Java, specifically looking at the inner work-
ings of OProfile and Performance Inspector. I
will discuss problems that we have encoun-
tered with both tools and our attempts to re-
solve them. Finally, I will demonstrate profil-
ing a java program to show the kind of infor-
mation that can be obtained.
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Abstract

Xen is an interesting and useful technology
that has made virtualization features, normally
found only in high-end systems, more widely
available. Such technology, however, demands
stability, since all virtual machines running on a
single system are dependent on its functioning
properly. This paper will focus on the methods
employed to test Xen, and how it differs from
normal LinuxR© testing. Additionally, this pa-
per discusses tests that are being used and cre-
ated, and automation tools that are being devel-
oped, to allow testers and developers working
on Xen to easily run automated tests.

1 Testing Linux vs. Testing Linux
Under Xen

Xen, which provides a high performance
resource-managed virtual machine monitor
(VMM) [2], is one of several open-source
projects devoted to offering virtualization soft-
ware for the Linux environment. As virtualiza-
tion is rapidly growing in popularity, Xen has
recently gained a lot of momentum in the open-
source community and is under active develop-
ment. Therefore, the need to test Xen becomes

Figure 1: Testing Linux With and Without Xen

a critical task to ensure its stability and relia-
bility. Most often, people run tests on Linux
under Xen in order to exercise Xen code and
to test its functionalities, as Xen is the hypervi-
sor layer that is below the Linux and above the
hardware.

1.1 Similarities

Testing Linux under Xen and testing Linux it-
self are very much alike. Those traditional test-
ing scenarios used to test Linux can also be ap-
plied to testing Linux under Xen. The most
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common testing done on Linux is testing dif-
ferent kernels and kernel configurations to un-
cover any regressions or new bugs. To help in-
sure binary compatibility, different versions of
glibc may also be used. Another big chunk of
tests done is a wide range of device I/O tests
including networking and storage tests. Also,
hardware compatibility testing is very impor-
tant to insure reliability across a broad range of
hardware such as x86, x86-64, UP, SMP, and
Blades.

The ABI for running Linux under Xen is no
different than running under Linux on bare
hardware, there is no change needed for user-
space applications when running on Linux un-
der Xen. In general, all user-space applications
that can be used to test Linux can be used to
test Linux on Xen. For example, memory in-
tensive web serving application and real world
large database applications are very good tools
to create high stress workload for both Xen and
the guest Linux OS.

1.2 Differences

Although testing Linux under Xen and testing
Linux are very similar, there are still some fun-
damental differences. First, Xen supports many
virtual machines, each running a separate oper-
ating system instance. Hence, on one physi-
cal machine, testing Linux under Xen involves
testing multiple versions of Linux, which can
be different on multiple domains, including
host domain and guest domain. The Linux dis-
tribution, library versions, compiler versions,
and even the version of the Linux kernel can be
different on each domain. Furthermore, each
domain can be running different tests without
disturbing the tests running on other domains.
The beneficial side of this is that you can use a
single machine to enclose and test upgrades or
software as if they were running in the existing

environment, but without disturbing the other
domains [3].

Second, running tests on Linux under Xen
guest domain actually accesses hardware re-
sources through Xen virtual machine inter-
faces, while running tests on Linux accesses
physical hardware resources directly. Xen
virtual machine interfaces have three aspects:
memory management, CPU, and device I/O [2].
In order to achieve virtualization on these three
aspects, Xen uses synchronous hypercalls and
an asynchronous event mechanism for control
transfer, and uses the I/O rings mechanism for
data transfer between the domains and the un-
derlying hypervisor. Therefore, even though
the Xen hypervisor layer appears to be trans-
parent to the application, it still creates an addi-
tional layer where bugs may be found.

Third, Xen requires modifications to the oper-
ating system to make calls into the hypervisor.
Unlike other approaches to virtualization, Xen
uses para-virtualization technology instead of
full virtualization to avoid performance draw-
backs [2]. For now, Xen is a patch to the Linux
kernel. Testing Linux on Xen will be testing
the modified Linux kernel with this Xen patch.
As Xen matures though, it may one day be part
of the normal Linux kernel, possibly as a sub-
architecture. This would simplify the process
of testing Xen and make it much easier for more
people to become involved.

2 Testing Xen With Linux

One useful and simple approach to testing Xen
is by running standard test suites under Linux
running on top of Xen. Since Xen requires no
user space tools, other than the domain man-
agement tools, this is a very straightforward ap-
proach. The approach to test Linux under Xen
described here is patterned after the approach
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Figure 2: Xen Testing Model

taken to test the development Linux kernels.
The traditional testing model used to test the
Linux kernel involves function, system, and in-
tegration testing. One clear advantage to this
approach is that results can easily be checked
against results of the same tests, running on an
unmodified kernel of the same version, running
on bare hardware.

The Linux Test Project (LTP) test suite is the
primary tool we used in function testing. LTP
is a comprehensive test suite made up of over
two thousand individual test cases that test such
things as system calls, memory management,
inter-process communications, device drivers,
I/O, file systems, and networking. The LTP
is an established and widely used test suite in
the open source community, and has become a
de facto verification suite used by developers,
testers, and Linux distributors who contribute
enhancements and new tests back to the project.

The system testing approach involves running
workloads that target specific sub-systems. For
example, workloads that are memory intensive
or drive heavy I/O are used to stress the system
for a sustained period of time, say 96 hours.
These tests are performed after function tests
have successfully executed; thus, defects that
manifest only under stressful conditions are

discovered. For example, in past system test ef-
forts testing development Linux kernels, a com-
bination of I/O heavy and file system stress
test suites have been used such as IOZone,
Bonnie, dbench, fs_inode, fs_maim, postmark,
tiobench, fsstress, and fsx_linux. The tests are
executed on a given file system, sustained over
a period of time to expose defects. The com-
bination of these tests have proven themselves
particularly useful in exposing defects in many
parts of the kernel.

Integration testing is done after function and
system testing have been successfully executed.
This type of testing involves the running of
multiple, varied workloads that exercise most
or all subsystems. A database workload, for ex-
ample, is used to insert, delete, and update mil-
lions of database rows, stressing the I/O sub-
system, memory management, and networking
if running a networked application. Addition-
ally, other workloads are run in parallel to fur-
ther stress the system. The objective is to create
a realistic scenario that will expose the oper-
ating systems to interactions that would other-
wise not be exercised under function or system
test.

Figure 3, Sample Network Application, il-
lustrates an integration test scenario where a
database application, the Database Open source
Test Suite (DOTS), is used to create a pseudo-
networked application running both the clients
and the server on virtual machines running on
the same hardware under Xen. Obviously, this
is an unlikely scenario in the real world, but it
is useful in test to induce a workload in a test
environment.

3 Testing Xen More Directly

While much of the functionality of Xen can
be tested using Linux and standard tests, there



274 • Testing the Xen Hypervisor and Linux Virtual Machines

Figure 3: Sample Network Application

are many features that are very specific to Xen.
Such features often require careful attention to
insure they are adequately tested. A couple of
examples include privileged hypercalls, and the
balloon driver. A testing strategy for each is
briefly outlined here to illustrate why simply
running Linux as a guest OS under Xen and
running standard tests does not suffice for test-
ing Xen as a whole.

3.1 Testing Privileged Hypercalls

Domain 0 in Xen is considered to be a privi-
leged domain. As the privileged domain, there
are certain operations that can only be per-
formed from this domain. A few of these privi-
leged operations include:

1. DOM0_CREATEDOMAIN– create a new do-
main

2. DOM0_PAUSEDOMAIN– remove a domain
from the scheduler run queue

3. DOM0_UNPAUSEDOMAIN– mark a paused
domain as schedulable again

4. DOM0_DESTROYDOMAIN– deallocate all
resources associated with a domain

5. DOM0_IOPL– set I/O privilege level

6. DOM0_SETTIME– set system time

7. DOM0_READCONSOLE– read console con-
tent from the hypervisor buffer ring

These are just a few of the privileged operations
available only to domain 0. A more complete
list can be found inxen/include/public/

dom0_ops.h or in the Xen Interface Manual
[4].

Many of these operations perform actions on
domains such as creating, destroying, pausing,
and unpausing them. These operations can
easily be tested through the Xen management
tools. The management tools that ship with
Xen provide a set of user space commands that
can be scripted in order to exercise these oper-
ations.

Other operations, such asDOM0_SETTIME, can
be exercised through the use of normal Linux
utilities. In the case ofDOM0_SETTIME, some-
thing like hwclock --systohc may be
used to try to set the hardware clock to that of
the current system time. The return value of
that command on domain 0 is 0 (pass) while on
an unprivileged domain it is 1 (fail). This sim-
ple test not only verifies that it succeeds as ex-
pected on domain 0, but also sufficiently shows
that the operation fails as expected on an un-
privileged domain.

For something like IOPL, there are tests in LTP
that exercise the system call. These tests are
expected to pass on domain 0, but fail on un-
privileged domains. This is an example where
a the results of a test may be unintuitive at first
glance. The iopl test in LTP will prominently
display a failure message in the resulting test
output, but context must be considered as a
“FAIL” result would be considered passing in
unprivileged domains.
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Still other operations such asDOM0_

READCONSOLEare probably best, and easiest
to test in an implicit manner. The functionality
of readconsole may be exercised by simply
booting Xen and watching the output for
obviously extraneous characters, or garbage
coming across the console. Moreover, features
of the console can be tested such as pressing
Control-A 3 times in a row to switch back and
forth from the domain 0 console to the Xen
console.

3.2 Testing the Xen Balloon Driver

Another feature of Xen that warrants attention
is the balloon driver. The balloon driver al-
lows the amount of memory available to a do-
main to dynamically grow or shrink. The cur-
rent balloon information for a domain running
Linux can be seen by looking at the contents of
/proc/xen/balloon . This is an example of
the resulting output:

# cat /proc/xen/balloon
Current allocation: 131072 kB
Requested target: 131072 kB
Low-mem balloon: 0 kB
High-mem balloon: 0 kB
Xen hard limit: ??? kB

This feature is wide open to testing possibili-
ties. Some of the possible test scenarios for the
balloon driver include:

1. Read from/proc/xen/balloon .

2. Echo a number higher than current ram to
balloon, cat balloon and see that requested
target changed.

3. Echo a number lower than current ram to
balloon, cat balloon and see that requested
target and current allocation changed to
that number.

4. Allocate nearly all available memory
for the domain, then use/proc/xen/

balloon to reduce available memory to
less than what is currently allocated.

5. Try to give/proc/xen/balloon a value
larger than the available RAM in the sys-
tem.

6. Try to give/proc/xen/balloon a value
way too low, say 4k for instance.

7. Write something to /proc/xen/

balloon as a non-root user, expect
-EPERM.

8. Write 1 byte to /proc/xen/balloon ,
expect-EBADMSG.

9. Write >64 bytes to /proc/xen/

balloon , expect-EFBIG .

10. Rapidly write random values to/proc/

xen/balloon .

Many of the above tests may also be performed
by using an alternative interface for controlling
the balloon driver through the domain manage-
ment tools that come with Xen. Scripts are be-
ing written to automate these tests and report
results.

4 Xentest

In the process of testing Xen, occasionally a
patch will break the build, or a shallow bug will
get introduced from one day to the next. These
kinds of problems are common, especially in
large projects with multiple contributers, but
they are also relatively easy to look for in an
automated fashion. So, a decision was made
to develop an automated testing framework
centered around Xen. This automated testing
framework is calledXentest.
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There are, of course, several test suites already
available that may be employed in the testing
of Xen. It should be made clear that Xentest is
not a test suite, but rather an automation frame-
work. The main purpose of Xentest is to pro-
vide automated build services, start the execu-
tion of tests, and gather results. That being
said, the build and boot part of Xentest can be
considered a build verification test (BVT) in its
own right.

Our hope is that Xentest can be used by anyone
with a spare machine to execute nightly tests of
Xen. It was designed to be simple and unobtru-
sive, while still providing the basic functional-
ity required in an automated testing framework.
Our goals were:

1. Use existing tools in Xen wherever possi-
ble.

2. Simple and lightweight design, requires
only a single physical machine to run.

3. Supports reusable control files.

4. Tests running under Xentest are easily ex-
tended by just adding lines to the control
file.

At the time this is being written, Xentest is
composed of three main scripts named xen-
build, xenstartdoms, and xenruntests. There is
also a small init.d script, and a control file is
used to describe information such as: where
to pull Xen from, which virtual machines to
launch, and which tests to run on which virtual
machines. A shared directory must also be cre-
ated and defined in the control file. The shared
directory is used for communicating informa-
tion down to the virtual machines, and for stor-
ing results for each virtual machine. Usually,
something like NFS is used for the shared di-
rectory.

Figure 4: Xentest process

The xenbuild script takes a single argument,
the name of control file to use for this test.
That control file is first copied to/etc/xen/

xentest.conf . The xenbuild script is re-
sponsible for downloading the appropriate ver-
sion of Xen, building it, and rebooting the sys-
tem. Before the system reboot occurs, a file is
created in/etc calledxen_start_tests .
The init.d script checks for the existence of
this file to signify that it should launch the re-
maining scripts at boot time.

If the init.d script has detected the exis-
tence of /etc/xen_start_tests , the next
script to be executed after a successful reboot
is xenstartdoms. The xenstartdoms script reads
/etc/xentest.conf and callsxm create
to create any virtual machines defined in the
control file. The xenstartdoms script also cre-
ates subdirectories for each virtual machine in
the shared directory for the purpose of stor-
ing test results. For now though,/etc/
xentests.conf , which is a copy of the
original control file passed to xenbuild, is
copied into that directory.
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The xenruntests script looks for a directory
matching its hostname in the shared directory.
In this directory it expects to find a copy of
xentests.conf that was copied there by
xenstartdoms. All domains, including dom0,
look for xentests.conf there in the xen-
runtests scripts, so that no special handling is
needed for domain 0. Xenruntests is the only
script executed in all domains. After reading
the control file in, xenruntests finds the section
corresponding to the virtual machine it is run-
ning on, and reads a list of tests that it needs to
execute. A section corresponding to each test is
then located in the control file telling it where to
download the test from, how to build and install
the test, how to run the test, and where to pick
up logs from. After performing all these tasks
for each test, xenruntests removes its own copy
of the control file stored in the shared directory.
This signifies that it is complete, and prevents
the possibility of it from interfering with future
runs.

5 Xentest control file format

The Xentest control file structure is simple and
easy to read, but it is also highly configurable.
It allows tests to be easily defined, and executed
independent of one another on multiple guests.
The ConfigParser class in python is used to im-
plement Xentest control files, so the control file
structure adheres to RFC 822 [1]. Let’s take a
look at a basic control file.

[Preferences]
xen-tree=xen-unstable
shared_dir=/xentest/shared

This section defines the tree you want down-
loaded for testing, and the shared directory
to use. Remember that these config files are
reusable, so it’s easy to set up a control file

for any given machine to explicitly run tests
on the stable, testing, and unstable Xen builds.
The other variable here is the shared directory,
which was discussed previously and is usu-
ally mounted over something like NFS. The
/etc/fstab should be configured to auto-
matically mount the shared directory for every
domain configured for testing under Xentest.

[Locations]
xen-2.0=http://www.where/to/

download/xen-stable.tgz
xen-2.0-testing=http://www.where/

to/download/xen-testing.tgz
xen-unstable=http://www.where/to/

download/xen-unstable.tgz

The locations in this section simply describe
where to download each of the Xen nightly
snapshot tarballs. More can be added if it
ever becomes necessary. To work properly, the
value for xen-tree above must simply match the
variable name of one of these locations.

[LTP]
source_url=http://where.to.download/

ltp/ltp-full-20050207.tgz
build_command=make
install_command=make install
test_dir=ltp-full-20050207
log_dir=logs/ltp
run_command=./runltp -q > \

../logs/ltp/runltp.output

A bit more information is require to describe a
specific test to Xentest. First,source_url
describes where to get the tarball for the test
from. Currently gzip and bzip2 compressed tar
files are supported.

Thetest_dir variable tells Xentest the name
of the directory that will be created when it ex-
tracts the tarball. After changing to that direc-
tory, Xentest needs to know how to build the
test. The command used for building the test, if
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any command is needed, is stored inbuild_
command. Likewise, if any commands are
needed for installing the test before execution,
Xentest can determine what to run by looking
at the value ofinstall_command .

The value oflog_dir is used to tell Xen-
test where to pick up the test output from, and
run_command tells it how to run the test.
This will be enough or more than enough to
handle a wide variety of tests, but for espe-
cially complex tests, you might consider writ-
ing a custom script to perform complex setup
tasks beyond the scope of what is configurable
here. Then all that would need to be defined
for the test issource_url , test_dir , and
run_command .

Since Xentest relies on the ConfigParser class
in python to handle control files, variables may
be used and substituted, but only within the
same section, or if they are defined in the
[DEFAULT] section. For instance, if tempo-
rary directory was defined in this section as
tempdir , then variables likelog_dir can
be specified as:

log_dir=%(tempdir)s/logs/ltp

Since the temporary directory is more appro-
priately defined under the domain section (de-
scribed below), a variable substitution cannot
be used here. It is for this reason that all di-
rectories in the test section are relative to the
path of the temporary directory on the domain
being tested. Even though the variable substitu-
tion provide by the python ConfigParser class is
not available for use in this case, there may be
other situations where a Xentest user can define
variables in [DEFAULT], or in the same sec-
tion that would be useful for substitution. This
allows for a great range of configuration possi-
bilities for different environments.

[XENVM0]

tempdir=/tmp
config=none
name=bob13
test1=LTP

[XENVM1]
tempdir=/tmp
config=/home/plars/xen/xen-sarge/

bob13-vm1.config
name=bob13-vm1
test1=LTP

[XENVM2]
tempdir=/tmp
config=/home/plars/xen/xen-sarge/

bob13-vm2.config
name=bob13-vm2

These three sections describe the domains to be
started and tested by Xentest. The only require-
ment for these section names is that they start
with the stringXENVM. That marker is all Xen-
test needs in order to understand that it is deal-
ing with a domain description, anything after
that initial string is simply used to tell one from
another.

The config variable sets the config file that
will be used to start the domain, if any. If
this variable is set, that file will be passed to
xm create -f in order to start the domain
running. In the case of domain 0, or in the event
that the domain will already be started by some
other mechanism before Xentest is started, the
field may be left blank.

Thetempdir variable is used to designate the
temporary directory that will be used on that
domain, since you may want a different direc-
tory for every one of them. Thename variable
should match the hostname of the domain it is
running on. Remember that this file is going to
get copied into the shared directory for every
domain to look at. In order to figure out where
its tempdir is, each domain will find its sec-
tion in the control file by simply looking for its
own hostname in one of the XENVM sections.
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Notice that Xentest does not try to understand
whether a test passes or fails. Determination of
test exit status is best left up to post-processing
scripts that may also contain more advanced
features specific to the context of an individual
test. Such features may include:

1. Results comparisons to previous runs

2. Nicer output of test failures

3. Graphing capabilities

4. Test failure analysis and problem determi-
nation

5. Results summaries for all tests

No post-processing scripts are currently pro-
vided as part of Xentest, but as more tests are
developed for testing Xen, they would be a use-
ful enhancement.

Xenfc is an error or negative path test for the
domain 0 hypercalls in Xen, and was originally
written by Anthony Liguori. What that means
is that xenfc attempts to make calls into the hy-
pervisor, most of which are expected to fail, and
checks to see that it received the expected er-
ror back for the data that was passed to the hy-
percall. Furthermore, xenfc does not systemat-
ically test all of the error conditions, but rather
generates most of its data randomly. It is prob-
abilistically weighted towards generating valid
hypercalls, but still with random data.

Xenfc generates a random interface version 1%
of the time, the other 99% of the time it uses
the correct interface version. 80% of the time,
a valid hypercall is generated, 20% of the time,
it is a random hypercall. The random nature of
this test accomplishes three important goals:

1. Stress testing the error code path in Xen
hypercalls

2. Consistency checking in error handling
with different data

3. Bounds checking, as often the data is on
the edge, far off from expected limits

Valid commands currently tested by xenfc are:

1. DOM0_CREATEDOMAIN

2. DOM0_PAUSEDOMAIN

3. DOM0_UNPAUSEDOMAIN

4. DOM0_DESTROYDOMAIN

These are only a few of the domain 0 hyper-
calls currently available in Xen, and more tests
are being added to cover these in xenfc. Even
in its current state though, xenfc has turned up
some interesting results, and uncovered bugs
in Xen not yet seen in any other tests. Tests
such as xenfc are highly effective at uncovering
corner cases that are hard to reproduce by con-
ventional means. Even though bugs like this
are difficult to find in normal use, that does not
make them any less serious. Even though xenfc
relies heavily on randomization, the seed is re-
ported at the beginning of every test run so that
results can be reproduced.

Xenfc currently supports the following options:

1. s – specify a seed rather than generating
one for reproducing previous results

2. l – specify a number of times to loop the
test, new random data and calls are gener-
ated in each loop

Here is some sample output of xenfc in its cur-
rent form:



280 • Testing the Xen Hypervisor and Linux Virtual Machines

Seed: 1114727452
op

.cmd = 9

.interface_version = 2863271940

.u.destroydomain
.domain = 41244

Expecting -3
PASS: errno=-3 expected -3

In this example, xenfc is calling theDOM0_

DESTROYDOMAINhypercall. The interface ver-
sion is valid, but the domain it’s being told to
destroy is not, so-ESRCH is expected. Be-
fore attempting to execute the hypercall, the
dom0_op_t structure is dumped along with
the relevant fields for this particular call. This
can help debug the problem in the event of a
failure.
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Abstract

Intel R© I/O Acceleration Technology (I/OAT) is
a set of features designed to improve network
performance and lower CPU utilization. This
paper discusses the implementation of Linux
support for the three features in the network
controller and platform silicon that make up
I/OAT. It also covers the bottlenecks in network
receive processing that these features address,
and describes I/OAT’s impact on the network
stack.

1 Introduction

As network technology has improved rapidly
over the past ten years, a significant gap has
opened between the CPU overhead for sending
and for receiving packets. There are two key
technologies that allow the sending of packets
to be much less CPU-intensive than receiving
packets.

First, TCP segmentation offload (TSO) allows
the OS to pass a buffer larger than the con-
nection’s Maximum Transmission Unit (MTU)
size to the network controller. The controller
then segments the buffer into individual Eth-
ernet packets, attaches the proper protocol
headers, and transmits. Without TSO, each

MTU-sized data buffer must be passed to the
controller individually, which is more CPU-
intensive.

Second, data to be transmitted need not even
be touched by the CPU, allowing zero-copy
operation. Using thesendfile() interface,
the kernel does not need to copy the user data
into networking buffers, but can point to pages
pinned in the page cache as the source of the
data. This also does not pollute the CPU cache
with data that is not likely to be used again, and
lowers the CPU cycles needed to send a packet.

However, neither of the above optimizations
can be applied to improve receive performance.
I/OAT attempts to alleviate the additional over-
head of receive packet processing with the ad-
dition of three additional features:

1. Split headers

2. Multiple receive queues

3. DMA copy offload engine

Each of these is targeted to solve a partic-
ular bottleneck in receive processing. They
should help to alleviate receive processing
overhead issues by allowing better network re-
ceive throughput and/or lower CPU utilization.
Each can be implemented without requiring
radical changes to the way the Linux network
stack currently works.

• 281 •
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2 Split Headers

For transmission over the network, several lay-
ers of headers are attached to the actual appli-
cation data. One common example consists of
a TCP header, an IP header, and an Ethernet
header, the former each in turn wrapped by the
latter. (This is a gross simplification of the va-
rieties of network headers, made for the sake
of convenience.) When receiving a packet, at a
minimum the network controller only must ex-
amine the Ethernet header, and all the rest of the
packet can be treated as opaque data. There-
fore, when the controller DMA transfers a re-
ceived packet into a buffer, it typically transfers
the TCP/IP and Ethernet headers along with the
actual application data into a single buffer.

Recognizing higher-level protocol headers can
allow the controller to perform certain opti-
mizations. For example, all modern controllers
recognize TCP and IP headers and use this
knowledge to perform checksum validation, of-
floading this task from the OS’s network stack.

I/OAT adds support for split headers. Using
this capability, the controller can partition the
packet between the headers and the data, and
copy these into two separate buffers. This has
several advantages. First, it allows both the
header and the data to be optimally aligned.
Second, it allows the network data buffer to
consist of a small slab-allocated header buffer
plus a larger, page-allocated data buffer. Sur-
prisingly, making these two allocations is faster
than one large slab allocation, due to how the
buddy allocator works. Third, split header sup-
poer results in better cache utilization by not
polluting the CPU’s cache with any application
data during network processing.

3 Multiple Receive Queues

While the processing of large MTU-sized pack-
ets is not generally CPU limited, receiving
many small packets requires additional pro-
cessing that can fully tax the CPU, resulting in a
bottleneck. Even on a system with many CPUs,
this may limit throughput, since processing for
a network controller occurs on a single CPU—
the one which handled the controller’s inter-
rupt.

Multiple receive queues allow network process-
ing to be distributed among more than one
CPU. This improves utilization of the available
system resources, and results in higher small-
packet throughput by alleviating the CPU bot-
tleneck.

The next-generation Intel network controller
has multiple receive queues. The queue for a
given packet is chosen by computing a hash of
certain fields in its protocol headers. This re-
sults in all packets for a single TCP stream be-
ing placed on the same queue.

After packets are received and an interrupt
generated, the interrupt service routine uses
a newly-added function calledsmp_call_
async_mask() to send inter-processor inter-
rupts (IPIs) to the two CPUs that have been
configured to handle the processing for each
queue:

struct call_async_data_struct {
void ( ∗func) (void ∗info);

void ∗info;

cpumask_t cpumask;

atomic_t count;

struct list_head node;

};

int smp_call_async_mask(

struct call_async_data_struct

∗call_data);
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The IPI runs a function that starts NAPI polling
on each CPU, using a hidden polling netdev.

The existing mechanism for running a function
on other CPUs,smp_call_function() ,
cannot be called from interrupt context; waits
for the function to complete; and runs the
function on all CPUs, instead of allowing the
called CPUs to be specified. These shortcom-
ings were addressed by addingsmp_call_
async_mask() .

The overhead of using IPIs is minimized be-
cause of NAPI. An IPI is only needed to enter
NAPI polling mode for the two queues. Once in
NAPI mode, the two CPUs independently pro-
cess packets on their queues without any addi-
tional overhead.

On single-processor systems, a single receive
queue is used, since there are no additional
CPUs to perform packet processing. In addi-
tion, on multi-CPU systems that also support
HyperThreading, we ensure that the two CPU
threads targeted for receive processing do not
share the same physical core.

Preliminary benchmark results show this im-
plementation results in greater small-packet
throughput.

4 DMA Copy Offload Engine

As shown in Table 1, the most time during
receive processing is spent copying the data.
While a modern processor can handle these
copies for a single gigabit connection, when
multiple gigabit links, or a ten-gigabit connec-
tion is present, the processor may be swamped.
All the cycles spent copying incoming packets
are cycles that prevent the CPU from perform-
ing more demanding computations.

Samples Percent Function

48876 18.1772 __copy_user_intel
10382 3.8611 tcp_v4_rcv
10206 3.7957 e1000_intr
7640 2.8414 schedule
7130 2.6517 e1000_irq_enable
6965 2.5903 eth_type_trans
6355 2.3635 default_idle
6300 2.3430 find_busiest_group
6231 2.3173 packet_rcv_spkt

Table 1: oprofile data taken during netperf TCP
receive test (TCP_MAERTS), e1000

I/OAT offloads this expensive data copy op-
eration from the CPU with the addition of a
DMA engine—a dedicated device to do mem-
ory copies. While the DMA engine performs
the data copy, the CPU is free to proceed with
processing the next packet, or other pending
task.

4.1 The DMA Engine

The DMA engine is implemented as a PCI-
enumerated device in the chipset, and has mul-
tiple independent DMA channels with direct
access to main memory. When the engine com-
pletes a copy, it can optionally generate an in-
terrupt.1

4.2 The Linux DMA Subsystem

The I/OAT DMA engine was added specifi-
cally to benefit network-intensive server loads,
but its operation is not coupled tightly with the
network subsystem, or the network controller
driver.2 Therefore, support is implemented as
a “DMA subsystem.” This subsystem exports a

1Further hardware details will be available once plat-
forms with the DMA engine are generally available.

2Future generations may be more tightly integrated.
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generic async-copy interface that may be used
by other parts of the kernel if modified to use
the subsystem interface. It should be easy for
other subsystems to make use of the DMA ca-
pability, so we made async memcpy look as
much like normal memcpy as possible. This
abstraction also gives hardware designers the
freedom to develop new DMA engine hardware
interfaces in the future.

The first step for kernel code to use the DMA
subsystem is to register, usingdma_client_
register() , and request one or more DMA
channels:

typedef void

( ∗dma_event_callback)(

struct dma_client ∗client,

struct dma_chan ∗chan,

enum dma_event_t event);

struct dma_client ∗
dma_client_register(

dma_event_callback

event_callback);

void

dma_client_chan_request(

struct dma_client ∗client,

unsigned int number);

Depending on where in the kernel init process
this is done, DMA channels may be already
available for allocation, or may be enumerated
later, at which point clients who have asked for
but not yet received channels will have their
callback called, indicating the new channel may
be used.3 Clients need to handle the failure to

3The initial need to make channel allocation asyn-
chronous was driven by the desire to use it in the net
stack. The net stack initializes very early, before PCI de-
vices are enumerated, so use of a synchronous allocation
method would result in the net stack asking for DMA
channels before any were available, and then never get-
ting any, once they were.

receive a DMA channel gracefully. This is usu-
ally easy to do, as the client can fall back to
non-offloaded copying.

(The initial need to make channel allocation
asynchronous was driven by the desire to use
it in the net stack. The net stack initializes very
early, before PCI devices are enumerated, so
use of a synchronous allocation method would
result in the net stack asking for DMA chan-
nels before any were available, and then never
getting any, once they were.)

Once a client has a DMA channel, it can start
using copy offload functionality:

dma_cookie_t
dma_memcpy_buf_to_buf(

struct dma_chan ∗chan,
void ∗dest,
void ∗src,
size_t len);

dma_cookie_t
dma_memcpy_buf_to_pg(

struct dma_chan ∗chan,
struct page ∗page,
unsigned int offset,
void ∗kdata,
size_t len);

dma_cookie_t
dma_memcpy_pg_to_pg(

struct dma_chan ∗chan,
struct page ∗dest_pg,
unsigned int dest_off,
struct page ∗src_pg,
unsigned int src_off,
size_t len);

Notice that in addition to a version that takes
kernel virtual pointers for source and destina-
tion, there are also versions to copy from a
buffer to a page, as well as from page to page.4

4Many parts of the kernel use a pointer to a buffer’s
struct page instead of a pointer to the memory itself,
since on systems with highmem, not all physical memory
is directly addressable by the kernel.
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These operations are asynchronous and the
copy is not guaranteed to be completed when
the function returns. It is necessary to use an-
other function to wait for the copies to com-
plete. These functions return a non-negative
“cookie” value on success, which is used as a
token to wait on:

enum dma_status_t
dma_wait_for_completion(

struct dma_chan ∗chan,
dma_cookie_t cookie);

enum dma_status_t
dma_memcpy_complete(

struct dma_chan ∗chan,
dma_cookie_t cookie);

Typically, a client has a series of copy oper-
ations it can offload, but there comes a point
when it cannot continue until all the copy oper-
ations are guaranteed to have been completed.
At this point, the client can use the above func-
tions with the last cookie value returned from
the memcpy functions. If the copy operations
have been properly parallelized they may al-
ready be complete. If not, the client uses one
of the above functions, depending on if it wants
to sleep, or not.

4.3 Net Stack Changes Required for Copy
Offload

The Linux network stack’s basic copy-to-user
operation is from a series of struct skbuffs (also
known as SKBs) each generally containing one
network packet, to an array of struct iovecs
each describing a user buffer.5 Both these data
structures are rather complex, which compli-
cates matters.

In addition, final TCP processing and the copy-
to-user operation must happen in the context of
the process for the following reasons:

5Usually the array will contains only one entry, but if
readv() is used, it will contain more.

1. The user buffer (described by the iovec) is
pageable. If it is paged out when written,
it will generate a page fault. Page faults
can only be handled in process context.

2. If the network controller does not imple-
ment TCP checksum capability, it is pos-
sible to do the copy-to-user and checksum
in one step. However, almost all modern
controllers support hardware TCP check-
sum.

3. ACK generation. Waiting until in the
process context to generate TCP ACKs
ensures that the ACKs represent the ac-
tual rate that the process is getting sched-
uled and receiving packets. If the stack
ACKed as soon as the packet was re-
ceived, this might cause the receiver to be
overwhelmed[DM].

These three reasons drove the implementation
of the changes to the network stack. In order to
achieve proper parallelism, it is crucial that we
begin the copy as soon as possible, from bottom
half or interrupt context, and not wait until after
the return to process context. Therefore, we:

1. Lock down the user buffer, usingget_
user_pages() . There is a real perfor-
mance penalty associated with doing this
(measured ~6800 cycles to pin, ~5800 to
un-pin) that must be saved via copy paral-
lelism before we achieve a benefit.

2. Do not initiate engine-assisted copies on
non-HW-checksummed data.

3. Wait until we are in the process context to
generate ACKs.

While this code is still under development, the
current sequence of events is:
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1. When enteringtcp_recvmsg() as a re-
sult of a read() system call, the iovec
is pinned in memory. This generates a
list of pages that map to the iovec, which
we save in a secondary structure called the
locked_list .

2. The process sleeps.

3. Packets arrive and an interrupt is gener-
ated. NAPI polling starts, and packets are
run up the net stack totcp_v4_rcv() .

4. Normally the packet is placed on the pre-
queue so TCP processing is completed
in the process context. However,tcp_
prequeue also tries doing fastpath pro-
cessing on the packet, and if success-
ful, starts the copy to the user buffer.
Even though it is executing from a bot-
tom half and copying to a user buffer,
it will not take a page fault, since the
pages are pinned in memory. For each
such packet, we set a flag in the SKB,
copied_early .

5. The process wakes up, and checks the pre-
queue for packets to process. For any
packets with thecopied_early flag
set, fastpath checks are skipped, and ACK-
generation starts.

6. Normally at the end of tcp_rcv_
established() the skb is freed by
calling __kfree_skb() . However, the
DMA engine may still be copying data,
so it is necessary to wait for copy com-
pletion. Instead of being freed, the SKB
is placed on another queue, theasync_
wait_queue .

7. The process waits for the last cookie to
be to be completed, usingdma_wait_
for_completion .

8. The iovec is un-pinned and its pages are
marked dirty.

9. All SKBs in the async_wait_queue
are freed.

10. The system call is completed.

Using this mechanism packet processing by the
CPU and the DMA engine’s data copies take
place in parallel. Of course, for a user buffer to
be available for the early async copy to com-
mence, the user process must make a buffer
available prior to packet reception by using
read() . If the process is usingselect() or
poll() to wait for data, user buffers are not
available until data has already arrived. This
reduces the parallelism possible, although re-
duced CPU utilization should still be attainable.
Further work into asyncronous network inter-
faces may allow better utilization of the DMA
engine.

5 Conclusion

Each of these new features targets a specific
bottleneck in the flow of handling received
packets, and we believe they will be effective in
alleviating them. However, more development,
testing, and benchmarking is needed. This pa-
per is meant to be a starting point for further
discussions in these areas—we look forward to
working with the Linux community to support
these features.
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Abstract

Device-mapper, the new Linux 2.6 kernel
generic device-mapping facility, is capable of
mapping block devices in various ways (e.g.
linear, striped, mirrored). The mappings are
implemented in runtime loadable plugins called
mapping targets.

These mappings can be used to support arbi-
trary software RAID solutions on Linux 2.6,
such as ATARAID, without the need to have
a special low-level driver as it used to be with
Linux 2.4. This avoids code-redundancy and
reduces error rates.

Device-mapper runtime mappings (e.g. map
sector N of a mapped device onto sector M of
another device) are defined in mapping tables.

The dmraid application is capable of creating
these for a variety of ATARAID solutions (e.g.
Highpoint, NVidia, Promise, VIA). It uses an
abstracted representation of RAID devices and
RAID sets internally to keep properties such
as paths, sizes, offsets into devices and lay-
out types (e.g. RAID0). RAID sets can be
of arbitrary hierarchical depth in order to re-
flect more complex RAID configurations such
as RAID10.

Because the various vendor specific meta-
data formats stored onto ATA devices by the

ATARAID BIOS are all different, metadata
format handlers are used to translate between
the ondisk representation and the internal ab-
stracted format.

The mapping tables which need to be loaded
into device-mapper managed devices are de-
rived from the internal abstracted format.

My talk will give a device-mapper architec-
ture/feature overview and elaborate on the dm-
raid architecture and how it uses the device-
mapper features to enable access to ATARAID
devices.

1 ATARAID

Various vendors (e.g. Highpoint, Silicon Im-
age) ship ATARAID products to deploy Soft-
ware RAID (Redundant Array Of Inexpensive
Disks) on desktop and low-end server system.
ATARAID essentially can be characterized as:

• 1-n P/SATA or SCSI interfaces

• a BIOS extension to store binary RAID set
configuration metadata on drives attached

• a BIOS extension to map such RAID sets
in early boot and access them as a single
device so that booting off them is enabled

• 289 •
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• an operating system driver (typically for
Windows) which maps the RAID sets after
boot and updates the vendor specific meta-
data on state changes (e.g. mirror failure)

• a management application to deal with
configuration changes such as mirror fail-
ures and replacements

Such ATARAID functionality can either be
provided via an additional ATARAID card or it
can be integrated on the mainboard as with so-
lutions from NVidia or VIA. It enables the user
to setup various RAID layouts, boot off them
and have the operating system support them as
regular block devices via additional software
(hence the need for Windows drivers). Most
vendors do RAID0 and RAID1, some go be-
yond that by offering concatenation, stacked
RAID sets (i.e. RAID10) or higher RAID levels
(i.e. RAID3 and RAID5).

1.1 Some metadata background

The vendor on-disk metadata keeps informa-
tion about:

• the size(s) of the areas mapped onto a disk

• the size of the RAID set

• the layout of the RAID set (e.g. RAID1)

• the number of drives making up the set

• a unique identifier (typically 1 or 2 32 bit
numbers) for the set

• the state of the set (e.g. synchronized for
RAID1) so that the driver can start a resyn-
chronization if necessary

What it usually doesn’t keep is a unique hu-
man readable name for the set which means,

that dmraid needs to derive it from some avail-
able unique content and make a name up. The
tradoff is, that names are somewhat recondite.

Some vendors (i.e. Intel) retrieve ATA or SCSI
device serial numbers and store them in the
metadata as RAID set identifiers. Others just
make unique numbers using random number
generators.

1.2 Support in Linux

Linux 2.4 supported a limited list of products
via ATARAID specific low-level drivers.

Now that we have the very flexible device-
mapper runtime in the Linux 2.6 kernel se-
ries, this approach is no longer senseful, be-
cause an application (i.e. dmraid) can translate
between all the different on-disk metadata for-
mats and the information device-mapper needs
to activate access to ATRAID sets. This ap-
proach avoids the overhead of seperate low-
level drivers for the different vendor solutions
in the Linux kernel completely.

2 Device-Mapper

The device-mapper architecture can be delin-
eated in terms of these userspace and kernel
components:

• a core in the Linux kernel which main-
tains mapped devices (accessible as reg-
ular block devices) and their segmented
mappings definable in tuples of offset,
range, target, and target-specific parame-
ters. Offset and ranges are in units of sec-
tors of 512 bytes. Such tuples are called
targets (see examples below). An arbitrary
length list of targets defining segments in
the logical address space of a mapped de-
vice make up a device mapping table.
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• a growing list of kernel modules for plu-
gable mapping targets (e.g. linear, striped,
mirror, zero, error, snapshot, cluster map-
ping targets. . . ) which are responsible
for (re)mapping IOs to a sector address
range in the mapped devices logical ad-
dress space to underlying device(s) (e.g. to
mirrors in a mirror set).

• an ioctl interface module in the kernel to
communicate with userspace which ex-
ports functionality to create and destroy
mapped devices, load and reload mapping
tables, etc.

• a device-mapper userspace library (libde-
vmapper) which communicates with the
kernel through the ioctl interface access-
ing the functions to create/destroy mapped
devices and load/reload their ASCII for-
mated mapping tables. This library is
utilized by a couple applications such as
LVM2 and dmraid.

• a dmsetup tool which uses libdevmapper
to manage mapped devices with their map-
ping tables and show supported mapping
targets, etc.

2.1 Mapping table examples

1. 0 1024 linear /dev/sda 0

2. 0 2048 striped 2 64 /dev/sda 1024 /dev/sdb 0

3. 0 4711 mirror core 2 64 nosync 2 /dev/sda 2048 /dev/sdb 1024

4. 0 3072 zero
3072 1024 error

Example 1 maps an address range (segment)
starting at sector 0, length 1024 sectors linearly
(linear is a keyword selecting the linear map-
ping target) onto /dev/sda, offset 0./dev/
sda 0 (a device path and an offset in sectors)
are the 2 target-specific parameters required for
the linear target.

Example 2 maps a segment starting at sector
0, length 2048 sectors striped (thestripedkey-
word selects the striping target) onto /dev/sda,
offset 1024 sectors and/dev/sdb , offset 0
sectors. The striped target needs to know the
number of striped devices to map to (i.e. ‘2’)
and the stride size (i.e. ‘64’ sectors) to use to
split the IO requests.

Example 3 maps a segment starting at sector 0,
length 4711 sectors mirrored (themirror key-
word selects the mirror target) onto/dev/
sda , offset 2048 sectors (directly after the
striped mapping from before) and/dev/sdb ,
offset 1024 sectors (after the striped mapping).

Example 4 maps a segment starting at sector
0, length 3072 sectors using the ‘zero’ target,
which returns success on both reads and writes.
On reads a zeroed buffer content is returned. A
segment beginning at offset 3072, length 1024
gets mapped with the ‘error’ target, which al-
ways returns an error on reads and writes. Both
segments map a device size of 4096 sectors.

As the last example shows, each target line in a
mapping table is allowed to use a different map-
ping target. This makes the mapping capabil-
ities of device-mapper very flexible and pow-
erfull, because each segent can have IO opti-
mized properties (e.g. more stripes than other
segments).

Note: Activating the above mappings at once is just
for the purpose of the example.

2.2 dmsetup usage examples

By putting arbitrary mapping tables like the
above ones into files readable by the dmsetup
tool (which can read mapping tables from stan-
dard input as well), mapped devices can be
created or removed and their mappings can be
loaded or reloaded.
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1. dmsetup create ols filename

2. dmsetup reload ols another_filename

3. dmsetup rename ols OttawaLinuxSympo-
sium

4. dmsetup remove OttawaLinuxSymposium

Example 1 creates a mapped device named
‘ols’ in the default device-mapper directory
/dev/mapper/ , loads the mapping table
from ‘filename’ (e.g. ’0 3072 zero’) and acti-
vates it for access.

Example 2 loads another mapping table from
‘another_filename’ into ‘ols’ replacing any
given previous one.

Example 3 renames mapped device ‘ols’ to ‘Ot-
tawaLinuxSymposium’.

Example 4 deactivates ‘OttawaLinuxSympo-
sium’, destroys its mapping table in the kernel,
and removes the device node.

3 dmraid

The purpose of dmraid is to arbitrate be-
tween the ATARAID on-disk metadata and the
device-mapper need to name mapped devices
and define mapping tables for them.

Because the ATARAID metadata is vendor spe-
cific and the respective formats therefore all
differ, an internal metadata format abtraction
is necessary to translate into and derive the
mapped device names and mapping tables con-
tent from.

The ‘translators’ between the vendor formats
and the internal format are called ‘metadata for-
mat handlers.’ One of them is needed for any
given format supported by dmraid.

An activation layer translates from there into
mapping tables and does the libdevmapper calls
to carry out device creation and table loads to
gain access to RAID sets.

3.1 dmraid components

• the dmraid tool which parses the command
line and calls into

• the dmraid library with:

– a device access layer to read and
write metadata from/to RAID de-
vices and to retrieve ATA and SCSI
serial numbers

– a metadata layer for the internal
metadata format abstraction with
generic properties to describe RAID
devices and RAID sets with their
sizes and offsets into devices, RAID
layouts (e.g. RAID1) including arbi-
trary stacks of sets (e.g. RAID10)

– metadata format handlers for every
vendor specific solution (e.g. High-
point, NVidia, VIA, . . . ) translating
between those formats and the inter-
nal generic one

– an activation layer doing device-
mapper library calls

– a display layer to show properties
of block devices, RAID devices and
RAID sets

– a logging layer which handles output
for verbosity and debug levels

– a memory management layer
(mainly for debugging purposes)

– a locking layer to prevent parallel
dmraid runs messing with the meta-
data
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3.2 Command line interface

The dmraid CLI comprehends options to:

• activate or deactivate ATARAID sets

• select metadata formats

• display properties of

– block devices

– RAID devices

– RAID sets

– vendor specific metadata

• display help (command synopsis)

• list supported metadata formats

• dump vendor metadata and locations into
files

• display the dmraid, dmraid library and the
device-mapper versions

The command synopsis looks like:

dmraid: Device-Mapper Software RAID tool

* = [-d|--debug]... [-v|--verbose]...

dmraid {-a|--activate} {y|n|yes|no} *
[-f|--format FORMAT]
[-p|--no_partitions]
[-t|--test]
[RAID-set...]

dmraid {-b|--block_devices} *
[-c|--display_columns]...

dmraid {-h|--help}

dmraid {-l|--list_formats} *

dmraid {-n|--native_log} *
[-f|--format FORMAT]
[device-path...]

dmraid {-r|--raid_devices} *
[-c|--display_columns]...
[-D|--dump_metadata]
[-f|--format FORMAT]
[device-path...]

dmraid {-r|--raid_devices} *
{-E|--erase_metadata}
[-f|--format FORMAT]
[device-path...]

dmraid {-s|--sets}...[a|i|active|inactive] *
[-c|--display_columns]...
[-f|--format FORMAT]
[-g|--display_group]
[RAID-set...]

dmraid {-V/--version}

3.3 dmraid usage examples

List all available block devices:

# dmraid -b
/dev/sda: 72170879 total, "680631431K"
/dev/sdb: 8887200 total, "LG142316"
/dev/sdc: 72170879 total, "680620811K"

List all discovered RAID devices:

# dmraid -r
/dev/dm-14: hpt45x, "hpt45x_dbagefdi", \

stripe, ok, 320172928 sectors, data@ 0
/dev/dm-18: hpt45x, "hpt45x_dbagefdi", \

stripe, ok, 320172928 sectors, data@ 0
/dev/dm-22: hpt45x, "hpt45x_bhchfdeie", \

mirror, ok, 320173045 sectors, data@ 0
/dev/dm-26: hpt45x, "hpt45x_bhchfdeie", \

mirror, ok, 320173045 sectors, data@ 0
/dev/dm-30: hpt45x, "hpt45x_edieecfd", \

linear, ok, 320173045 sectors, data@ 0
/dev/dm-34: hpt45x, "hpt45x_edieecfd", \

linear, ok, 320173045 sectors, data@ 0
/dev/dm-38: hpt45x, "hpt45x_chidjhaiaa-0", \

stripe, ok, 320172928 sectors, data@ 0
/dev/dm-42: hpt45x, "hpt45x_chidjhaiaa-0", \

stripe, ok, 320172928 sectors, data@ 0
/dev/dm-46: hpt45x, "hpt45x_chidjhaiaa-1", \

stripe, ok, 320172928 sectors, data@ 0
/dev/dm-50: hpt45x, "hpt45x_chidjhaiaa-1", \

stripe, ok, 320172928 sectors, data@ 0

List all discovered RAID sets:

# dmraid -cs
hpt45x_dbagefdi
hpt45x_bhchfdeie
hpt45x_edieecfd
hpt45x_chidjhaiaa
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Show mapped devices and mapping tables for
RAID sets discovered:

# dmraid -tay
hpt45x_dbagefdi: 0 640345856 striped \

2 128 /dev/dm-14 0 /dev/dm-18 0
hpt45x_bhchfdeie: 0 320173045 mirror \

core 2 64 nosync 2 /dev/dm-22 0 /dev/dm-26 0
hpt45x_edieecfd: 0 320173045 \

linear /dev/dm-30 0
hpt45x_edieecfd: 320173045 320173045 \

linear /dev/dm-34 0
hpt45x_chidjhaiaa-0: 0 640345856 striped \

2 128 /dev/dm-38 0 /dev/dm-42 0
hpt45x_chidjhaiaa-1: 0 640345856 striped \

2 128 /dev/dm-46 0 /dev/dm-50 0
hpt45x_chidjhaiaa: 0 640345856 mirror \

core 2 256 nosync 2 \
/dev/mapper/hpt45x_chidjhaiaa-0 0 \
/dev/mapper/hpt45x_chidjhaiaa-1 0

Activate particular discovered RAID sets:

# dmraid -ay hpt45x_dbagefdi hpt45x_bhchfdeie

3.4 Testbed

It is too costly to keep a broad range of
ATARAID products in a test environment for
regression tests. This would involve plenty
of different ATARAID cards and ATARAID-
equipped mainboards. Even worse, multiple
of each of those would be needed in order to
keep various configurations they support aces-
sible for tests in parallel (e.g. Highpoint 47x
type cards support RAID0, RAID1, RAID 10
and drive concatination). Not to mention the
amount of disks needed to cover thoseand a
couple of different sizes for each layout. For
the formats already supported by dmraid, the
costs easily sum up to a couple of USD 10K.

Because of that, the author created a testbed
which utilizes device-mapper to ‘fake’
ATARAID devices via sparse mapped de-
vices (that’s why the examples above show
/dev/dm-* device names). A sparse mapped
device is a stack of a zero and a snapshot

mapping on top. The snapshot redirects all
writes to the underlying device and keeps track
of those redirects while allowing all reads
to not-redirected areas to hit the underlying
device. In case of the zero mapping, success
and a zeroed buffer will be returned to the
application. The space where the snapshot
redirects writes to (called exception store) can
be way smaller than the size of the zero device.
That in turn allows the creation of much larger
sparse than available physical storage.

The testbed is a directory structure contain-
ing subdirectory hierarchies for every vendor,
adaptor type and configuration (images of the
metadata on each drive and drive size). The top
directory holds setup and remove scripts to cre-
ate and tear down all sparse mapped devices for
the drives invloved in the configuration which
get called from configuration directory scripts
listing them.

A typical subdirectory (e.g. /dmraid/

ataraid.data/hpt/454/raid10 ) looks
like:

hde.size hdg.size hdi.size hdk.size

hde.dat hdg.dat hdi.dat hdk.dat

setup remove

dmraid -rD is able to create the .dat and
.size files for supported formats for easy addi-
tion to the testbed. Users only need to tar those
up and send them to the author on request.

4 dmraid status and futures

dmraid and device-mapper are included in vari-
ous distributions such as Debian, Fedora, Nov-
ell/SuSE, and Red Hat.

Source is available at
http://people.redhat.com/
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heinzm/sw/dmraid
for dmraid and
http://sources.redhat.com/dm
for device-mapper.

The mailing list for information exchange on
ATARAID themes including dmraid is
ataraid-list@redhat.com . If you’d
like to subscribe to that list, please go to
https://www.redhat.com/mailman/
listinfo/ataraid-list .

Work is in progress to add Fedora installer sup-
port for dmraid and device-monitoring via an
event daemon (dmeventd) and a libdevmap-
per interface extension to allow registration of
mapped devices for event handling. dmeventd
loads application specific dynamic shared ob-
jects (e.g. for dmraid or lvm2) and calls into
those once an event on a registered device oc-
curs. The DSO can carry out appropriate steps
to change mapped device configurations (e.g.
activate a spare and start resynchronization of
the mirrored set).

Additional metadata format handlers will be
added to dmraid including one for SNIA DDF.

The author is open for any proposals which
other formats need supporting. . .
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Abstract

In this paper, we will discuss how we created
a test environment using a single high-end test
host that implemented multiple test hosts. The
test environment enabled the testing of software
running on different Linux distributions with
different kernel versions. This approach im-
proved test automation, avoided capital expen-
ditures and saved on desktop real-estate. We
employed a version of Gentoo Linux with a
modified 2.6 kernel, along with multiple in-
stances of different distributions and version of
Linux running on User Mode Linux (UML).
The particular tests involved are related to the
Linux Standards Base, but the concept is appli-
cable to many different environments.

We will describe how we improved aspects
of the Gentoo kernel to improve performance.
We will describe the methods used to affect a
lightweight inter UML communications mech-
anism. We will also talk about the file systems
chosen for both the host OS and the UML. Fi-
nally, we will have a brief discussion around
the benefits and limitations of this type of test
environment, and will discuss plans for future
test environments.

1 Introduction

While setting up a test environment to execute
tests to verify compliance of various Linux dis-
tributions as part of the testing of the Linux
Standard Base (LSB) [1] 3.0 Specification, it
was noted that both time and capital expense
could be saved if the host running the tests
could be effectively reused.

In the context of executing LSB conformance
tests, it is the cass that many of the tests can be
readily executed in an automated and autonou-
mous manner. Only some tests are manual in
nature and require the attendance of a test op-
erator. It was also noted that the tests require
different distributions, including different ker-
nel versions.

Given the fact that the test cycle was not ex-
pected to last indefinitely, and that the num-
ber of distributions under test was likely to in-
crease, it did not make sense to attempt to allo-
cate one host to each distribution.

Additionally, it was important to the test phi-
losophy that the distributions be available at
all times, allowing tests to run independently
of each other. If a multi-boot system, such as
GRUB or LILO were employed, then testing
could only proceed sequentially.

Another required aspect of the test environment
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is the ability to instantiate tests without impact-
ing other running tests.

The solution that is employed is the use of a
host operating system running Guest Operating
Systems (GOS) in User Mode Linux (UML)
[2]. Gentoo [3] release 2.6.11-R-6 was cho-
sen as the host operating system because it is
very configurable in the areas of file systems,
how many process are running and other areas.
The intent is to keep the host of installed soft-
ware on the host operating system very small.
It is very easy to install a minimal set of pack-
ages in a GenToo build. While any distribution
provides the ability to configure installed pack-
ages, and allows modifications to the kernel,
the GenToo distributions seems to be geared to-
ward allowing installers to make the types of
modifications needed to encompass the solu-
tion.

It makes a great deal of sense from the perspec-
tive of cost and space to arrange the test envi-
ronment to use one host per architecture.

1.1 Changes to the kernel

1.1.1 Elevators

The processes of optimizing the kernel started
with the 2.6.11.6-vanilla Linux Kernel and in-
volved modifications to the elevator to increase
performance of spawning UML instances. The
Linux kernel implements a disk I/O scheduling
system referred to as the elevator. The name
elevator comes from the conceptual model of
the disk drive as a linear array with a single
read/write head. The head moves up and down
the disk, as an elevator moves in an elevator
shaft, and the blocks that are read or written
to as the call buttons on various floors. As
in the real world, the algorithm for moving
the elevator in response to floor requests is a

non-trivial dining philosophers type of prob-
lem. Responsiveness, repeatability, equity, and
aggregate bandwidth must all be carefully bal-
anced. No algorithm can always maximize
all of these needs, but any suitable algorithm
should be able to avoid starvation in all circum-
stances. User Mode Linux also has an elevator,
which operates in the same way as the host el-
evator does. Because several elevators may be
in use on multiple encapsulated operating sys-
tems in parallel (see Figure 1), they can effec-
tively “collude” to starve one or more processes
of disk access. The elevator of the host kernel
was modified to better deal with this situation.

1.2 File System Issues

XFS was chosen as the host file system. When
XFS was devised by SGI, it was designed to be
able to give high throughput for media appli-
cations. Filesystem-within-filesystem applica-
tions are similar to media, in that both involve
contiguous large files that are accessed in reg-
ular ways. In non-linear editing applications,
files are written to and read not in a strictly lin-
ear fashion, but in large linear blocks. File sys-
tem access from an guest operating system in
similar due to the elevator inside the encapsu-
lated kernel.

1.3 Execution Environment

There are two modes of executing kernels in
a UML environment. The first is refered to
as Tracing Threads (TT) mode. The sec-
ond mode is Separate Kernel Address Space
(SKAS) mode. In the TT mode, the processes
and the kernel of the GOS all exist in the user
space of the host kernel. In SKAS mode, the
kernel is mapped into its own address space.
The advantage to Tracing Thread mode is that
there is support for Symetric Multi-Processor
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Figure 1: Nested Elevators

(SMP) based platforms. The most compelling
reason to consider using the SKAS mode is the
perfomance advatage it holds over TT mode.
This advanage is most noticable in applications
that are fork() intensive.

To work in SKAS mode requires a minor patch
to the host OS kernel. This patch was exam-
ined and it was determined that for the purposes
of the specific LSB tests being considered, the
patch did not affect the viability of the test.

It was not nessesary to have SMP available
to the GOS kernels in order to run the tests,
and the host kernel effectively makes use of
the SMP platform. Therefore, the desision was
made to employ the SKAS patch.

1.4 Distributions Tested

The following represents a sample of the distri-
butions required for the LSB 3.0 testing:

• Novell Linux Distribution 10

• RedHat Enterprise Linux 3

• RedHat Enterprise Linux 4

• Red Flag

1.5 Intra-UML communications

In the deployed environment, even though each
GOS has it own IP address and stack and is con-
necte via a virtual switch, there was no require-
ment for communications between individual
GOSs. In the future, it is foreseen that extend-
ing the test environment to allow Client/Server
style tests on separate GOSs may provide value.
In this environment, GOSs could communicate
in one of three methods. First of all, given the
fact that there is an IP stack running on each
GOS, then socket based communications are
available. This would include direct sockets,
ssh, ftp, rsh, and other well known IP-based
communications methods. Second, it would
also be possible to use semaphore files between
GOSs in a manner similar to that described in
this paper. Finally, it is theoretically possible
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to attach TTY/PTY devices between GOSs, al-
lowing character based traffic to be passed be-
tween two GOSs. This approach would have
very little overhead, and may be very attractive
as a management conduit for test control. More
research is needed in this area.

2 Concurrent Test Limitations

It is important to understand the limitations that
exist when running encapsulated or virtualized
test environments. These limitations associated
with running concurrent tests on a UML based
system include:

• hardware abstraction—it may not be ap-
propriate to test the hardware and hard-
ware abstraction layers since some aspects
of the encapsulated operating systems are
abstraced. Example of this are the appar-
ent memory size of which the encapsu-
lated system is aware, the block I/O sys-
tems, etc.

• resource sharing—it is possible for a test
to have different resources available for
different invocations of the test. This may
produce different results in the area of ex-
ecution time, CPU utilization, and other
similar measurements.

• inter-client communication—it adds value
to the test cycle for the host operating sys-
tem to be able to communicate with the
guest operating systems for the purpose
of kicking off tests and recovering test re-
sults. In the future it may also be useful
to enable communication between encap-
sulated systems.

For the purposes of the LSB testing, these lim-
itations are not onerous, and the test environ-
ment is sensible.

3 The Cost of UML

As with any system of emulation, encapsula-
tion, or virtualization, there is some perfor-
mance penalty to be expected. Because the
LSB compliance testing takes such a long time
to execute, two synthetic benchmarks were
chosen that isolate particular areas of system
performance that have a large impact on our
tests. Of principal interest is file system per-
formance and scheduler performance.

3.1 File System Test results

One of the benchmark tools employed was
Bonnie++ (1.03a) a widely accepted file system
throughput test. The Bonnie++ benchmark was
used the in the development of the ReiserFS
file system. Even though a HyperThreaded ma-
chine is used as the test host, it was decided to
use single threaded mode for bonnie++ because
the primary interest is in the performance that
one process would receive, rather than trying
to approximate a full running system in some
way. Bonnie++ was configured to choose the
set size, which for the host was 2G. The encap-
sulated operating systems have varying quanti-
ties of memory, so the same set size as the host
was not used. The intent of this study was to
compare file system performance in the encap-
sulated operating systems, rather than compar-
ing encapsulated performance to the host. See
Table 1 for details on file system throughput.

3.2 Scheduler Performance

Because the LSB tests require a large number
of sequential and concurrent operations, sched-
uler performance inside the encapsulated oper-
ating systems is of interest. There are two fac-
tors of interest here, the process creation over-
head and the context switching time. To mea-
sure the former, thespawn test program of the
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Sequential Output Sequential Input
Per Char Block Rewrite Per Char Block

Host Kernel KB/s KB/s KB/s KB/s KB/s
2.6.11.6-skas3-v9-pre1 30775 64928 22433 14864 53974
2.6.11.6 30726 65639 22906 15159 54649

.16% –1.08% –2.06% –1.95% –1.24%

Table 1: Host disk throughput comparison

unixbench-4.1.0 test suite was used. To mea-
sure the latter, the context switching measure-
ments of the lmbench-3.0-a4 test suite was ob-
served.

4 Testing on UML

One of the factors that influenced the design
of the test environment was the relative exe-
cution time of the tests in questions. Gener-
ally, the compliance tests take in the order of
an hour to execute. The Application Battery
suite of tests for LSB certification takes in the
order of 3 hours per distribution, and is a very
manual operation. The validation of the Sample
Implementation takes about 30 minutes. The
full testing of the distribution using the runtime
library is documented to take approximately
seven hours on a uni-processor host.

Since the tests take so long to execute, there is
no need to launch the tests instantly. If it takes
one or two seconds to cause the testing to be-
gin, this will cause no appreciable difference in
overall test execution time. Accordingly, a file
based system was developed based on an NFS
file system. Each GOS exports a directory to
be used for testing. The host OS mounts a di-
rectory for each GOS. The fact that test take a
long time to execute also means that that the
residual files will persist for quite some time.
It is for this reason that.ini and.fini files
are used in the scripts to indicate when a test is
ready to start, and when it has completed. This

approach also allows multiple tests to be run
concurrently.

The appropriateness of running concurrent tests
must be determined by examining the many as-
pects associated with backgrounding tests. It
would be possible for one GOS to over con-
sume CPU and disk resources by instantiating
many tests. The GOS side of the test environ-
ment does not put any restrictions on the num-
ber of concurrent tests that may be run.

For a general purpose test environment, it
would not be difficult to modify the scripts so
they kept track of the number of outstanding
test—those actively executing tests—and throt-
tle the arrival rate of tests according to some
high water mark.

4.1 Launching a test

Table 2 describes the steps taken by the host OS
to launch a test on GOS 2.

For the purposes of this example, it is as-
sumed the test to be run exists in local directory
/opt/test1 in the form of an executable and
some supporting files. The tests are to be exe-
cuted on GOS #2.

Note that the executable test and any supporting
data must be transferred before the.ini file
used to kick off the test is created.
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Each EOS exports /opt/test

UML Switch

Encapsulated OS #1 Encapsulated OS #2 Encapsulated OS #3

    Host OS mounts
/opt/test/test_<hostname>
      for each EOS

Diagram showing pseudo-hosts

Virtual network switch

NFS

Host OS

Figure 2: UML Figure

$ host: ls /opt/test1
CVS bin result data

$ host: ls /mnt/GOS2
$ host: mkdir /mnt/GOS2/bin
$ host: mkdir /mnt/GOS2/results
$ host: mkdir /mnt/GOS2/data
$ host: cp -R /opt/test1/data /mnt/GOS2/data
$ host: cp /opt/test1/bin/test_exec /mnt/GOS2/bin/test_exec
$ host: touch /mnt/GOS2/bin/test_exec.ini

Table 2: Script Used to Launch Tests
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4.2 Test execution

On each GOS, there is a script running that pe-
riodically checks for the existence of a test. The
script is presented in Table 3.

If can be noted that this script tests for the ex-
istences of.ini files in the .bin directory,
executes the tests redirecting stdin and stderr to
files based on the test name in a results direc-
tory. When the test has completed, the script
create a.fini file, which is a flag to indicate
the test is complete.

4.3 Getting results

Obtaining the results of the test are reasonably
trivial. The test application on the host OS
waits for the creation of a.fini file in the
results directory. Once this empty file is cre-
ated, then the stdout and stderr of the test can
be evaluated to determine the success of failure
of the test. If the test generates any log files,
then these too can be evaluated.

5 Futures

One of the major drawbacks of the method em-
ployed in the test environment described in this
paper is the fact that the system resources are
not protected. The memory associated with
one encapsulated may be partially swapped out
in the host operating system. Disk file sys-
tems need to be carefully planned, and can not
change with out adversely affecting disk per-
formance. The overhead of the host OS also
reduces the resources available to the encapsu-
lating OSes.

A solution that addresses the shortcoming is
the newly released Virtualization Technology

(VT) platform. This platform would a allowed
a much faster deployment of the test environ-
ment. It also has a much faster transition be-
tween guest operating systems due to the hard-
ware assisted switching. A VT platform also
allows the operating systems that run on them
to have protected hardware resources.

Although not available for this test environ-
ment, UML is being ported to a VT technol-
ogy platform, allowing a more efficient use of
system resources from within an GOS. UML is
also being ported to x86-64 architures, as well
as PPC and S390 processors.

As the testing for the Linux Standards Base
continues, it is fully anticipated that this test
environment will be migrated to a VT-enabled
platform in the very near term.

6 Conclusion

The test environment described in this paper
was designed to facilitate simultaneous or near
simultaneous testing of different distributions.
The nature of the testing involved was well
suited for the type of environment available
from a UML based test platform. Performance
slowdowns were not an issue.
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#!/bin/sh

export TD=/mnt/test
while [ 1 -gt 0 ] ; do

for test in ‘ls $TD/bin/*.ini‘ ; do
echo TEST is $test
export fex=‘basename $test .ini‘
echo $fex
if [ -x $TD/bin/$fex ] ; then

($TD/bin/$fex > $TD/results/$fex.out 2> $TD/results/$fex.err;
touch $TD/results/$fex.fini;
rm $TD/bin/$fex) &

fi
rm $test

done
sleep 5

done

Table 3: Script Used to Execute Tests
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Abstract

In this paper I will present the current state of
DCCP for Linux, looking at several implemen-
tations done for Linux and for other kernels,
how well they interoperate, how the implemen-
tation I’m working on took advantage of the
work presented in my OLS 2004 talk (“TCP-
fying the poor cousins”) and ideas about plu-
gabble congestion control algorithms in DCCP,
taking advantage of recent work by Stephen
Hemminger on having a IO scheduller like in-
frastructure for congestion control algorithms
in TCP.

1 What is DCCP?

The Datagram Congestion Control Protocol is a
new Internet transport protocol to provide unre-
liable, congestion controlled connections, pro-
viding a blend of characteristics not available
in other existing protocols such as TCP, UDP,
or SCTP.

There has been concern that the increasing use
of UDP in application such as VoIP, stream-
ing multimedia and massively online games can
cause congestion collapse on the Internet, so
DCCP is being designed to provide an alterna-
tive that frees the applications from the com-
plexities of doing congestion avoidance, while

providing a core protocol that can be extended
with new congestion algorithms, called CCIDs,
that can be negotiated at any given time in
a connection lifetime, even with different al-
gorithms being used for each direction of the
connection, called Half Connections in DCCP
drafts.

This extensibility is important as there are dif-
ferent sets of requirements on how the conges-
tion avoidance should be done, while some ap-
plications may want to grab as much bandwidth
as possible and accept sudden drops when con-
gestion happens others may want not to be so
greedy but have fewer oscillations in the av-
erage bandwidth used through the connection
lifetime.

Currently there are two profiles defined for
DCCP CCIDs: CCID2, TCP-Like Conges-
tion Control[3], for those applications that
want to use as much as possible bandwidth
and are able to adapt to sudden changes in
the available bandwidth like those that hap-
pens in TCP’s Additive Increase Multiplica-
tive Decrease (AIMD) congestion control; and
CCID3, TCP Friendly Congestion Control
(TFRC)[4], that implements a receiver-based
congestion control algorithm where the sender
is rate-limited by packets sent by the receiver
with information such as receive rate, loss inter-
vals, and the time packets were kept in queues
before being acknowledged, indented for appli-
cations that want a smooth rate.
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There are a number of RFC drafts covering
aspects of DCCP to which interested people
should refer for detailed information about the
many aspects of this new protocol, such as:

• Problem Statement for DCCP[1]

• Datagram Congestion Control Protocol
(DCCP)[2]

• Profile for DCCP Congestion Control ID 2[3]

• Profile for DCCP Congestion Control ID 3[4]

• Datagram Congestion Control Protocol
(DCCP) User Guide[5]

• DCCP CCID 3-Thin[6]

• Datagram Congestion Control Protocol Mo-
bility and Multihoming[7]

• TCP Friendly Rate Control (TFRC) for Voice:
VoIP Variant and Faster Restart[8]

This paper will concentrate on the the current
state of the author’s implementation of DCCP
and its CCIDs in the Linux Kernel, without
going too much into the merits of DCCP as a
protocol or its adequacy to any application sce-
nario.

2 Implementations

DCCP has been a moving target, already in its
11th revision, with new drafts changing proto-
col aspects that have to be tracked by the imple-
mentators, so while there has been several im-
plementations written for Linux and the BSDs,
they are feature incomplete or not compliant
with latest drafts.

Patrick McManus wrote an implementation for
the Linux Kernel version 2.4.18, Implement-
ing only CCID2, TCP-Like Congestion Con-
trol, but has not updated it to the latest specs

and also has bitrotted, as the Linux kernel net-
working core has changed in many aspects in
2.6.

Another implementation was made for
FreeBSD at the Luleå University of Tech-
nology, Sweden, that is more complete,
implementing even the TFRC CCID. This
implementation has since been merged in the
KAME Project codebase, modified with lots of
ifdefs to provide a single DCCP code base for
FreeBSD, NetBSD, and OpenBSD.

The WAND research group at the University
of Waikato, New Zealand also has been work-
ing on a DCCP implementation for the Linux
kernel, based on the stack written by Patrick
McManus, combining it with the the Luleå
FreeBSD CCID3 implementation.

The DCCP home page at ICIR also mentions a
user-level implementation written at the Berke-
ley University, but the author was unable to find
further details about it.

The implementation the author is writing for
the Linux Kernel is not based on any of the
DCCP core stack implementations mentioned,
for reasons outlined in the “DCCP on Linux”
section later in this paper.

3 Writing a New Protocol for the
Linux Kernel

Historically when new protocols are being writ-
ten for the Linux kernel existing protocols are
used as reference, with code being copied to ac-
celerate the implementation process.

While this is a natural way of writing new code
it introduces several problems when the ref-
erence protocols and the core networking in-
frastructure is changed, these problems were
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discussed in my “TCPfying the poor Cousins”
[10] paper presented in 2004 at the Linux Sym-
posium, Ottawa.

This paper will describe the design principles
and the refactorings done to the Linux kernel
networking infrastructure to reuse existing code
in the author’s DCCP stack implementation to
minimise these pitfalls.

4 DCCP on Linux

The next sections will talk about the design
principles used in this DCCP implementation,
using the main data structures and functions
as a guide, with comments about its current
state, how features were implemented, some-
times how missing features or potential DCCP
APIs that are being discussed in the DCCP
community could be implemented and future
plans.

5 Design Principles

1. Make it look as much as possible as TCP,
same function names, same flow.

2. Generalise as much as possible TCP stuff.

3. Follow as close as possible the pseu-
docode in the DCCP draft[2], as long as
it doesn’t conflicts with principle 1.

4. Any refactoring to existing code (TCP,
etc.) has to produce code that is as
fast as the previous situation—if possi-
ble faster as was the case with TCP’s
open_request generalization, becom-
ing struct request_sock . Now
TCP v4 syn minisocks use just 64 bytes,
down from 96 in stock Linus tree; lm-
bench shows performance improvements.

Following these principles the author hopes
that the Linux TCP hackers will find it easy
to review this stack, and if somebody thinks
that all these generalisations are dangerous for
TCP, so be it, its just a matter of reverting the
TCP patches and leaving the infrastructure to
be used only by DCCP and in time go on slowly
making TCP use it.

6 Linux Infrastructure for Internet
Transport Protocols

It is important to understand how the Linux ker-
nel internet networking infrastructure supports
transport protocols to provide perspective on
the refactorings done to better support a DCCP
implementation.

A AF_INET transport protocol uses theinet_

add_protocol function so that the IP layer
can feed it packets with its protocol identifier as
present in the IP header, this function receives
the protocol identifier and astruct net_
protocol where there has to be a pointer for
a function to handle packets for this specific
transport protocol.

The transport protocol also has to use the
inet_register_protosw function to tell
the inet layer how to create new sockets for this
specific transport protocol, passing astruct
inet_protosw pointer as the only argu-
ment, DCCP passes this:

struct inet_protosw

dccp_v4_protosw = {
.type = SOCK_DCCP,
.protocol= IPPROTO_DCCP,
.prot = &dccp_v4_prot,
.ops = &inet_dccp_ops,
};

So when applications usesocket(AF_

INET, SOCK_DCCP, IPPROTO_DCCP) the
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inet infrastructure will find this struct and
set socket->ops to inet_dccp_ops and
sk->sk_prot to dccp_v4_prot .

Thesocket->ops pointer is used by the net-
work infrastructure to go from a syscall to the
right network family associated with a socket,
DCCP sockets will be reached through this
struct:

struct proto_ops inet_dccp_ops = {
.family = PF_INET,
.owner = THIS_MODULE,
.release = inet_release,
.bind = inet_bind,
.connect = inet_stream_connect,
.socketpair= sock_no_socketpair,
.accept = inet_accept,
.getname = inet_getname,
.poll = sock_no_poll,
.ioctl = inet_ioctl,
.listen = inet_dccp_listen,
.shutdown = inet_shutdown,
.setsockopt=

sock_common_setsockopt,
.getsockopt=

sock_common_getsockopt,
.sendmsg = inet_sendmsg,
.recvmsg = sock_common_recvmsg,
.mmap = sock_no_mmap,
.sendpage = sock_no_sendpage,
};

Looking at this struct we can see that the DCCP
code shares most of the operations with the
other AF_INET transport protocols, only im-
plementing the.listen method in a different
fashion, and even this method is to be shared, as
the only difference it has withinet_listen ,
the method used for TCP is that it checks if
the socket type isSOCK_DGRAM, while inet_
listen checks if itsSOCK_STREAM.

Another point that shows that this stack is still
in development is that at the moment it doesn’t
supports some ot thestruct proto_ops

methods, using stub routines that return appro-
priate error codes.

One of these methods,.mmap, is implemented
in the Waikato University DCCP stack to pro-
vide transmission rate information when using
the TFRC DCCP CCID, and can be used as
well to implement an alternative sending API
that uses packet rings in an mmaped buffer as
described the paper “A Congestion-Controlled
Unreliable Datagram API” by Junwen Lai and
Eddie Kohler[12].

To go from the commonstruct proto_
ops AF_INET methods to the DCCP stack the
sk->sk_prot pointer is used, and in DCCP
case it is set to this struct:

struct proto dccp_v4_prot = {
.name = "DCCP",

.owner = THIS_MODULE,

.close = dccp_close,

.connect = dccp_v4_connect,

.disconnect = dccp_disconnect,

.ioctl = dccp_ioctl,

.init = dccp_v4_init_sock,

.setsockopt = dccp_setsockopt,

.getsockopt = dccp_getsockopt,

.sendmsg = dccp_sendmsg,

.recvmsg = dccp_recvmsg,

.backlog_rcv = dccp_v4_do_rcv,

.hash = dccp_v4_hash,

.unhash = dccp_v4_unhash,

.accept = inet_csk_accept,

.get_port = dccp_v4_get_port,

.shutdown = dccp_shutdown,

.destroy =

dccp_v4_destroy_sock,

.max_header = MAX_DCCP_HEADER,

.obj_size = sizeof(struct

dccp_sock),

.rsk_prot =

&dccp_request_sock_ops,

.orphan_count= &dccp_orphan_count,

};
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Two of these methods bring us to a refactoring
done to share code with TCP, denounced by the
.accept method,inet_csk_accept , that
previously was namedtcp_accept , and as
will be described in the next section could be
made generic because most of the TCP infras-
tructure to handle SYN packets was generalised
so as to be used by DCCP and other protocols.

7 Handling Connection Requests

DCCP connection requests are done sending
a packet with a specific type, and this shows
an important difference with TCP, namely that
DCCP has an specific field in its packet header
to indicate the type of the packet, whereas TCP
has a flags field where one can use differenc
combinations to indicate actions such as the be-
ginning of the 3way handshake to create a con-
nection, when a SYN packet is sent, while in
DCCP a packet with type REQUEST is sent.

Aside from this difference the code to process
a SYN packet in TCP fits most of the needs
of DCCP to process a REQUEST packet: to
create a mini socket, a structure to represent a
socket in its embryonic form, avoiding using
too much resources at this stage in the socket
lifetime, and also to deal with timeouts waiting
for TCP’s SYN+ACK or DCCP’s RESPONSE
packet, synfloods (requestfloods in DCCP).

So thestruct open_request TCP spe-
cific data structure was renamed tostruct
request_sock , with the members that are
specfic to TCP and TCPv6 were removed, ef-
fectively creating a class hierarchy similar to
the struct sock one, with each protocol
using this structure creating a derived struct that
has astruct request_sock as its first
member, so that the functions that aren’t proto-
col specific could be moved to the networking
core, becoming a new core API usable by other

protocols, not even necessarily anAF_INET
protocol.

Relevant parts ofstruct request_sock :

struct request_sock {
struct request_sock ∗dl_next;
u8 retrans;
u32 rcv_wnd;
unsigned long expires;
struct request_sock_ops ∗rsk_ops;
struct sock ∗sk;
};

The struct request_sock_ops data
structure is not really a new thing, it already ex-
ists in the stock kernel sources, within the TCP
code, named asstruct or_calltable ,
introduced when the support for IPv6 was
merged. At that time the approach to make this
code shared among TCPv6 and TCPv4 was to
add an union tostruct open_request ,
leaving this struct with this layout (some fields
suppressed):

/ ∗ this structure is too big ∗ /
struct open_request {
struct open_request ∗dl_next;
u8 retrans;
u32 rcv_wnd;
unsigned long expires;
struct or_calltable ∗class;
struct sock ∗sk;
union {

struct tcp_v4_open_req v4_req;
#if defined(CONFIG_IPV6) || defined

(CONFIG_IPV6_MODULE)
struct tcp_v6_open_req v6_req;

#endif
} af;

};

So there is no extra indirection added by this
refactoring, and now the state that TCPv4 uses
to represent syn sockets was reduced signif-
icantly as the TCPv6 state is not included,
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being moved tostruct tcp6_request_
sock , that is derived in an OOP fashion
from struct tcp_request_sock , that
has this layout:

struct tcp_request_sock {
struct inet_request_sock req;
u32 rcv_isn;
u32 snt_isn;
};

That is, derived from another new data struc-
ture, struct inet_request_sock , that
has this layout:

struct inet_request_sock {
struct request_sock req;
u32 loc_addr;
u32 rmt_addr;
u16 rmt_port;
u16 snd_wscale:4,

rcv_wscale:4,
tstamp_ok:1,
sack_ok:1,
wscale_ok:1,
ecn_ok:1;

struct ip_options ∗opt;
};

Which bring us back to DCCP, where sockets
in the first part of the 3way handshake, the ones
created when a DCCP REQUEST packet is re-
ceived, are represented by this structure:

struct dccp_request_sock {
struct inet_request_sock

dreq_inet_rsk;
u64 dreq_iss;
u64 dreq_isr;
};

This way TCP’sstruct open_request
becomes a class hierarchy, with the common
part (struct request_sock ) becoming
available for use by any connection oriented
protocol, much in the same waystruct
sock is common to all Linux network proto-
cols.
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Abstract

sysfs is a feature of the Linux 2.6 kernel that al-
lows kernel code to export information to user
processes via an in-memory filesystem. The or-
ganization of the filesystem directory hierarchy
is strict, and based the internal organization of
kernel data structures. The files that are created
in the filesystem are (mostly) ASCII files with
(usually) one value per file. These features en-
sure that the information exported is accurate
and easily accessible, making sysfs one of the
most intuitive and useful features of the 2.6 ker-
nel.

Introduction

sysfs is a mechanism for representing kernel
objects, their attributes, and their relationships
with each other. It provides two components:
a kernel programming interface for exporting
these items via sysfs, and a user interface to
view and manipulate these items that maps
back to the kernel objects which they represent.
The table below shows the mapping between
internel (kernel) constructs and their external
(userspace) sysfs mappings.

Internal External
Kernel Objects Directories
Object Attributes Regular Files
Object Relationships Symbolic Links

sysfs is a core piece of kernel infrastructure,
which means that it provides a relatively sim-
ple interface to perform a simple task. Rarely
is the code overly complicated, or the descrip-
tions obtuse. However, like many core pieces
of infrastructure, it can get a bit too abstract
and far removed to keep track of. To help al-
leviate that, this paper takes a gradual approach
to sysfs before getting to the nitty-gritty details.

First, a short but touching history describes its
origins. Then crucial information about mount-
ing and accessing sysfs is included. Next,
the directory organization and layout of sub-
systems in sysfs is described. This provides
enough information for a user to understand the
organization and content of the information that
is exported through sysfs, though for reasons of
time and space constraints, not every object and
its attributes are described.

The primary goal of this paper is to pro-
vide a technical overview of the internal sysfs
interface—the data structures and the func-
tions that are used to export kernel con-
structs to userspace. It describes the functions
among the three concepts mentioned above—
Kernel Objects, Object Attributes, and Object
Relationships—and dedicates a section to each
one. It also provides a section for each of the
two additional regular file interfaces created to
simplify some common operations—Attribute
Groups and Binary Attributes.

sysfs is a conduit of information between the
kernel and user space. There are many op-

• 313 •



314 • The sysfs Filesystem

portunities for user space applications to lever-
age this information. Some existing uses are
the ability to I/O Scheduler parameters and the
udev program. The final section describes a
sampling of the current applications that use
sysfs and attempts to provide enough inspira-
tion to spawn more development in this area.

Because it is a simple and mostly abstract in-
terface, much time can be spent describing its
interactions with each subsystem that uses it.
This is especially true for the kobject and driver
models, which are both new features of the 2.6
kernel and heavily intertwined with sysfs. It
would be impossible to do those topics justice
in such a medium and are left as subjects for
other documents. Readers still curious in these
and related topics are encouraged to read [4].

1 The History of sysfs

sysfs is an in-memory filesystem that was origi-
nally based on ramfs. ramfs was written around
the time the 2.4.0 kernel was being stabilized.
It was an exercise in elegance, as it showed
just how easy it was to write a simple filesys-
tem using the then-new VFS layer. Because
of its simplicity and use of the VFS, it pro-
vided a good base from which to derive other
in-memory based filesystems.

sysfs was originally calledddfs(Device Driver
Filesystem) and was written to debug the new
driver model as it was being written. That de-
bug code had originally used procfs to export a
device tree, but under strict urging from Linus
Torvalds, it was converted to use a new filesys-
tem based on ramfs.

By the time the new driver model was merged
into the kernel around 2.5.1, it had changed
names todriverfsto be a little more descriptive.
During the next year of 2.5 development, the

mount -t sysfs sysfs /sys

Table 1: A sysfs mount command

sysfs /sys sysfs noauto 0 0

Table 2: A sysfs entry in /etc/fstab

infrastructural capabilities of the driver model
and driverfs began to prove useful to other sub-
systems. kobjects were developed to provide
a central object management mechanism and
driverfs was converted to sysfs to represent its
subsystem agnosticism.

2 Mounting sysfs

sysfs can be mounted from userspace just like
any other memory-based filesystem. The com-
mand for doing so is listed in Table 1.

sysfs can also be mounted automatically on
boot using the file/etc/fstab . Most distri-
butions that support the 2.6 kernel have entries
for sysfs in/etc/fstab . An example entry
is shown in Table 2.

Note that the directory that sysfs is mounted on:
/sys . That is the de facto standard location
for the sysfs mount point. This was adopted
without objection by every major distribution.

3 Navigating sysfs

Since sysfs is simply a collection of directo-
ries, files, and symbolic links, it can be navi-
gated and manipulated using simple shell util-
ities. The author recommends thetree(1)
utility. It was an invaluable aide during the de-
velopment of the core kernel object infrastruc-
ture.
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/sys/
|-- block
|-- bus
|-- class
|-- devices
|-- firmware
|-- module
‘-- power

Table 3: Top level sysfs directories

At the top level of the sysfs mount point are a
number of directories. These directories rep-
resent the major subsystems that are registered
with sysfs. At the time of publication, this
consisted of the directories listed in Table 3.
These directories are created at system startup
when the subsystems register themselves with
the kobject core. After they are initialized, they
begin to discover objects, which are registered
within their respective directories.

The method by which objects register with
sysfs and how directores are created is ex-
plained later in the paper. In the meantime,
the curious are encouraged to meander on their
own through the sysfs hierarchy, and the mean-
ing of each subsystem and their contents fol-
lows now.

3.1 block

The block directory contains subdirectories
for each block device that has been discovered
in the system. In each block device’s directory
are attributes that describe many things, includ-
ing the size of the device and the dev_t number
that it maps to. There is a symbolic link that
points to the physical device that the block de-
vice maps to (in the physical device tree, which
is explained later). And, there is a directory that
exposes an interface to the I/O scheduler. This
interface provides some statistics about about
the device request queue and some tunable fea-
tures that a user or administrator can use to

bus/
|-- ide
|-- pci
|-- scsi
‘-- usb

Table 4: The bus directory

optimize performance, including the ability to
dyanmically change the I/O scheduler to use.

Each partition of each block device is repre-
sented as a subdirectory of the block device.
Included in these directories are read-only at-
tributes about the partitions.

3.2 bus

The bus directory contains subdirectories for
each physical bus type that has support regis-
tered in the kernel (either statically compiled or
loaded via a module). Partial output is listed in
Table 4.

Each bus type that is represented has two sub-
directories: devices and drivers . The
devices directory contains a flat listing of ev-
ery device discovered on that type of bus in the
entire system. The devices listed are actually
symbolic links that point to the device’s direc-
tory in the global device tree. An example list-
ing is shown in Table 5.

The drivers directory contains directories
for each device driver that has been registered
with the bus type. Within each of the drivers’
directories are attributes that allow viewing and
manipulation of driver parameters, and sym-
bolic links that point to the physical devices (in
the global device tree) that the driver is bound
to.
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bus/pci/devices/
|-- 0000:00:00.0 -> ../../../devices/pci0000:00/0000:00:00.0
|-- 0000:00:01.0 -> ../../../devices/pci0000:00/0000:00:01.0
|-- 0000:01:00.0 -> ../../../devices/pci0000:00/0000:00:01.0/0000:01:00.0
|-- 0000:02:00.0 -> ../../../devices/pci0000:00/0000:00:1e.0/0000:02:00.0
|-- 0000:02:00.1 -> ../../../devices/pci0000:00/0000:00:1e.0/0000:02:00.1
|-- 0000:02:01.0 -> ../../../devices/pci0000:00/0000:00:1e.0/0000:02:01.0
‘-- 0000:02:02.0 -> ../../../devices/pci0000:00/0000:00:1e.0/0000:02:02.0

Table 5: PCI devices represented inbus/pci/devices/

class/
|-- graphics
|-- input
|-- net
|-- printer
|-- scsi_device
|-- sound
‘-- tty

Table 6: The class directory

3.3 class

The class directory contains representations
of every device class that is registered with the
kernel. A device class describes a functional
type of device. Examples of classes are shown
in Table 6.

Each device class contains subdirectories for
each class object that has been allocated and
registered with that device class. For most of
class device objects, their directories contain
symbolic links to the device and driver directo-
ries (in the global device hierarchy and the bus
hierarchy respectively) that are associated with
that class object.

Note that there is not necessarily a 1:1 mapping
between class objects and physical devices; a
physical device may contain multiple class ob-
jects that perform a different logical function.
For example, a physical mouse device might
map to a kernel mouse object, as well as a
generic “input event” device and possibly a “in-
put debug” device.

Each class and class object may contain at-
tributes exposing parameters that describe or
control the class object. The contents and for-
mat, though, are completely class dependent
and depend on the support present in one’s ker-
nel.

3.4 devices

The devices directory contains the global
device hierarchy. This contains every physi-
cal device that has been discovered by the bus
types registered with the kernel. It represents
them in an ancestrally correct way—each de-
vice is shown as a subordinate device of the de-
vice that it is physically (electrically) subordi-
nate to.

There are two types of devices that are excep-
tions to this representation: platform devices
and system devices. Platform devices are pe-
ripheral devices that are inherent to a particular
platform. They usually have some I/O ports,
or MMIO, that exists at a known, fixed loca-
tion. Examples of platform devices are legacy
x86 devices like a serial controller or a floppy
controller, or the embedded devices of a SoC
solution.

System devices are non-peripheral devices that
are integral components of the system. In many
ways, they are nothing like any other device.
They may have some hardware register access
for configuration, but do not have the capabil-
ity to transfer data. They usually do not have
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drivers which can be bound to them. But, at
least for those represented through sysfs, have
some architecture-specific code that configures
them and treats them enough as objects to ex-
port them. Examples of system devices are
CPUs, APICs, and timers.

3.5 firmware

The firmware directory contains inter-
faces for viewing and manipulating firmware-
specific objects and attributes. In this case,
‘firmware’ refers to the platform-specific code
that is executed on system power-on, like the
x86 BIOS, OpenFirmware on PPC platforms,
and EFI on ia64 platforms.

Each directory contains a set of objects and at-
tributes that is specific to the firmware “driver
in the kernel.” For example, in the case
of ACPI, every object found in the ACPI
DSDT table is listed infirmware/acpi/
namespace/ directory.

3.6 module

Themodule directory contains subdirectories
for each module that is loaded into the kernel.
The name of each directory is the name of the
module—both the name of the module object
file and the internal name of the module. Ev-
ery module is represented here, regardless of
the subsystem it registers an object with. Note
that the kernel has a single global namespace
for all modules.

Within each module directory is a subdirectory
calledsections . This subdirectory contains
attributes about the module sections. This in-
formation is used for debugging and generally
not very interesting.

Each module directory also contains at least
one attribute:refcnt . This attributes displays

the current reference count, or number of users,
of the module. This is the same value in the
fourth column oflsmod(8) output.

3.7 power

The power directory represents the under-
used power subsystem. It currently contains
only two attributes:disk which controls the
method by which the system will suspend to
disk; andstate , which allows a process to en-
ter a low power state. Reading this file displays
which states the system supports.

4 General Kernel Information

4.1 Code Organization

The code for sysfs resides infs/sysfs/
and its shared function prototypes are in
include/linux/sysfs.h . It is relatively
small (~2000 lines), but it is divided up among
9 files, including the shared header file. The
organization of these files is listed below. The
contents of each of these files is described in
the next section.

• include/linux/sysfs.h - Shared
header file containing function prototypes
and data structure definitions.

• fs/sysfs/sysfs.h - Internal header
file for sysfs. Contains function definitions
shared locally among the sysfs source.

• fs/sysfs/mount.c - This contains
the data structures, methods, and initial-
ization functions necessary for interacting
with the VFS layer.
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• fs/sysfs/inode.c - This file con-
tains internal functions shared among the
sysfs source for allocating and freeing the
core filesystem objects.

• fs/sysfs/dir.c - This file contains
the externally visible sysfs interface re-
sponsible for creating and removing direc-
tories in the sysfs hierarchy.

• fs/sysfs/file.c - This file contains
the externally visible sysfs interface re-
sponsible for creating and removing reg-
ular, ASCII files in the sysfs hiearchy.

• fs/sysfs/group.c - This file con-
tains a set of externally-visible helpers that
aide in the creation and deletion of multi-
ple regular files at a time.

• fs/sysfs/symlink.c - This file con-
tains the externally- visible interface re-
sponsible for creating and removing sym-
link in the sysfs hierarchy.

• fs/sysfs/bin.c - This file contains
the externally visible sysfs interface re-
sponsible for creating and removing bi-
nary (non-ASCII) files.

4.2 Initialization

sysfs is initialized infs/sysfs/mount.c ,
via thesysfs_init function. This function
is called directly by the VFS initialization code.
It must be called early, since many subsystems
depend on sysfs being initialized to register ob-
jects with. This function is responsible for do-
ing three things.

• Creating a kmem_cache. This cache
is used for the allocation ofsysfs_
dirent objects. These are discussed in
a later section.

• Registering with the VFS. register_
filesystem() is called with the
sysfs_fs_type object. This sets up
the appropriate super block methods and
adds a filesystem with the namesysfs .

• Mounts itself internally. This is done to
ensure that it is always available for other
kernel code to use, even early in the boot
process, instead of depending on user in-
teraction to explicitly mount it.

Once these actions complete, sysfs is fully
functional and ready to use by all internal code.

4.3 Configuration

sysfs is compiled into the kernel by default.
It is dependent on the configuration option
CONFIG_SYSFS. CONFIG_SYSFSis only
visible if the CONFIG_EMBEDDEDoption is
set, which provides many options for config-
uring the kernel for size-constrained envrion-
ments. In general, it is considered a good idea
to leave sysfs configured in a custom-compiled
kernel. Many tools currently do, and probably
will in the future, depend on sysfs being present
in the system.

4.4 Licensing

The sysfs code is licensed under the GPLv2.
While most of it is now original, it did originate
as a clone of ramfs, which is licensed under the
same terms. All of the externally-visible inter-
faces are original works, and are of course also
licensed under the GPLv2.

The external interfaces are exported to mod-
ules, however only to GPL-compatible mod-
ules, using the macroEXPORT_SYMBOL_
GPL. This is done for reasons of maintainabil-
ity and derivability. sysfs is a core component
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of the kernel. Many subsystems rely on it, and
while it is a stable piece of infrastructure, it oc-
casionally must change. In order to develop
the best possible modifications, it’s imperative
that all callers of sysfs interfaces be audited and
updated in lock-step with any sysfs interface
changes. By requiring that all users be licensed
in a GPL manner, and hopefully merged into
the kernel, the level of difficulty of an interface
change can be greatly reduced.

Also, since sysfs was developed initially as an
extension of the driver model and has gone
through many iterations of evolution, it has a
very explicit interaction with its users. To de-
velop code that used sysfs but was not copied
or derived from an existing in-kernel GPL-
based user would be difficult, if not impossible.
By requiring GPL-compatibility in the users of
sysfs, this can be made explicit and help pre-
vent falsification of derivability.

5 Kernel Interface Overview

The sysfs functions visible to kernel code are
divided into three categories, based on the type
of object they are exporting to userspace (and
the type of object in the filesystem they create).

• Kernel Objects (Directories).

• Object Attributes (Regular Files).

• Object Relationships (Symbolic Links).

There are also two other sub-categories of ex-
porting attributes that were developed to acco-
modate users that needed to export other files
besides single, ASCII files. Both of these cate-
gories result in regular files being created in the
filesystem.

• Attribute Groups

• Binary Files

The first parameter to all sysfs functions is the
kobject (hereby referenced ask ), which is be-
ing manipulated. The sysfs core assumes that
this kobject will remain valid throughout the
function; i.e., they will not be freed. The caller
is always responsible for ensuring that any nec-
essary locks that would modify the object are
held across all calls into sysfs.

For almost every function (the exception be-
ing sysfs_create_dir ), the sysfs core as-
sumes thatk->dentry is a pointer to a valid
dentry that was previously allocated and initial-
ized.

All sysfs function calls must be made from pro-
cess context. They should also not be called
with any spinlocks held, as many of them take
semaphores directly and all call VFS functions
which may also take semaphores and cause the
process to sleep.

6 Kernel Objects

Kernel objects are exported as directories via
sysfs. The functions for manipulating these di-
rectories are listed in Table 7.

sysfs_create_dir is the only sysfs func-
tion that does not rely on a directory having
already been created in sysfs for the kobject
(since it performs the crucial action of creating
that directory). It does rely on the following
parameters being valid:

• k->parent

• k->name
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int sysfs_create_dir(struct kobject ∗ k);

void sysfs_remove_dir(struct kobject ∗ k);

int sysfs_rename_dir(struct kobject ∗, const char ∗new_name);

Table 7: Functions for manipulating sysfs directories.

6.1 Creating Directories

These parameters control where the directory
will be located and what it will be called. The
location of the new directory is implied by the
value ofk->parent ; it is created as a subdi-
rectory of that. In all cases, the subsystem (not
a low-level driver) will fill in that field with in-
formation it knows about the object when the
object is registered with the subsystem. This
provides a simple mechanism for creating a
complete user-visible object tree that accurately
represents the internal object tree within the
kernel.

It is possible to callsysfs_create_dir
without k->parent set; it will simply cre-
ate a directory at the very top level of the sysfs
filesystem. This should be avoided unless one
is writing or porting a new top-level subsystem
using the kobject/sysfs model.

When sysfs_create_dir() is called, a
dentry (the object necessary for most VFS
transactions) is allocated for the directory, and
is placed ink->dentry . An inode is cre-
ated, which makes a user-visible entity, and
that is stored in the new dentry. sysfs fills in
thefile_operations for the new directory
with a set of internal methods that exhibit stan-
dard behavior when called via the VFS system
call interface. The return value is 0 on success
and a negative errno code if an error occurs.

6.2 Removing Directories

sysfs_remove_dir will remove an ob-
ject’s directory. It will also remove any regu-
lar files that reside in the directory. This was
an original feature of the filesystem to make it
easier to use (so all code that created attributes
for an object would not be required to be called
when an object was removed). However, this
feature has been a source of several race con-
ditions throughout the years and should not be
relied on in the hopes that it will one day be
removed. All code that adds attributes to an ob-
ject’s directory should explicitly remove those
attributes when the object is removed.

6.3 Renaming Directories

sysfs_rename_dir is used to give a direc-
tory a new name. When this function is called,
sysfs will allocate a new dentry for the kobject
and call the kobject routine to change the ob-
ject’s name. If the rename succeeds, this func-
tion will return 0. Otherwise, it will return a
negative errno value specifying the error that
occurred.

It is not possible at this time to move a sysfs
directory from one parent to another.

7 Object Attributes

Attributes of objects can be exposed via sysfs as
regular files using thestruct attribute
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int sysfs_create_file(struct kobject ∗, const struct attribute ∗);

void sysfs_remove_file(struct kobject ∗, const struct attribute ∗);

int sysfs_update_file(struct kobject ∗, const struct attribute ∗);

Table 8: Functions for manipulating sysfs files

struct device_attribute {
struct attribute attr;

ssize_t ( ∗show)(struct device ∗dev, char ∗buf);

ssize_t ( ∗store)(struct device ∗dev, const char ∗buf, size_t count);

};

int device_create_file(struct device ∗device,

struct device_attribute ∗entry);

void device_remove_file(struct device ∗dev,

struct device_attribute ∗attr);

Table 10: A wrapper forstruct attribute from the Driver Model

struct attribute {
char ∗name;

struct module ∗owner;

mode_t mode;

};

Table 9: Thestruct attribute data type

data type described in Table 9 and the functions
listed in Table 8.

7.1 Creating Attributes

sysfs_create_file() uses thename
field to determine the file name of the attribute
and themode field to set the UNIX file mode
in the file’s inode. The directory in which the
file is created is determined by the location of
the kobject that is passed in the first parameter.

7.2 Reference Counting and Modules

Theowner field may be set by the the caller to
point to the module in which the attribute code
exists. This shouldnot point to the module that
owns the kobject. This is because attributes can
be created and removed at any time. They do
not need to be created when a kobject is regis-
tered; one may load a module with several at-
tributes for objects of a particular type that are
registered after the objects have been registered
with their subsystem.

For example, network devices have a set of
statistics that are exported as attributes via
sysfs. This set of statistics attributes could re-
side in an external module that does not need
to be loaded in order for the network devices
to function properly. When it is loaded, the
attributes contained within are created for ev-
ery registered network device. This module
could be unloaded at any time, removing the
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attributes from sysfs for each network device.
In this case, themodule field should point to
the module that contains the network statistic
attributes.

The owner field is used for reference count-
ing when the attribute file is accessed. The file
operations for attributes that the VFS calls are
set by sysfs with internal functions. This allows
sysfs to trap each access call and perform nec-
essary actions, and it allows the actual methods
that read and write attribute data to be greatly
simplified.

When an attribute file is opened, sysfs incre-
ments the reference count of both the kobject
represented by the directory where the attribute
resides, and the module which contains the at-
tribute code. The former operation guarantees
that the kobject will not be freed while the at-
tribute is being accessed. The latter guarantees
that the code which is being executed will not
be unloaded from the kernel and freed while the
attribute is being accessed.

7.3 Wrappable Objects

One will notice thatstruct attribute
does not actually contain the methods to read
or write the attribute. sysfs does not specify the
format or parameters of these functions. This
was an explicit design decision to help ensure
type safety in these functions, and to aid in sim-
plifying the downstream methods.

Subsystems that use sysfs attributes create
a new data type that encapsulatesstruct
attribute , like in Table 10. By defining a
wrapping data type and functions, downstream
code is protected from the low-level details of
sysfs and kobject semantics.

When an attribute is read or written, sysfs ac-
cesses a special data structure, through the kob-

ject, called a kset. This contains the base opera-
tions for reading and writing attributes for kob-
jects of a particular type. These functions trans-
late the kobject and attribute into higher level
objects, which are then passed to theshow and
store methods described in Table 10. Again,
this helps ensure type safety, because it guar-
antees that the downstream function receives a
higher-level object that it use directly, without
having to translate it.

Many programmers are inclined to cast be-
tween object types, which can lead to hard-to-
find bugs if the position of the fields in a struc-
ture changes. By using helper functions within
the kernel that perform an offset-based pointer
subtraction to translate between object types,
type safety can be guaranteed, regardless if the
field locations may change. By centralizing the
translation of objects in this manner, the code
can be easier to audit in the event of change.

7.4 Reading and Writing Attributes

sysfs attempts to make reading and writing at-
tributes as simple as possible. When an at-
tribute is opened, aPAGE_SIZE buffer is al-
located for transferring the data between the
kernel and userspace. When an attribute
is read, this buffer is passed to a down-
stream function (e.g.,struct device_
attribute::show() which is responsible
for filling in the data and formatting it appro-
priately. This data is then copied to userspace.

When a value is written to a sysfs attribute file,
the data is first copied to the kernel buffer, then
it is passed to the downstream method, along
with the size of the buffer in bytes. This method
is responsible for parsing the data.

It is assumed that the data written to the buffer
is in ASCII format. It is also implied that the
size of the data written is less than one page in
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size. If the adage of having one value per file
is followed, the data should be well under one
page in size. Having only one value per file also
eliminates the need for parsing complicated
strings. Many bugs, especially in text parsing,
are propogated throughout the kernel by copy-
ing and pasting code thought to be bug-free. By
making it easy to export one value per file, sysfs
eliminates the need for copy-and-paste devel-
opment, and prevents these bugs from propa-
gating.

7.5 Updating an attribute

If the data for an attribute changes, ker-
nel code can notify a userspace process that
may be waiting for updates by modifying the
timestamp of the file usingsysfs_update_
file() . This function will also call dnotify,
which some applications use to wait for modi-
fied files.

8 Object Relationships

A relationship between two objects can be ex-
pressed in sysfs by the use of a symbolic link.
The functions for manipulating symbolic links
in sysfs are shown in Table 11. A relationship
within the kernel may simply be a pointer be-
tween two different objects. If both of these ob-
jects are represented in sysfs with directories,
then a symbolic link can be created between
them and prevent the addition of redundant in-
formation in both objects’ directories.

When creating a symbolic link between two ob-
jects, the first argument is the kobject that is be-
ing linkedfrom. This represents the directory in
which the symlink will be created. The second
argument is the kobject which is being linked
to. This is the directory that the symlink will

point to. The third argument is the name of the
symlink that will appear in the filesystem.

To illustrate this, consider a PCI network device
and driver. When the system boots, the PCI de-
vice is discovered and a sysfs directory is cre-
ated for it, long before it is bound to a specific
driver. At some later time, the network driver
is loaded, which may or may not bind to any
devices. This is a different object type than the
physical PCI device represents, so a new direc-
tory is created for it.

Their association is illustrated in Table 12.
Shown is the driver’s directory in sysfs, which
is named after the name of the driver module.
This contains a symbolic link that points to the
devices to which it is bound (in this case, just
one). The name of the symbolic link and the
target directory are the same, and based on the
physical bus ID of the device.

9 Attribute Groups

The attribute group interface is a simplified in-
terface for easily adding and removing a set of
attributes with a single call. Theattribute_
group data structure and the functions defined
for manipulating them are listed in Table 13.

An attribute group is simply an array of at-
tributes to be added to an object, as represented
by theattrs field. Thenamefield is optional.
If specified, sysfs will create a subdirectory of
the object to store the attributes in the group.
This can be a useful aide in organizing large
numbers of attributes.

Attribute groups were created to make it easier
to keep track of errors when registering multi-
ple attributes at one time, and to make it more
compelling to clean up all attributes that a piece
of code may create for an object. Attributes can
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int sysfs_create_link(struct kobject ∗kobj, struct kobject ∗target,

char ∗name);

void sysfs_remove_link(struct kobject ∗, char ∗name);

Table 11: Functions for manipulating symbolic links in sysfs

$ tree -d bus/pci/drivers/e1000/
bus/pci/drivers/e1000/
‘-- 0000:02:01.0 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:02:01.0

Table 12: An example of a symlink in sysfs.

be added and removed from the group without
having to change the registration and unregis-
tration functions.

When a group of attributes is added, the return
value is noted for each one. If any one fails to
be added (because of e.g. low memory condi-
tions or duplicate attribute names), the previ-
ously added attributes of that group will be re-
moved and the error code will be returned to the
caller. This allows downstream code to retain a
simple and elegant error handling mechanism,
no matter how many attributes it creates for an
object.

When an attribute group is removed, all of the
attributes contained in it are removed. If a sub-
directory was created to house the attributes, it
is also removed.

Good examples of attribute groups and their
uses can be found in the network device statis-
tics code. Its sysfs interface is in the file
net/core/net-sysfs.c .

10 Binary Attributes

Binary files are a special class of regular files
that can be exported via sysfs using the data
structure and functions listed in Table 14. They

exist to export binary data structures that are ei-
ther best left formatted and parsed in a more
flexible environment, like userspace process
context because they have a known and stan-
dard format (e.g., PCI Configuration Space
Registers); or because their use is strictly in bi-
nary format (e.g., binary firmware images).

The use of binary files is akin to the procfs
interface, though sysfs still traps the read and
write methods of the VFS before it calls the
methods instruct bin_attribute . It
allows more control over the format of the
data, but is more difficult to manage. In gen-
eral, if there is a choice over which interface
to use—regular attributes or binary attributes,
there should be no compelling reasons to use
binary attributes. They should only be used for
specific purposes.

11 Current sysfs Users

The number of applications that use sysfs di-
rectly are few. It already provides a substantial
amount of useful information in an organized
format, so the need for utilities to extract and
parse data is minimal. However, there are a few
users of sysfs, and the infrastructure to support
more is already in place.
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struct attribute_group {
char ∗name;

struct attribute ∗∗attrs;

};

int sysfs_create_group(struct kobject ∗,

const struct attribute_group ∗);

void sysfs_remove_group(struct kobject ∗,

const struct attribute_group ∗);

Table 13: Attribute Groups

struct bin_attribute {
struct attribute attr;

size_t size;

void ∗private;

ssize_t ( ∗read)(struct kobject ∗, char ∗, loff_t, size_t);

ssize_t ( ∗write)(struct kobject ∗, char ∗, loff_t, size_t);

int ( ∗mmap)(struct kobject ∗, struct bin_attribute ∗attr,

struct vm_area_struct ∗vma);

};

int sysfs_create_bin_file(struct kobject ∗ kobj,

struct bin_attribute ∗ attr);

int sysfs_remove_bin_file(struct kobject ∗ kobj,

struct bin_attribute ∗ attr);

Table 14: Binary Attributes

udev was written in 2003 to provide a
dynamic device naming service based on
user/administrator/distro-specified rules. It in-
teracts with the/sbin/hotplug program,
which gets called by the kernel when a variety
of different events occur. udev uses information
stored in sysfs about devices to name and con-
figure them. More importantly, it is used as a
building block by other components to provide
a feature-rich and user-friendly device manage-
ment environment.

Information about udev can be found at ker-
nel.org [2]. Information aboutHAL —an
aptly named hardware abstraction layer—can

be found at freedesktop.org [1].

udev is based onlibsysfs, a C library written
to provide a robust programming interface for
accessing sysfs objects and attributes. Informa-
tion about libsysfs can be found at SourceForge
[3]. The udev source contains a version of lib-
sysfs that it builds against. On some distribu-
tions, it is already installed. If so, header files
can be found in/usr/include/sysfs/
and shared libraries can be found in/lib/
libsysfs.so.1 .

The pciutils package has been updated to use
sysfs to access PCI configuration information,
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instead of using/proc/bus/pci/ .

A simple application for extracting and pars-
ing data from sysfs calledsi has been written.
This utility can be used to display or modify
any attribute, though its true benefit is efforts to
aggregate and format subsystem-specific infor-
mation into an intuitive format. At the time of
publication, it is still in early alpha stages. It
can be found at kernel.org [5].

12 Conclusion

sysfs is a filesystem that allows kernel subsys-
tems to export kernel objects, object attributes,
and object relationships to userspace. This in-
formation is strictly organized and usually for-
matted simply in ASCII, making it very acces-
sible to users and applications. It provides a
clear window into the kernel data structures and
the physical or virtual objects that they control.

sysfs provides a core piece of infrastructure in
the much larger effort of building flexible de-
vice and system management tools. To do this
effectively, it retains a simple feature set that
eases the use of its interfaces and data repre-
sentations easy.

This paper has described the sysfs kernel inter-
faces and the userspace representation of kernel
constructs. This paper has hopefully demys-
tified sysfs enough to help readers understand
what sysfs does and how it works, and with a
bit of luck, encouraged them to dive head first
into sysfs, whether it’s from a developer stand-
point, a user standpoint, or both.
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Abstract

One of the next obstacles in autonomic comput-
ing is having a system self-tune for any work-
load. Workloads vary greatly between applica-
tions and even during an application’s life cy-
cle. It is a daunting task for a system admin-
istrator to manually keep up with a constantly
changing workload. To remedy this shortcom-
ing, intelligence needs to be put into a system to
autonomically handle this process. One method
is to take an algorithm commonly used in arti-
ficial intelligence and apply it to the LinuxR©
kernel.

This paper covers the use of genetic-algorithms
to autonomically tune the kernel through the
development of the genetic-library. It will dis-
cuss the overall designed of the genetic-library
along with the hooked schedulers, current sta-
tus, and future work. Finally, early perfor-
mance numbers are covered to give an idea as
towards the viability of the concept.

1 What is a Genetic Algorithm

A genetic algorithm, or GA, is a method of
searching a large space for a solution to a prob-
lem by making a series of educated guesses.

This search is done by using the mathemat-
ical equivalent of biology’s natural selection
process. The values of the parameters to
the solution are analogous to biology’s genes.
The genes/values that perform well will sur-
vive, while the ones that under perform are
pruned from the gene pool. Over time these
genes/values evolve towards an optimal solu-
tion for the current environment.

1.1 Genetic Algorithm terms

The termgenerefers to a variable in the prob-
lem that is being solved. These variables can
be for anything as long as changing their value
causes a measurable outcome. A gene is a piece
of the solution.

All of the different genes comprise achild.
Each child normally has different values for
their genes, which makes each child unique.
These different value and combinations allow
some children to perform better than others in
a given environment. A single child is a single
possible solution to the given problem.

All of the children make up apopulation. A
population is a set of solutions to the given
problem.

When a set of children are put together, they
create ageneration. A generation is the time

• 327 •
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that all children perform before the natural se-
lection process prunes some children. The re-
maining children becomeparentsand create
children for the next generation.

The measure of how well a child is perform-
ing is afitnessmeasure. This is the numerical
value assigned to each child at the end of a gen-
eration.

A phenotypeis the end result of the genes in-
teraction. In biology, an example would be eye
color. There are a number of genes that affect
eye color, but only one color as an end result.
In a genetic algorithms specific genes impact
specific fitness outcomes.

Much how evolution works in the wild, a ge-
netic algorithm takes advantage ofmutationsto
introduce new genes into the gene pool. This
is to combat a limited set of genes that may
have worked well in the old environment, but
does not have the optimal result in a changing
environment. Mutations also aid in premature
convergence on less-than-optimal solutions.

2 Genetic-Library

As the name implies, the genetic-library is a
library where components in the kernel can
plug into to take advantage of a genetic algo-
rithm. The advantage of the genetic-library is
that components do not have to create their own
method of self-tuning. The genetic-library cre-
ates a unified path that is flexible enough to
handle almost any tuning that a component has
need for.

2.1 Registering

Before the genetic-library is used, components
first must register with it. When registering,

state must be given to the genetic-library. For
instance, the plugins need to givegenetic_
ops , which are implementation specific call-
back functions that the genetic-library uses.
The child lifetime, the number of genes, and
the number of children must also be included
for each phenotype.

2.2 Genetic library life-cycle

An implementation of a genetic algorithm can
vary, but the genetic-library uses the following
one:

Figure 1: Life Cycle
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2.2.1 Create the initial population

The first step in a genetic algorithm is to create
an initial population of children with their own
set of genes. Usually, the children’s genes are
given values that spread across the entire search
space. This helps facilitate the survival of the
fittest.

The genetic-library makes calls into the compo-
nents through the registeredgenetic_ops .
For each phenotype, all of the children are cre-
ated through thecreate_child() callback.
This callback can initialize genes in a number
of ways. The most common is by spreading the
gene values across the entire search space.

2.2.2 Run generation

In a genetic algorithm, all the children in the
current generation are run in serial. The chil-
dren plug their genes into the system and run
for a slice of time. Once all of the children
in the generation have completed their run, the
generation is over.

In the genetic-library, the first child in every
phenotype callsgenetic_run_child() to
kick off the generation. This function sets
the genes to be used with theset_child_
genes() callback. Next, it takes a snapshot
of performance counters for the fitness mea-
surement to determine how well this child per-
formed. Finally, a timeout is set that will con-
clude the child’s lifetime. That timer func-
tion is used to switch to the next child through
genetic_switch_child() .

2.2.3 Assign fitness to children

One of the most difficult pieces of a genetic al-
gorithm is assigning an accurate fitness number

to a child. This fitness value is used to rank
the children against each other. Depending on
implementation, the fitness calculation is either
done at the completion of a generation, or at the
end of a child’s lifetime.

For the genetic-library, the fitness calcula-
tion is done at the conclusion of a child’s
lifetime through thecalc_fitness() call-
back. This function looks at the snapshot of
the performance counters from the beginning
of the child’s lifetime, and takes the delta of the
counters at the end of the lifetime. Since these
number are usually normalized between all the
children, the delta is usually all that is needed.

There are certain other phenotypes where the
fitness calculation must be done at the end of a
generation. This is usually when the phenotype
contains general tunables that affect other phe-
notype’s outcome. In this casecalc_post_
fitness() is used. This routine normalizes
all the different fitness values by taking the av-
erage ranking of all the children in the affected
phenotypes. The average ranking is used as a
fitness measure.

2.2.4 Rank children

Using the fitness value assigned, children are
then ranked in order of their performance. Chil-
dren with well-performing genes get a higher
ranking.

In the genetic-library’sgenetic_split_
performers() , a bubble sort is used to or-
der the children according to their fitness.

2.2.5 Natural selection operation

The same way Darwin’s natural-selection pro-
cess works in the wild, it works in the genetic
algorithm. Those genes that perform well in
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the given environment, will survive, and those
that perform poorly will not. This enables the
strongest genes to carry on to the next genera-
tion.

In the genetic-library, the bottom half of the
population that under performs is removed.
This replacing of part of the population is
known as a steady-state type of algorithm.
There is also a generational type of algorithm
where the entire population is replaced. For in-
stance, in implementations that make use of a
roulette wheel algorithm, the whole population
is replaced, but the children that have higher
fitness have a proportionally higher chance of
their genes being passed on.

2.2.6 Crossover Operation

This operation is the main distinguishing fac-
tor between a genetic algorithm and other opti-
mization algorithms. The children that survived
the natural selection process now become par-
ents. The parents mate and create new children
to repopulate the depleted population.

There are a number of methods for crossover,
but the most common one in the genetic-library
is similar to the blending method. For all
of the phenotypes that have genes to combine
(some phenotypes are just placeholders for fit-
ness measures and their child’s rankings are
used to determine fitness for another pheno-
type), each gene receives X% of parent A’s
gene value and add in 100-X% of parent B’s
gene value. X is a random percentage between
0 and 100. The end result is that the child has
a gene value that is somewhere randomly in the
middle of parent A’s, and parent B’s genes.

2.2.7 Mutation Operation

To combat premature convergence on a solu-
tion, a small number of mutations are intro-
duced into the population. These mutations
also aid in changing environments where the
current gene pool performs less-than-optimal.

After the new population is created, genes
are picked randomly and randomly modified.
These mutations keep the population diverse.
Staying diverse makes the algorithm perform a
global search.

In the genetic-library, mutation is done on some
percentage of all the genes. Mutations are ran-
domly done on both new children, and par-
ents. Once the individual from the population
is picked, a gene is randomly selected to be mu-
tated. The gene either has a new value picked at
random, or else is iteratively modified by hav-
ing a random percentage increase or decrease
in the gene’s value.

On a system, workloads are always changing.
So the population needs to always be chang-
ing to cover the current solution search space.
To counteract this moving target, the genetic-
library varies the rate of mutation depending
on how well the current population is perform-
ing. If the average fitness for the population de-
creases past some threshold, then it appears as
if the workload is changing and the current pop-
ulation is not performing as well. To counteract
this new problem/workload, the mutation rate
is increased to widen the search space and find
the new optimal solution. There is a limit on the
mutation rate, so not to have the algorithm go
spiraling out of control with mutations bringing
the population further and further away from
the solution. Conversely, if the fitness is in-
creasing, then it appears that the population is
converging on an optimal solution, so the mu-
tation rate decreases to not introduce excessive
bad genes.
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Figure 2: Structure Layout

2.3 Framework

The struct genetic_s is the main struct
that contains the state for each component
plugged into the genetic-lib.

This general structure contains all of the pheno-
types in thestruct phenotype_s . A phe-
notype is created for each specific measurable
outcome.

Within each phenotype, is an array ofstruct
genetic_child_s or children. Each child
will contain an array of genes that are specific
to that phenotype. Since some genes may af-
fect multiple fitness measures, those genes are
usually put into a phenotype that encapsulates
other phenotypes. This will be discussed fur-
ther in the next section.

Each gene has astruct gene_param as-
sociated with it. In this structure, the gene’s
properties are given. The minimum and the
maximum value for a gene, along with its de-
fault value are given. If a gene has a specific
function to mutate it, that can also be provided.

2.4 Phenotypes

Some other genetic algorithms refer to phe-
notypes as something comparable to what the

genetic-library calls a child. However in the
genetic library context, it refers to a popula-
tion of children that affect a specific fitness
measure. Phenotypes were introduced into the
genetic library to increase granularity of what
could be tuned in a component. Before pheno-
types there was one fitness routine per compo-
nent. This fitness function could look at mul-
tiple performance metrics, but all the genes for
the component would be affected regardless if
they had nothing to do with some of the per-
formance metrics. For example, some of the
genes that impact real-time process schedul-
ing were being judged by fitness metrics that
looked at throughput. With the introduction
of phenotypes, the fitness measure of real-time
performance would only affect the genes that
impacted real-time.

The next problem that came about with pheno-
types was what to do with the genes that af-
fect a number of fitness metrics. For example,
time-slice affects fitness measures like number
of context switches, and total delay. The solu-
tion lies with adding a hierarchy of phenotypes
that affect other phenotypes. This is done by
assigning a unique ID’s, oruid, to each pheno-
type. A uid is really a bitmask of phenotypes
that affect it.

3 Hooked components

The genetic-library can be hooked into pretty
much any component that can be tuned. For the
initial implementation, the Zaphod CPU sched-
uler and the Anticipatory I/O scheduler were
picked.

The Zaphod CPU scheduler was attractive to
use because of its heavy integration with sched
stats. Having extensive scheduler statistics
made it much easier to create good fitness rou-
tines.
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The Anticipatory I/O scheduler was also desir-
able because modifying the tunables could af-
fect the schedulers performance greatly.

3.1 Zaphod CPU scheduler

The Zaphod CPU scheduler emerged from the
CPU scheduler evaluation work. It is a sin-
gle priority array O(1) with interactive response
bonuses, throughput bonuses, soft and hard
CPU rate caps and a choice of priority based
or entitlement based interpretation of “nice.”

3.1.1 Configurable Parameters

The behavior of this scheduler is controlled
by a number of parameters and since there
was noa priori best value for these parame-
ters they were designed to be runtime config-
urable (within limits) so that experiments could
be conducted to determine their best values.

time_slice One of the principal advan-
tages of using a single priority array is
that a task’s time slice is no longer tied
up controlling its movement between the
active and expired arrays. Therefore all
tasks are given a new time slice every
time they wake and when they finish their
current time slice. This parameter deter-
mines the size of the time slice given to
SCHED_NORMALtasks.

sched_rr_time_slice This parameter
determines the size of the time slice given
to SCHED_RRtasks.

base_prom_interval The single priority
array introduces the possibility of starva-
tion and to handle this Zaphod includes
an O(1) promotion mechanism. When the
number of runnable tasks on a run queue is

greater than 1, Zaphod periodically moves
all runnableSCHED_NORMALtasks with
a prio value greater thanMAX_RT_
PRIO towards the head of the queue.
This variable controls the interval between
promotions and its ratio to the value of
time_slice can be thought of as con-
trolling the severity of “nice.”

bgnd_time_slice_multiplier Tasks
with a soft CPU rate cap are essentially
background tasks and generally only run
when there are no other runnable tasks on
their run queue. These tasks are usually
batch tasks that benefit from longer time
slices and Zaphod has a mechanism to give
them time slices that are an integer multi-
ple of time_slice and this variable de-
termines that multiple.

max_ia_bonus In order to enhance inter-
active responsiveness, Zaphod attempts to
identify interactive tasks and give them
priority bonuses. This attribute determines
the largest bonus that Zaphod awards. Set-
ting this attribute to zero is recommended
for servers.

initial_ia_bonus When interactive
tasks are forked on very busy systems
it can take some time for Zaphod to
recognize them as interactive. Giving
all tasks a small bonus when they fork
can help speed up this process and this
attribute determines the initial interactive
bonus that all tasks receive.

ia_threshold When Zaphod needs to de-
termine a dynamic priority (i.e., aprio
value) it calculates the recent average
sleepiness(i.e., the ratio of the time spends
sleeping to the sum of the time spent on
the CPU or sleeping) and if this is greater
than the value ofia_threshold it in-
creases the proportion (interactive_
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bonus ) of max_ia_bonus that it will
award this task asymptotically towards 1.

cpu_hog_threshold At the same time it
calculates the tasksCPU usage rate(i.e.
the ratio of the time spent on the CPU
to the sum of the time spent on a run
queue waiting for CPU access or sleep-
ing) and if this is greater than the value of
cpu_hog_threshold it decreases the
task’sinteractive_bonus asymptot-
ically towards zero. From this it can be
seen that the size of the interactive bonus
is relatively permanent.

max_tpt_bonus Zaphod also has a mech-
anism for awarding throughput bonuses
whose purpose is (as the name implies)
to increase system throughput by reduc-
ing the total amount of time that tasks
spend on run queues waiting for CPU ac-
cess. These bonuses are ephemeral and
once granted are only in force for one task
scheduling cycle. The size of the through-
put bonus awarded to a task each schedul-
ing cycle is decided by comparing the re-
cent averagedelay timethat the task has
been suffering to the expected delay time
based on how busy the system is, the task’s
usage patterns and static priority. It will be
a proportion of the value ofmax_tpt_
bonus . This bonus is generally only ef-
fective when the system is less than fully
loaded as once the system is fully loaded
it is not possible to reduce the total delay
time of the tasks on the system.

current_zaphod_mode As previously
mentioned, Zaphod offers the choice of a
priority based or an entitlement based in-
terpretation of “nice.” This attribute deter-
mines which of those interpretations is in
use.

3.1.2 Scheduling Statistics

As can be seen from the above description
of Zaphod’s control attributes, Zaphod needs
data on the amount of time tasks spend on run
queues waiting for CPU access in order to com-
pute task bonuses. The kernel does not cur-
rently provide this data so Zaphod maintains
its own scheduling statistics (in nanoseconds)
for both tasks and run queues. The schedul-
ing statistics of interest to this paper are the
run queue statistics as they are an indication of
the overall system performance. The following
statistics are kept for each run queue in addition
to those already provided in the vanilla kernel:

total_idle The total amount of time
(since boot) that the CPU associated with
the run queue was idle. This is actually de-
rived from the total CPU time for the run
queue’s idle thread.

total_busy The total amount of time
(since boot) that the CPU associated with
the run queue was busy. This is actually
derived from the total time that the run
queue’s idle thread spent off the CPU.

total_delay The total amount of time
(since boot) that tasks have spent on this
run queue waiting for access to its CPU.

total_rt_delay The total amount of time
(since boot) that real time tasks have spent
on this run queue waiting for access to its
CPU.

total_intr_delay The total amount of
time (since boot) that tasks awoken to ser-
vice an interrupt have spent on this run
queue waiting for access to its CPU.

total_rt_intr_delay The total amount
of time (since boot) that real time tasks
awoken to service an interrupt have spent
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on this run queue waiting for access to its
CPU.

total_fork_delay The total amount of
time (since boot) that tasks have spent on
this run queue waiting for access to its
CPU immediately after forking.

total_sinbin The total amount of time
(since boot) that tasks associated with this
run queue have spent cooling their heels in
thesin binas a consequence of exceeding
their CPU usage rate hard cap.

Figure 3: Zaphod Phenotypes

3.1.3 Phenotypes

In Figure 3, there are six phenotypes listed
along with the genes that exist within them.
All of the phenotypes have their own fitness
measures. For example,real-time ’s fit-
ness measures takes the delta oftotal_rt_
delay for each child. The fitness measure not
only affects sched_rr_time_slice , but
also affects all of the genes in thegeneral
phenotype.

Phenotypes might not always have genes in
their children. This is done in when the phe-
notypes are just being used for their fitness
measures. The children that perform well are
ranked accordingly. Thegeneral phenotype
looks at the average ranking of the children of
all the phenotypes under it.

The general phenotype also has a weights
associated with each of its subsidiary pheno-
types. The phenotypes that have a greater
impact on the general phenotype gets higher
weights associated with them. For instance, the
total-delay phenotype is three times more
important than thereal-time phenotype.

To actually calculate the fitness for the
general phenotype’s children, the first child
looks at what place it ranked in each pheno-
type, between1-NUM_CHILDREN, and then
multiply its place by the weight associated with
that phenotype to get a final fitness number
for that child. A quick example would be
if a child was ranked as the worst perform-
ing in real-time , it would receive 1 point
(top rank gets the most points, lowest gets the
least) times thereal-time weight, which is
1. However, in thetotal-delay phenotype,
it was the second best performer, and receives
NUM_CHILDREN-1points. Assume that there
are 8 children. The child would receive 7 points
(ranked second best), timestotal-delay ’s
weight, which is 3.

The final fitness number would be:

real-time: 1 * 1
total-delay: + 7 * 3

------
final fitness: 22

3.2 Anticipatory IO scheduler

The anticipatory I/O scheduler, or AS attempts
to reduce the disk seek time by using a heuris-
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tic to anticipate getting another read request in
close proximity. This is done by delaying pend-
ing I/O with the expectation that the delay of
servicing a request will be made up for by re-
ducing the number of times the disk has to seek.

The anticipatory I/O scheduler was developed
on one large assumption, that there was only
one outstanding I/O on the bus, and only one
head to seek. In other words, it assumed that
the disk was an IDE drive. This works very
well on most desktops, however, in most server
environments, they have SCSI disks, which can
handle many outstanding I/Os, and many times
these disks are setup in a RAID environment
and have many disk heads.

Figure 4: Anticipatory I/O Scheduler Pheno-
types

3.2.1 Phenotypes

Figure 4 shows how three of the four pheno-
types are just placeholders for fitness measures.
Only thegeneral phenotype contains genes.

The three phenotypes that are just fitness mea-
sures are in place to make sure all workloads
are considered, and not favor one type of work-
load over another. They are agnostic towards
the type of I/O, whether it is a read or write.

The num_ops phenotype only exists for fit-
ness measurements. The fitness routine looks

at the delta of number of I/O operations com-
pleted during a child’s lifetime. This fitness
routine helps balance out the idea of pure
throughput. This gives a small fitness bonus to
a large number small I/O’s.

In the throughput phenotype, the fitness
simply looks at the number of sectors read or
written in during a child’s lifetime. This phe-
notype makes sure data is actually moving, and
not just servicing a lot a small requests.

Thelatency phenotype measures the time all
requests sit in the queue. This should help com-
bat I/O starvation.

4 Performance numbers

The main goal of the genetic-library is to in-
crease performance through autonomically tun-
ing components of the kernel. The performance
gain offered by the genetic-library must out-
weigh the cost of adding more code into the
kernel. While there is no hard-and-fast rule to-
wards what percentage increase is worth adding
X number lines of code, gains should be mea-
surable.

In the performance evaluation, an OpenPower
710 system, with 2 CPUs, and 1.848 giga-
bytes of RAM was used. The benchmarks were
conducted on a SLES 9 SP1 base install with
a 2.6.11 kernel. More system details can be
found in Appendix A.

The base benchmarks were conducted on a
stock 2.6.11 kernel, with the PPC64 default
config. On the benchmarking of each com-
ponent utilizing the genetic-library, only the
genetic-library patches for the component be-
ing exercised at that time were in the kernel.
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4.1 Zaphod CPU scheduler

To benchmark the Zaphod CPU Scheduler,
SPECjbb2000R© was used. This benchmark
is a good indicator of scheduler performance.
Due to these runs being unofficial, their formal
numbers cannot be published. However, a per-
centage difference should be sufficient for what
this paper intends to look at.
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Figure 5: SPECjbb results—GA plugin to Za-
phod

The performance improvement ranged from
1.09% to 5.11% in all of the warehouses tested.
There is a trend towards a larger improvement
as the number of warehouses increase. This
indicates that the genetic-library helped Za-
phod scale as the load increased on the sys-
tem. The warehouses averaged an improve-
ment of 3.04%, however the SPECjbb peak per-
formance throughput only showed a 1.52% im-
provement. The peak performance throughput
difference may not be valid due to the perfor-
mance peaking in different warehouses. That
difference makes the two throughput numbers
unable to be measured directly against one an-
other.

4.2 Anticipatory I/O scheduler

The Anticipatory I/O scheduler is tuned to do
sequential reads very well[1]; however, it has

problems with the other types of I/O operations
such as sequential writes and random reads.
These other I/O types of operations can do bet-
ter when the AS is tuned for them. If the
genetic-library did its tuning correctly, there
should be a performance increase across all
types of workloads.

To generate these workloads, the flexible file
system benchmark, or FFSB was used. The
FFSB is a versatile benchmark that gives the
ability to simulate any type of workload[2].

For the benchmarking the AS genetic-library
plugin, FFSB sequentially went through a
series of workload simulations and returned
the number of transactions-per-second and the
throughput. This experiment was conducted on
a single disk ext3 file system.
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Figure 6: FFSB transactions per second—
Anticipatory Plugin

With the exception of one workload, there were
performance improvements across the board.
The largest increase was in the 256K random
write workload. The genetic-library version
had a 23.22% improvement over a stock AS.
The average improvement of all tested work-
loads was 8.72%.

The one workload where the genetic-library de-
graded performance was the sequential read
workload at –0.74%. This is not surprising
because the AS is optimized specifically for
this workload, and the genetic-library’s tunings
might not get any better than the default set-
tings. The performance loss can be attributed
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to the genetic library’s attempts at finding bet-
ter tunings. When the new tuning solution is
attempted it will probably be less-than-optimal.

5 Conclusion & Future work

5.1 Kernel Inclusion viability

At the present time, the Anticipatory I/O
Scheduler sees large enough improvements,
that a strong argument can be made to add the
extra complexity into the kernel. The GA plu-
gin to Zaphod also sees substantial gains in per-
formance, especially when the system is under
a high load. If only throughput was a concern
on the CPU scheduler, then inclusion into the
kernel should be considered. However, there
are number of other factors that must be looked
at. The biggest one is, how well the system also
maintains interactiveness, which is very subjec-
tive.

In the near-term, the GA plugin to Zaphod
should only be used in a server environment.
This is because a desktop environment is partic-
ularly malicious for the genetic-library. There
are numerous CPU usage spikes that can skew
performance results. On top of the CPU usage,
there are the interactiveness concerns. A user
expects to see instant reaction in their interac-
tive applications. If the genetic library goes off
on a tangent to try finding a new optimal tun-
ing, a time-slice may go much longer than is
acceptable by a desktop user. New features are
planned for the genetic-library to help converge
quicker on changing workloads.

5.2 Future work

There are other areas of the kernel that are
being investigated for their viability of being

tuned with the genetic-library. Some of them
include scheduler domain reconfiguration, full
I/O scheduler swapping, plugsched CPU sched-
uler swapping, packet scheduling, and SMT
scheduling.

The next major feature of the genetic-library
will be workload fingerprinting. The idea is to
bring back the top-performing genes for certain
workloads. By being able to identify a partic-
ular workload, the history of optimal tunings
for that workload can be saved. These optimal
genes will be reintroduced into the population
when the current workload matches a finger-
printed workload. This will enable faster con-
vergence when workloads change.

5.3 Conclusion

The genetic-library has the ability to put intel-
ligence into the kernel, and gracefully handle
even the most malevolent of workloads. Hope-
fully, it will pave the way towards a fully auto-
nomic system and the elimination of the system
admin dependency.
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Appendix A. Performance System

IBM OpenPower 710 System
2-way 1.66 Ghz Power5 Processors
1.848 GB of memory
2 15,000 RPM SCSI drives
SLES 9 SP1
2.6.11 Kernel


