Book Proposal

Understanding The Linux Virtual Memory Manager

Mel Gorman

July 9, 2007



CONTENTS

Contents

1 Original Proposal

2 Whats New Section

3 Companion CD Enhancements

4 Detailed Schedule

10



1 ORIGINAL PROPOSAL 3

1 Original Proposal

This is a slightly updated copy of the original proposal that was submitted. The
vast majority of the information here remains the same and is included for reference.

1.1 The Proposed Book
Proposed Title: Understanding the Linux Virtual Memory Manager

Author: Mel Gorman, currently a Junior lecturer in Operating Systems with Uni-
versity of Limerick, Ireland

Summary of Book: The book gives a detailed description of the Linux Virtual
Memory (VM) manager, beginning with an introduction on how to approach read-
ing the code of an open source project. It then describes the theoretical foundation
of the VM before giving a detailed description of its implementation in Linux. An

appendix provides a source code line by line commentary for a significant percentage
of the VM.

Topic Summary: The field of memory management is considered a complex field
but descriptions of practical implementations only exist as general descriptions in
operating systems books which are insufficient for a thorough understanding. Nor-
mally, this would require a person to first study the field of memory management
before reading through the implementation line by line which is a considerable task.
This book dedicates itself to explaining, in detail, how the memory manager is im-
plemented in Linux cutting down the time needed to understand it from several
months to a few weeks.

Unique Approach of Book: First, the book in unique in that it deals exclusively
with the virtual memory manager. Other operating system related books try to
cover all aspects of the kernel without giving specific focus to one subsystem. The
specific books that do exist are usually related to networking.

Second, the introduction chapters are unique in that they do not cover general
kernel material, which is adequately covered by other books. They instead describe
how to get started in understanding and managing the kernel code with a description
of some helpful tools which are included in the companion CD.

Third, the book discusses the theoretical foundations which has been omitted
from recent Linux kernel related material but which is of interest to both researchers
and developers. However, it also discusses the actual implementation in heavy detail.
To make this approachable to readers of various abilities, the books is is split into two
“stages”. The first stage gives a detailed verbal description with the aid of diagrams
and call graphs the architecture of the manager which is suitable for people who
need a clear understanding of how it functions. The second stage is a detailed line
by line coverage of the VM for readers who need a precise account of how the VM



1.2. Marketing Information 4

works which is of particular importance when comprehending later implementations
but would be far too detailed for the first reading.

Included with the CD is two novel tools. The first is called VM Regress which
was developed as a framework for analysing, testing and benchmarking the VM.
The tool currently is able to perform a number of operations and provides a solid
framework for a dedicated user to build new tests, the project is being maintained
on my website. The second tool, which I also developed, is a call graph generator
for C and C++ which is invaluable in illustrating how code is structured. All the
call graphs in the book were generated using the tool and it is actively maintained
on my website.

1.2 Marketing Information

Size of Market: The principal target market is developers, researchers and aca-
demics who need to understand how the Linux VM operates in detail. For these
people, a general kernel book is too “light” just as a device driver developer would not
use a general book. An overview misses too many of the subtleties and sometimes
omits entire aspects. This is unfortunate in the case of the VM as it is critical to
overall system performance. One would think that there would be countless books on
the subject but instead, there is none that focus specifically on the Linux VM. Spe-
cific documentation is rare bordering on the non-existent and the VM is very poorly
understood except by a few core developers. An example of this type of complaint
may be seen in the last paragraph of this e-mail; http://lwn.net/2001/0927/a/am-
vm.php3.

A typical argument about documentation may be seen at hittp://kt.zork.net/kernel-
traffic/kt20011224 147.html#1 where developers argue about the need for docu-
mentation. The core problem is that code is simply too dense to be understood
without a conceptual framework to start with. This book seeks to provide that
framework which allows a reader to fully understand the 2.4 VM which acts as a
very solid foundation to understanding later implementations.

Since the first draft was put online in January, my (incomplete) web logs indicate
that there has been 32,000 downloads of the main PDF and 17,000 of the code com-
mentary. The HT'ML versions are difficult to calculate but 14,450 unique hosts have
accessed the main document and 5000 for the code commentary. I believe there is a
definite group of people who do not believe that code is documentation and would
gladly purchase a book on the subject instead.

Key Topic Coverage: The request for VM documentation is something that con-
tinuously arises on Linux kernel related mailing lists. There has been previous
attempts by people to write documentation but the efforts generally petered out
long before they were completed. A web search with VM, Documentation, Lack,
Required etc will show a number of mailing lists postings of people asking for doc-
umentation and being referred to other OS books, or a C programming book.



1.2. Marketing Information D

What Problem Does This Book Solve?: It solves the problem of how to ap-
proach comprehension of the Linux VM. It begins with approaches to understanding
and analysing code and describes the tools I used myself to perform the same task
giving them a certain amount of credability as being useful. The CD itself includes
the full code commentary as well as copies of the tools I developed during the course
of writing the book and a web browsable version of the source code for the reader
who is required to understand the VM in intimate detail. I do not believe there is
any other book which goes into this level of detail with the reader.

Any other points that reflect why this book will sell well?: Tt is a compre-
hensive description of a practical virtual memory manager implementation which T
believe fills a hole in the OS book market and particularly with the Linux market.

Profile of Audience: OS researchers, both memory management researchers and
lecturers compiling notes for an OS module may use the book to give a description of
the practical implementation of a memory management system. This will still be of
interest to them even if Linux is not their prime research focus as research sometimes
consists of comparisons between existing systems. Kernel developers, both new and
experienced, will need it before making any attempt to change how the VM works
as simple changes can have unexpected and far reaching side-effects. Kernel devel-
opers working on other, seemingly unrelated subsystems, will benefit from reading
the book as virtually every subsystem from device to process management is wired
to the VM to some extent. The VM is unique in this respect as most of the other
kernel subsystems are easily isolated. Finally, kernel development is perceived by
many to be the “hardcore” of open source development and many will read it when
trying their hand at kernel development.

Conferences: Any of the open source related conferences will have some people
interested in kernel development attending. There is also some Kernel specific con-
ferences such as the Ottawa Linux Symposium which would have a number of people
interested in the book.

Prerequisites: The reader will need to have some understanding of C and software
development. They will need to have read at least one general OS book but it does
not have to be Linux specific. Any general UNIX book will cover the knowledge
they need to get started. The principal books and papers read for the writing of the
book are included in the bibliography for further reading.

Reader Benefits:
e Includes an introduction into the practical side of code comprehension
e Full and detailed description of the principals of the VM foundations

e Detailed line by line coverage of the code



1.3. Sales Information 6

Competition: The principal competition is “Understanding the Linux Kernel” by
Daniel P. Bovet and Marco Cesati, published by O’Reilly. This is the general start-
ing point recommended to people who enquire about getting involved with kernel
development. However, this does not give specific focus to the VM, missed many
important subtleties of the implementation, has little discussion of the theoretical
foundation, omits parts of the virtual memory manager totally and has only rela-
tively light discussion of some of the code.

1.3 Sales Information

Retail: Linux Programming/Operating Systems

Corporate: A corporation would benefit if they needed a customised kernel for a
particular application.

Academic: Any operating systems course which included memory management
would benefit from this as it allows a full VM to be taught and understood within
one semester. It would be prime benefit to a lecturer who wished to include practical
examples of how memory management theory is implemented in practice.

Direct Mail: The first platform to push it is via http://www.kernelnewbies.org
which is the starting point of any kernel developer and maintains a recommended
reading list. One of the maintainers is Rik van Riel, a long time VM developer who
has often complained about the lack of solid VM documentation. The second plat-
form would be Linux Weekly News which has long established itself as the best news
point to follow kernel development through the years and publishes announcements
of new books of interest to kernel development.

1.4 Production Information

Time sensitive: I am currently in the process of putting together a proposal for a
PhD and am authoring two papers that I wish to submit for a conference in October.
It will be about 6 weeks before I will be able to give full attention to the book but
will be able to start preliminary work before then.

Present State of Project: At the moment, it is essentially complete and all the
technical details is there. T am confident that the bulk of the work required for the
book is complete and it has been proof read enough for me to me sure it is free
of technical errors. The principal work remaining is to write on what is "up and
coming" with the 2.6 VM.

Estimated Completion Date: T would estimate it would take about 2 months
to complete the up and coming sections as they will be mainly additions to the
chapters already there.



1.4. Production Information 7

Number of Permissions Needed from Other Copyrighted Works: None, I
am the sole author.

Estimated Final Book Pages: Right now, the book, including the code commen-
tary, stands at 484 pages on an A4 sheet but is pretty compact on the sheet.

Submission Format: At the moment, it is formatted in LaTeX which easily con-
verts into PDF, HTML or plain text formats, depending on preference. It could be
easily imported into MS Word as plain text.

Camera-Ready: LaTeX currently formats the document and macros are heavily
used to identify how things like fonts should be rendered. All diagrams are currently
in postscript.

Number of

Line Drawings 13
Graphs 57
Tables 28
Black & White Photographs 0
Color Photographs 0

Total 98



2 WHATS NEW SECTION 8

2 Whats New Section

The release date for 2.6 has not been set at the time of writing but it is expected
that it will be released in the coming months. To get the most from this book, 2.6
will be introduced so that the reader has a starting point if they need to examine
the 2.6 code. Once the addition features and differences have been explained, 2.6
becomes a lot more approachable.

2.1 Format of the Sections

Rather than having a 2.6 chapter, I propose to have a “Whats New” section at the
end of each chapter in the book. In this section, the new features will be introduced
and the important differences between 2.4 and 2.6 explained. These sections will be
between a few paragraphs and a few pages long, depending on the section.

This format allows the 2.6 material to be concisely introduced to the reader
without inter-mixing 2.4 and 2.6 together throughout the book or, the other extreme,
putting 2.6 all in one large chapter.

I would prefer not to put 2.6 in one large chapter unless I have to. The book
goes to some effort in breaking up the VM into small manageable chunks. It would
“break” the style if 2.6 was handled as one large lump of text with little regard to
context.

2.2 Level of Detail

The sections will be quite detailed. The basic principals of each feature will be
introduced as well as a brief description of how they are implemented. As they need
to be terse, the sections will presume the reader is already moderately familiar with
the 2.4 VM and they will be advised in the preamble to read through the whole book
before reading the Whats New sections in detail. A sample Whats New section will
be provided on request.



3 COMPANION CD ENHANCEMENTS 9

3 Companion CD Enhancements

A companion CD has already been put together for the book although it needs to
be updated. The aim of the CD was to provide the book in soft format for easy
text based searching and to include the software developed as part of the research
for the book. The list of what it currently includes is;

e Web server that runs directly from the CD

e Main book in HTML, PDF and plain text formats

Code commentary in HTML, PDF and plain text formats

Copies of VM Regress, CodeViz and Patchset
e Web browsable version of Linux 2.4.20 with LXR

A number of new features may be added to improve the appeal. Some ideas include;

e Searchable function index for code commentary

Ability to generate call graphs from CD

Link call graphs to LXR so that call graphs can be “clicked” on

Copies of all software that CodeViz depends on such as GraphViz and gcc

Replace UL Logo with Prentice Hall or other more suitable logo



4 DETAILED SCHEDULE 10

4 Detailed Schedule

This section outlines the basic schedule including each of the deliverables, the esti-
mated time to completion and a brief description of what will be provided at the end
of the milestone. T estimate that I will be ready to begin writing the book starting at
June 23th. I am giving myself one week for each chapter. Some will take longer than
that and others will be completed well in advance but it is difficult to be precise.

Milestone: Preamble and conclusion Duration: 3 days
During this time, I will write the preamble, remove all references to thesis from
the book and basically give it a more “book” like layout than it currently has.
The conclusion as it stands is a little weak for a book and needs a bit of shaking
up.

Completion Date: June 25th

Milestone: Code Commentary as Appendix Duration: 7 days
The code commentary currently exists as a separate document to the main book.
During this stage, I'll integrate the code commentary into the main book as a series
of appendices, update the references to match and write a basic introduction to
it.

Completion Date: July 5th

Milestone: Introduction Duration: 5 days
The introduction as it currently stands is more suitable as preamble than an
actual introduction. It needs to be rewritten to give a basic introduction to some
basic Linux memory management concepts such as how the TLB is used and the
L1 CPU cache.

Completion Date: July 12th

Milestone: Code Management Duration: 5 days
The tools that the code management chapter talks about have been updated and
now behave differently than the book indicates. This task should not take too
long but I want to talk more about the structure of open source projects in general
which will take a few days.

Completion Date: July 19th

Milestone: Whats New for Chapters 3-8, 10 Duration: 5 days
As it stands, I've written the most of the Whats New for Chapters 3-8 and Chapter
10. T will need time to verify though that the information is still valid on the
writing date and update if necessary. It will also take time if the format of the
Whats New sections changes from what I currently have.

Completion Date: July 26




4 DETAILED SCHEDULE 11

Milestone: Whats New: Slab Allocator Duration: 5 days

A cursory glance shows the implementation of the slab allocator has changed
quite a bit for 2.6. It will take a few days to determine exactly how much of a
difference there is and write about it. I believe the basic principals are the same
though and it is mainly optimisation work. If that is the case, it will take a lot
less time.

Completion Date: August 2nd

Milestone: Whats New: Page Frame Reclamation Duration: 5 days

Page frame reclamation has changed quite a lot since 2.4 in terms of implemen-
tation but from a cursory glance, it looks like the basic idea behind it remains
the same. It should not take more than 5 days to document all the changes that
have been made and what they mean.

Completion Date: August 9th

Milestone: Whats New: Swap Management and OOM Duration: 5 days

Swap management does not look as if it has changed much but as with the above,
I need to confirm that. T don’t think out of memory management has changed at
all which is why I'm including it here

Completion Date: August 16th

Milestone: Companion CD Duration: 5 days

The companion CD as it stands is fairly decent and provides a soft copy of the
book and code commentary. I would like to implement a few new features such
as a searchable function index and be able to generate call graphs from the CD
itself if at all possible

Completion Date: August 23rd

Milestone: New chapter: Shared Memory Duration: 8 days

One section that is currently omitted in the book is shared memory as I treated
it as an IPC mechanism before with little impact on the VM itself. However, I
suspect there is many that would disagree and expect this chapter to exist. I am
alloting 8 days to write it

Completion Date: September 2nd

Milestone: Index and cleanup Duration: 3 days

The index will need to be double checked to make sure the references are in a
logical order. This will be fairly time consuming and may require the index to be
broken out into two parts, code related index references and “normal” references.
The final cleanup will be a double check to make sure the book is consistent and
correct.

Completion Date: September 6th




4 DETAILED SCHEDULE

12



