Code Commentary On The
Linux Virtual Memory Manager

Mel Gorman

July 9, 2007



Contents

1 Boot Memory Allocator

2 Physical Page Management

3 Non-Contiguous Memory Allocation
4 Slab Allocator

5 Process Address Space

6 High Memory Management

7 Page Frame Reclamation

8 Swap Management

10

11

12

13

14

15



List of Figures



List of Tables

4.1 Slab Allocator API for caches



Chapter 1

Boot Memory Allocator



Chapter 2

Physical Page Management



Chapter 3

Non-Contiguous Memory Allocation

10



Chapter 4

Slab Allocator

kmem_cache_create(const char *name, size_t size,
size_t offset, unsigned long flags,
void (*ctor) (void*, kmem_cache_t *, unsigned long),
void (*dtor)(void#*, kmem_cache_t *, unsigned long))
Creates a new cache and adds it to the cache chain

kmem_cache_reap(int gfp_mask)
Scans at most REAP_SCANLEN caches and selects one for reaping all
per-cpu objects and free slabs from. Called when memory is tight

kmem_cache_shrink (kmem_cache_t *cachep)

This function will delete all per-cpu objects associated with a cache
and delete all slabs in the slabs_free list. It returns the number of
pages freed.

kmem_cache_alloc(kmem_cache_t *cachep, int flags)
Allocate a single object from the cache and return it to the caller

kmem_cache_free(kmem_cache_t *cachep, void *objp)
Free an object and return it to the cache

kmalloc(size_t size, int flags)
Allocate a block of memory from one of the sizes cache

kfree(const void *objp)
Free a block of memory allocated with kmalloc

kmem_cache_destroy(kmem_cache_t * cachep)
Destroys all objects in all slabs and frees up all associated memory
before removing the cache from the chain

Table 4.1: Slab Allocator API for caches

11



Chapter 5

Process Address Space

12



Chapter 6

High Memory Management

13



Chapter 7

Page Frame Reclamation

14



Chapter 8

Swap Management

15



