Information Storage: Yesterday, Today and Tomorrow

Albert S. Hoagland Magnetic Disk Heritage Center (MDHC)

Periods

Yesterday, Today, and Tomorrow

- Information Storage: Content is intended to be widely shared
 - My definition: Storage must be nonvolatile.
 - Memory supports information processing; the high access rates desired can favor volatile technologies.
- Types of information includes text, symbols, images and time signals (sound, patterns, etc)
- Yesterday: Printing press to WWII
- Today: WWII to end of 20th century
- Tomorrow: 2000+ perspectives

Printing Press

- Radically changed society by providing wide dissemination of information and knowledge
- Moveable type printing press
 - Introduced in 15th Century by J Gutenberg, Mainz, Germany
 - Content (printed text, symbols and images)
 - Information is human readable
 - Medium: paper
 - Information transfer: by physical transport
 - Libraries: repositories for public access

Punched Card

- In 19th century the need for record keeping and computing were growing
- H. Hollerith took the punched card idea of the Jacquard loom and developed equipment for sorting, collating and tabulating census data from key-punched cards
 - "Binary coding" made the machine processing of large amounts of data possible.
 - Content: alphanumeric data
- IBM led in making punched cards and batch processing the basis of business data processing in first half of 20th century

Two Emerging Storage Technologies

- Photographic film for images emerged and became popular in late 19th century
 - Roll film and box camera (G. Eastman)
- · _____
- In 1898 magnetic recording was invented by V. Poulson
 - In first half of 20th century focus was on the analog recording of sound on magnetic tape
 - Technology just beginning to emerge during this period
 - Like paper, card, and film media, magnetic media was nonvolatile and in addition also reusable.

Summing up - "Yesterday"

- Printed paper became the main means for information storage
- Punched cards introduced, allowing machine processing of large quantities of data.
- Photographic film became the standard method for storing images and moving pictures
- Magnetic recording still in an early developmental stage, was focused on the tape recording of speech.

"Today"

The Seminal Event That Led to Change

The Electronic Digital Computer

- The ENIAC Computer developed in 1940's to meet computing needs of military arising during WWII
 - <u>Memory</u>
 - Vacuum tubes (data volatile)
 - High speed, small capacity
 - <u>Input/Output</u>
 - Removable media: punched cards, paper tape
 - Slow access, low cost. Open-ended capacity
 - Data transfers were between I/O and Memory

Early Computer Activities

- Primary focus on scientific computation
 - Government was funding source for many early activities
 - Universities played a leading role
- High end
 - Memory evolution -- emphasis on speed, then cost
 - Vacuum tube, Mercury delay line, CRT (Williams tube), then: *Magnetic core, Semiconductor*
- Intermediate
 - Memory evolution -- emphasis on low cost, then speed
 - Magnetic drum, then: *Magnetic core, Semiconductor*

Magnetic Drum Memory CALDIC at UC Berkeley (1948-1952)

- Unlike existing magnetic tape devices, based on analog recording, having a head in contact with a slowly moving tape
- Magnetic drum memory was based on digital magnetic recording where:
 - Could write, read and update in-place a small block of binary encoded data (saturate cell + or direction)
- Provided fast access to any block and a high data rate, requiring a high medium velocity.
 - Needed a physical separation between head and medium to avoid wear

UC Magnetic Drum Memory

February 27,2002

Computer Application Trends Early 1950's

- Business data processing growing in importance
 - Magnetic tape replacing paper tape and punched cards
 - Methodology still based on "batch" data processing
 - Tape sorting and sequential processing of data
- Growing interest and desire for on-line system storage that would allow <u>direct access</u> to any record for <u>transaction</u> processing to handle applications like accounting and control

On-line Storage Characteristics Desired

- Magnetic drum digital magnetic recording features but also providing :
- Much higher capacity with a significantly lower cost/byte. *Optimum design tradeoffs*
 - For Capacity: Large recording medium surface area (rotating disk_stack)
 - For low cost per byte: Head positioning (each head servicing many tracks)
 - Consequence: self-clocking of data

IBM RAMAC (Announced 1956)

February 27,2002

RAMAC Magnetic Head

February 27,2002

RAMAC System

February 27,2002

Emerging Perspectives

- <u>Non-contact digital magnetic recording</u> (1947)
 - Able to add or update individual data blocks
 - High data rate and short access time from a high medium velocity, requiring physical separation between head and medium
 - Offered possibility of storing all types of information on the same medium
- <u>Magnetic disk data storage</u> (1955)
 - On-line transaction processing. Response times compatible with applications involving human interaction with large databases
- World-wide <u>packet switching data networks</u>
 - Started by ARPA (created in response to Sputnik) (1957)

Next Generation Disk Drive (1301)

- "Prototype" for all following generations of disk drives by introducing the flying head per surface design.
 - dramatically reducing head positioning time, 1/10 of RAMAC
 - Providing path for continually reducing head/medium spacing.
 - Storage density 10 times that of RAMAC
- Provided magnetic disk performance capabilities for major applications requiring <u>real-time</u> on-line transaction oriented applications.
 - Signature implementation: AA Sabre Airlines Reservations System (requiring a 3 sec or less response time to inquiries) was based on 1301, and a precursor of such real-time computer systems applications

Perpendicular Magnetic Head (ADF)

Figure 12 Design of probe-type recording head.

February 27,2002

IBM 1301 (1961)

February 27,2002

Magnetic Disk "Design Milestones"

- Rotating disk stack with cylindrical tracks and a head/arm assembly for track positioning (RAMAC) *
- Air bearing head per surface, dramatically reducing seek time (1301) *
- Head-track registration (for high tpi) using servo information from disk *
- Rotary actuator
- Multi-layer thin film magnetic media
- GMR head technology
- Sophisticated ("RAID") disk storage systems for 24/7 storage and retrieval of information that is instantly accessible from networks

* Projects initiated under Rey Johnson in downtown San Jose

Memory/Storage Hierarchy Computer Systems

Removable Storage & Archival Requirements?

- Computer systems primarily have magnetic tape for removable storage, although paper still used for human readable storage.
- The continuously lower costs of memory and magnetic disk storage leads to the upward percolation of data from removable to on-line storage
 - Removable storage forces backward compatibility and limits the rate of technological change that can be made.
 - Migration of data to more advanced media is costly and time consuming
- Assurance of retrieving archived information that is very infrequently accessed.?
 - Life of medium and read/write hardware?

Summing Up - "Today"

- Magnetic disk storage has taken over the role of providing the storage, retrieval and the world-wide distribution of information and knowledge in our society through the Internet (which is dependent on magnetic disk storage and data networks)
- The magnetic disk is rapidly being being used to store <u>all</u> "types" of information with a single medium
 - Replaced punched cards and now replacing film.

Epilogue

• The origin of magnetic disk data storage occurred in San Jose, at 99 Notre Dame, with the **RAMAC**, developed at a small IBM Laboratory started in *1952* and led by **Rey Johnson.** The high-technology disk drive industry revolutionized information storage by enabling real-time on-line transaction processing.

Magnetic Disk Heritage Center Santa Clara University

Mission: To Preserve the Historic Legacy of Magnetic Disk Storage

www.mdhc.scu.edu

February 27,2002

99 Notre Dame, <u>A City Landmark</u> 2002 picture \rightarrow 50th anniversary

The original building!

IBM RAMAC (Announced 1956)

Rey Johnson receiving the Medal of Technology from President Reagan (1986)

February 27,2002

"Tomorrow" > Magnetic Disk (1)

- Magnetic disk storage will be around at least through this century.
 - Relative simplicity and elegance of technology and design
 - Performance tradeoff options that are superior to alternatives
 - Major technical advances still to be exploited
 - *If perpendicular magnetic recording (currently being aggressively pursued as next advance) is eventually adopted, the first prototype drive based on its use will be identified as led by <u>Rey Johnson in downtown San Jose</u>

Areal Density: Magnetic Recording 101

- Scaling applies with <u>spacing</u> key parameter
 - How close can you space without wear has been biggest uncertainty since the beginning in predicting future densities
- RAMAC spacing was 1 mil = 1000 micro-inches
 - Today's spacing is approximately ½ micro-inch or 2000 times closer.
- For today's spacing, based on RAMAC design (and signal processing techniques) and using a scaling factor of (2000x2000) times the RAMAC density of 2000 bits/in2, an areal density of 8 gigabits/in2 could have been predicted fifty years ago.

Note: In my career I have seen a density increase of 100 million (800 bits/in2 on CALDIC to 100 gigabits/in2 on drives now in pipeline)

"Tomorrow" > Magnetic Disk (2)

- The magnetic disk drive has become a very lowcost commodity component
 - High volume, supply adjusts to demand
 - No significant proprietary limitations to market entry
 - Used in turn in commodity products
 - User value is associated with the stored content and supported applications

The Far Future

